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Abstract: Despite the increasing recognition and importance surrounding bacterial and fungal interac-
tions, and their critical contributions to ecosystem functioning and host fitness, studies examining their
co-occurrence remain in their infancy. Similarly, studies have yet to characterise the bacterial and fungal
communities associated with nudibranchs or their core microbial members. Doing this can advance
our understanding of how the microbiome helps a host adapt and persist in its environment. In this
study, we characterised the bacterial and fungal communities associated with 46 Pteraeolidia semperi
nudibranch individuals collected from four offshore islands in Singapore. We found no distinct spatial
structuring of microbial community, richness, or diversity across sampling locations. The bacterial
genera Mycoplasma and Endozoicomonas were found across all samples and islands. The fungal genus
Leucoagaricus was found with the highest occurrence, but was not found everywhere, and this is the
first record of its reported presence in marine environments. The co-occurrence network suggests that
bacterial and fungal interactions are limited, but we identified the bacterial family Colwelliaceae as a
potential keystone taxon with its disproportionately high number of edges. Furthermore, Colwelliaceae
clusters together with other bacterial families such as Pseudoalteromonadaceae and Alteromonadaceae, all of
which have possible roles in the digestion of food.

Keywords: bacteria; fungi; co-occurrence; marine microbiome; core microbiome

1. Introduction

Microbes (bacteria, fungi, archaea, and viruses) are fundamental to life where they are
found in nearly every habitat and organism on the planet [1]. They have critical roles in
the mediation of ecosystem functioning in terrestrial and marine ecosystems and have key
roles in biogeochemical and nutrient cycling [2]. Similarly, microbes can form symbiotic
relationships with their hosts that can promote health, fitness, and aid in metabolism [3].

Advances in DNA sequencing technology and high-performance computing have
rapidly accelerated our understanding of microbial diversity in environmental and host-
associated systems in a variety of locations and species [4,5]. However, in comparison,
studies examining the co-occurrence of bacteria and fungi within their host, particularly
for marine hosts, are in their infancy despite their recognised importance and their likely
synergies. Microbial ecosystems are largely dominated by bacteria and fungi, and unrav-
elling their interactions can allow a better understanding of evolutionary relationships
and the maintenance of host health, among other processes [6]. These interactions can be
revealed by network analysis of co-occurrence, which also identifies potential keystone
species or ecological core members [7] that have disproportionate influences in microbial
communities in comparison to others [8]. In this study, we examine the bacterial and
fungal communities of a widespread nudibranch from the waters of Singapore and look for
evidence of co-occurrence.

Nudibranchs (order: Nudibranchia) are a group of charismatic soft-bodied marine
gastropod molluscs that are often noted for their spectacular colouration and striking forms.
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These marine invertebrates generally have short lifespans of four to five months [9,10]
and have evolved to lose their shells as they mature [9]. The majority are adapted to
disperse only locally, frequently emerging as fully formed, albeit small individuals [10].
This limited dispersal potential leads to high levels of genetic differentiation between
populations separated by as little as one hundred meters [11]. This low dispersal potential
facilitates evolution and high nudibranch diversity, especially in the shallow waters of
tropical archipelagos [12,13] where molecular work has revealed a high degree of cryptic
speciation [14–17] with new species frequently being described [18].

Nudibranchs are frequently studied for their ability to produce [17] and sequester
secondary metabolites from their food sources such as hydroids, algae, tunicates, and
corals [18]. These secondary metabolites play crucial roles in promoting host fitness,
especially by defending against predation in the absence of a protective shell, where these
metabolites can make the host unpalatable or toxic to potential predators [18]. More
recently, the role of the microbial community in the production of chemical compounds
via biosynthesis was also considered [19], with nudibranch-associated bacteria found to
produce biosynthetic products that display antimicrobial and antitumor activities [19–22].
The nudibranch Rostanga alisae was also discovered to be symbiotic with the bacterial genus
Synechoccus, which likely has crucial roles such as photosynthesis and the production of
defensive toxins [23]. Symbiotic bacteria can also supplement fatty acid for their nudibranch
hosts [24] or have important nutritional roles by aiding in the digestion of sponge chitin
and sponging [23]. Besides bacteria, numerous fungal species have been isolated from
nudibranchs, with many of the isolates inhibiting the growth of significant pathogenic
bacteria such as Vibrio harveyi and Vibrio vulnificus [25–27].

Despite the importance of fungal and bacterial associates in the host microbiome, stud-
ies that investigate both the core microbiome and mycobiome remain greatly understudied,
especially in the lesser-studied nudibranchs. Furthermore, no prior study has investigated
the interactions between bacteria and fungi associated with nudibranch hosts. A core
microbiome or mycobiome is defined as the group of bacteria or fungal taxa characteristic
of a specific host [28]. Identifying these ecological and common core, or shared, taxa [7],
can advance our understanding of how the structure and composition of the microbiome
adapt to the host’s ecology and habitat, allowing deeper insight into host biology and any
symbiotic relationships that are present.

In this study, we used DNA metabarcoding techniques to examine the bacterial and
fungal communities associated with the nudibranch, Pteraeolidia semperi, commonly known
as the ‘blue dragon’ nudibranch. This species is widespread throughout its native Indo-
Pacific range. They are one of the most common species found in Singapore at water depths
of less than three meters and throughout the intertidal zone. Therefore, we performed
spatial analyses and describe the bacterial and fungal communities associated with 46 indi-
viduals collected from four islands in the waters of Singapore. We investigated the common
core microbial members associated with the nudibranch, Pteraeolidia semperi, and identified
potential keystone microbial taxa through the co-occurrence network. On account of their
limited dispersal, we hypothesise that microbial community structure will differ across
sites, with individuals collected from the same islands showing a more similar microbial
community in comparison to those collected from other islands.

2. Materials and Methods

A total of 46 Pteraeolidia semperi [29] specimens were collected between November
2020 and April 2021 from the reefs surrounding four different islands south of mainland
Singapore: Pulau Hantu, Pulau Jong, Pulau Semakau, and Pulau Tekukor (Figure 1). Of
those, 26 individuals were from Pulau Hantu, 5 from Pulau Jong, 5 from Pulau Semakau,
and 10 from Pulau Tekukor. These islands were selected as Pteraeolidia semperi is known to
be found around them. In brief, the reefs of the four islands are dominated by dead corals
and sediment with a similar coral cover of 20–30% [30–32], except for Pulau Jong with
a lower coral cover of only 5% [31]. Subtidal sampling was conducted via SCUBA, and
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specimens were identified based on known anatomical descriptions [33]. Samples were
kept in 100% ethanol prior to DNA extraction, and species identification was confirmed via
an examination of the radula, partial cytochrome c oxidase subunit I (COI) sequencing, and
phylogenetic analysis as described in Soon et al. (in review) [34]. Briefly, COI sequences
were aligned, a maximum likelihood tree was then constructed and Bayesian inference of
phylogeny was then performed to confirm species identification. Only species confirmed
as Pteraeolidia semperi were used in the analysis.
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Figure 1. Sampling sites from the islands south of Singapore.

2.1. DNA Extraction and Amplification

DNA was extracted from the entire individual with a Qiagen DNeasy® Blood and
Tissue Kit following the manufacturer’s protocol. Amplification of the V4 region of the
16S SSU rRNA was performed with the 515F and 806R primer pair, modified to include
Illumina adapters and a unique barcode [35]. PCR cycling conditions followed that of
Oh et al. [36]: each reaction was performed in a total volume of 25 µL, containing 12.5 µL
KAPA PCR Buffer, 0.1 µL of KAPA 3G Enzyme (Kapa Biosystems, Inc., Wilmington, MA,
USA), 0.75 µL of each primer at 10 µM, 1 µL of undiluted template and nuclease-free water
to 25 µL. PCR cycling conditions began with an initial denaturation step at 94 ◦C for 3 min,
followed by 35 cycles of 94 ◦C for 45 s, 50 ◦C for 60 s, and 72 ◦C for 90 s, with a final
extension at 72 ◦C for 10 min.

Amplification of the fungal ITS region was performed under the same conditions
used in Lee et al. [5]: we amplified the internal transcribed spacer 1 (ITS1) region of fungal
DNA using the ITS1F and ITS2 [37] primer pair, modified to include a unique barcode and
Illumina adapters [38]. PCR cycling conditions began with an initial denaturation step
at 95 ◦C for 3 min, followed by 35 cycles at 95 ◦C for 20 s, 53 ◦C for 15 s, and 72 ◦C for
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20 s, with a final elongation at 72 ◦C for 1 min. Negative extraction and PCR controls were
included and sequenced to identify any potential contamination issues.

All PCR products were then visualised on a 1% TAE buffer agarose gel to confirm
amplification, then cleaned and normalised using SequalPrep™ Normalization Plates
(Invitrogen, Frederick, MD, United States). Fungal and bacterial samples were sequenced
independently on the Illumina MiSeq platform (600 cycles, V3 chemistry, 300 bp paired-end
reads), both with a 30% PhiX spike by Macrogen, Inc. Both libraries were sequenced with
other unrelated projects.

2.2. Bioinformatics

The bioinformatics workflow and analyses were conducted on the R platform [39].
Bioinformatic workflows, comprising quality filtering and taxonomic assignment, were
adapted from the DADA2 [40] ITS Pipeline Workflow V1.81 (https://benjjneb.github.io/
dada2/ITS_workflow.html, accessed on 15 June 2022) for fungal sequences, with fungal
reads truncated at 300 bp and 200 bp for forward and reverse reads, respectively. The
DADA2 Pipeline Tutorial V1.16 (https://benjjneb.github.io/dada2/tutorial.html, accessed
on 20 June 2022) was used for bacterial sequences and reads were truncated at 220 bp and
150 bp for forward and reverse reads, respectively. Additionally, the R package decontam
(v1.16.0) [41] was used to identify and remove any contaminant DNA sequences via the
prevalence-based identification method.

Amplicon sequence variants (ASVs) not assigned to fungi or bacteria in their respective
datasets were removed before downstream analysis. Raw sequence counts were converted
to relative abundance data for use in all subsequent analyses. Unless otherwise indicated,
all analyses were performed on the bacterial and fungal data independently. Rarefaction
curves were first produced with the rarecurve function from the vegan package (v2.6.2) [42]
to ensure sufficient sampling depth and full recovery of diversity for each sample. The
Shannon diversity index (H′) and species richness were calculated for each sample via the
vegan package [42]. Analysis of variance (ANOVA) was performed to investigate whether
fungal or bacterial communities had significantly different diversity or species richness
across sites. All models were checked for normality and homoscedasticity via diagnostic
plots to ensure model validity.

To visualise microbial communities associated with P. semperi from each of the four
sample sites, principal coordinate analysis (PCoA) plots were constructed for both bac-
terial and fungal communities separately with both weighted UniFrac distances (to ac-
count for phylogenetic dissimilarity [43]) and Bray–Curtis dissimilarity matrix via the
phyloseq package (v1.40.0) [44]. Permutational analysis of variance (PERMANOVA) was
then conducted via the adonis2 function from the vegan package [42] to investigate if the
bacterial and fungal community compositions differed significantly across nudibranchs
from different sites. Pairwise comparisons were conducted using the emmeans package [45]
for ANOVA models and pairwiseAdonis package [46] for PERMANOVA models. The as-
sumption of homogenous group dispersion was first assessed with betadisper [42] before
conducting PERMANOVA.

The common and ecological core of fungal and bacterial associates of the nudibranch
P. semperi were identified with the occurrence method and through network analysis, re-
spectively, as reviewed in [7]. The occurrence method was assessed with the core_members
function from the microbiome package [47], which identifies the most widespread taxa found
across the samples. Network analysis was conducted with the SpiecEasi package [48] and
subsequently visualised with the Fruchterman–Reingold layout algorithm in Gephi [49]
following [50]. In general, the SpiecEasi (SParse InversE Covariance Estimation for Ecologi-
cal Association Inference) method allows the inference of correlations between populations
while addressing the lack of independence between microbial compositions and spurious
links from traditional correlation analyses. Keystone members were then identified with
the mean degree, or the number of edges a node has [51].

https://benjjneb.github.io/dada2/ITS_workflow.html
https://benjjneb.github.io/dada2/ITS_workflow.html
https://benjjneb.github.io/dada2/tutorial.html
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All samples were collected under permit number NP/RP20-088b, issued by the Na-
tional Parks Board of Singapore.

3. Results

A total of 9,474,471 and 488,692 reads were generated on the Illumina MiSeq platform
for bacterial and fungal data, respectively. After removing chimeric sequences and low-
quality reads, 5,972,183 bacterial and 276,984 fungal sequences were retained for analysis
(Table S1). All samples were used in the bacterial analysis. Due to low sequencing depth,
three samples (HG06, HN11 & TK08) were discarded in the fungal analysis. Rarefaction
curves show that sufficient depth was attained to reach asymptote, indicating all fungal
and bacterial diversity (with the exception of some fungal reads which did not plateau)
was recovered for samples to use in downstream analyses (Figure S1).

Bacterial communities associated with P. semperi had similar Shannon diversity
(p > 0.05, Figure 2) but significantly different species richness across sites (p < 0.05, Table S2).
However, the pairwise analysis revealed no site pairs with nudibranch-associated bacterial
communities of significantly different species richness. Conversely, while the fungal com-
munities had similar species richness (p > 0.05), they had significantly different Shannon
diversity across the nudibranchs from the four sites (p < 0.05, Table S2). Likewise, the
pairwise analysis showed no island pairs with nudibranch-associated fungal communities
with significantly different Shannon diversity indexes.
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Figure 2. Violin and boxplots of Shannon diversity index and richness of bacteria (16S) and fungal
(ITS) communities of nudibranchs sampled from the four sites. Bold horizontal bars indicate the
means while the points indicate outliers.

Principal coordinate analysis (PCoA) plots with weighted UniFrac and Bray–Curtis
distances showed that bacterial communities did not exhibit distinct clustering across the
four sites (Figure 3). This is supported by the PERMANOVA results with both weighted
UniFrac and Bray–Curtis distances, as each indicates significant differences in bacterial
communities across sites (p < 0.05, Table S3), but the post-hoc multi-level pairwise compar-
isons show that no site pairs were significantly different (Table S4). Bacterial communities
did not have significantly different dispersions across nudibranchs sampled from the four
different sites.
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Figure 3. Principal coordinate analysis (PCoA) with weighted UniFrac distances (top row) and
Bray–Curtis (bottom row) on bacterial (left) and fungal (right) communities of nudibranchs sampled
across the four sites.

PERMANOVA performed on fungal data indicated significantly different communities
across sites with both distance metrics (p = 0.001, Table S3). However, the PCoA plots
showed no distinct site-specific clustering of the fungal communities (Figure 3). As such,
the PERMANOVA results are likely affected by the non-homogenous dispersion of data as
indicated by the betadisper results with both distance metrics (Weighted UniFrac: F = 6.29,
p = 0.001; Bray–Curtis: F = 6.038, p = 0.001).

All four sites had bacterial and fungal ASVs unique to them (Figure 4). Pulau Hantu
had the highest number of unique ASVs with 139 bacterial ASVs and 38 fungal ASVs,
while Pulau Semakau had the lowest number of unique ASVs with 7 bacterial ASVs and
7 fungal ASVs. However, these were rare ASVs that had very low relative abundance. For
instance, despite having 139 bacterial ASVs unique to Pulau Hantu, they only comprised
1.02% ± 0.31% (mean ± SE) of the entire bacterial community across the 26 nudibranch
samples from Pulau Hantu. On the other hand, the shared bacterial and fungal ASVs
across the four sites made up the bulk of the nudibranch’s microbiome. The 44 bacterial
ASVs shared among all four sites comprised on average 92.15% ± 1.44% of the bacterial
community across the 46 nudibranch samples. Likewise, the 12 fungal ASVs shared across
the four sites comprised on average 45.00% ± 3.78% of the fungal community across the
43 samples. The full list of ASV identities unique to each site and shared across all four
sites is listed in the supplementary information (Table S5).
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Figure 4. Number of (A) bacterial and (B) fungal ASVs shared between nudibranchs from the four
different islands.

Of the 44 shared bacterial ASVs found across all four sites, only the genera Mycoplasma
and Endozoicomonas were found in all 46 samples, while Vibrio was found in 45 of
46 samples, missing in a sample collected from Pulau Semakau (Figure 5A). The bacterial
genus clade BD1-7 was present in 42 of the 46 samples, while absent in three samples from
Pulau Hantu and in one sample from Pulau Semakau. The top five bacterial genera with the
highest relative abundances (occurrence) across the nudibranch samples were Mycoplasma
(56.55% ± 4.49%), Vibrio (8.50% ± 2.07%), clade BD1-7 (5.32% ± 1.70%), Endozoicomonas
(3.76% ± 1.20%), and Thalassotalea (3.17% ± 0.68%).
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Conversely, no fungal genera were found across all samples. The fungal genus Leucoa-
garicus had the highest prevalence where it was recovered from 29 of the 43 samples, fol-
lowed by Mortierella and Flammulina which were both found in 19 samples (Figure 5B). The
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top five fungal genera with the highest relative abundances (occurrence) were Meyerozyma
(8.99% ± 3.65%), Peniophora (8.59% ± 2.71%), Leucoagaricus (8.51% ± 1.61%), Rigidoporus
(4.26% ± 1.11%), and Mortierella (3.74% ± 0.85%). No distinct patterns of prevalence or
occurrence were observed in the samples collected across the four sites for either bacterial
or fungal communities.

The network analysis clustered only 13 of the 31 fungal families within the network
with 93 of the 98 bacterial families (Figure 6). The average network distance between
all pairs of nodes (average path length) was 4.28 edges (connections) with a diameter of
10 edges. The clustering coefficient (the degree to which they tend to cluster together) was
0.19 with a modularity index of 0.71 (values > 0.4 suggest that the network has a modu-
lar structure). Overall, the network was moderately well-connected with an average of
2.82 edges. Of the fungal families, Hymenochaetales (Incertae sedis) (node 116) had the
highest number of edges at four, followed by Marasmiaceae (node 127) and Debaryomyc-
etaceae (node 99) with three edges each. The bacterial family Colwelliaceae (node 7) had
the greatest number of edges at 11, followed by Crocinitomicaceae (node 6) at nine edges.
All data and centrality metrics can be found in the supplementary information (Table S6).
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Figure 6. Network connection of bacterial and fungi families associated with nudibranchs, with the
colours representing different modules in (A) and kingdoms in (B). Node size scaled to betweenness
centrality, edge thickness scaled to strength of correlation, and edge colour represents positive (blue)
or negative (red) correlation. The numbers on the nodes refer to the identity of the ASVs.

4. Discussion

In this study, we characterised the bacterial and fungal communities associated with
the nudibranch Pteraeolidia semperi collected from four different islands in the waters of
Singapore. We show that the microbial diversities and community structures are generally
similar across all four examined sites with a lack of clustering seen in the principal coordi-
nate analysis plots. Through the occurrence method, we found that the bacterial genera
Mycoplasma and Endozoicomonas were detected across all samples, and Vibrio was only
absent in one sample from Pulau Semakau. In the fungal dataset, the genus Leucoagaricus
had the highest occurrence where it was found in 29 of the 43 samples. There were no
distinct occurrence patterns for either fungal or bacterial genera across the four sampled
sites. Potential keystone taxa in the nudibranch’s microbial community were identified
through the network analysis of the co-occurrence of both bacterial and fungal families.
The bacterial family Colwelliceae and the fungal taxon Hymenochaetales had the highest
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number of edges among their respective domains, although cross-domain interactions
were limited.

There were unique bacterial and fungal genera specific to each site, although most of
them were found at very low relative abundances. For instance, Psychrobium was the most
abundant bacterial genus only found on nudibranch samples from Pulau Hantu with an
average relative abundance of 0.33%. These are chemo-organotrophic and psychrophilic
bacteria that thrive on dissolved organic material [52] and were previously found living
within mussels [53]. Conversely, the most abundant fungal genus unique to Pulau Hantu
was Sebipora with an average relative abundance of 3.49%, but made up 45.30% of the fungal
community from one sample. Fungi from this genus are known to cause white-rot diseases
in trees [54,55]. They have not been previously reported in marine environments and
their roles and functions in P. semperi remain to be explored. Nevertheless, the bulk of the
bacterial and fungal communities consisted of the 44 bacterial and 12 fungal genera shared
among all four sites, with an average of 92.15% and 45.00% of the bacterial and fungal
communities, respectively, across all nudibranch samples. The identification of these shared
and unique bacterial and fungal genera can provide better direction towards understanding
the roles and functions of nudibranch-associated microbial members, especially the shared
bacterial and fungal genera across the four sites.

This large proportion of shared bacterial and fungal genera across the four sites can
help explain the lack of site-specific effects on the composition of fungal and bacterial com-
munities of P. semperi. While the fungal communities associated with P. semperi exhibited
small but significant differences in their composition across the four sites, the lack of dis-
tinct clustering in the principal coordinate analysis suggests that these changes were likely
driven by the heterogeneous dispersion of data. Likewise, bacterial communities were not
significantly different across sites. This is in agreement with previous work examining
fungal communities associated with Pocillopora acuta corals from similar sampling sites
in Singapore [56], where the lack of difference is likely due to the generally well-mixed
waters [57] and the small spatial scale. However, previous metabarcoding efforts of dif-
ferent marine hosts in Singapore including seagrasses [58], mangrove trees [5], and reef
macroalga [36] all show significant differences in microbial communities across different
sampling locations. Despite so, together with the similar Shannon diversity indexes and
species richness, our work indicates that microbial diversity and composition associated
with P. semperi are similar across the four sites sampled in Singapore. This is likely due to a
combination of the small geographic distance between sample sites and the correspond-
ingly high connectivity between them, and a shared microbial core ubiquitous across the
four sites essential to the functioning and survival of the nudibranch P. semperi.

Three notable bacterial genera, Mycoplasma, Endozoicomonas, and Vibrio, were found
across all samples (except one for Vibrio). These genera are commonly associated with
the gut microbiome of marine invertebrate and vertebrate hosts [59–62], including other
species of nudibranchs [20]. From the class Mollicutes, Mycoplasma bacteria are generally
considered to be parasitic organisms that rely on their hosts completely for nutrients [63,64].
Mycoplasma frequently forms biofilms that are resistant to stress such as heat and desiccation
which contributes to their persistence in marine environments and on hosts [65]. The
roles and functions of both Vibrio and Endozoicomonas are highly variable, ranging from
nutrient cycling to pathogenic [61,66,67]. Interestingly, Endozoicomonas bacteria are shown
to correlate with the presence of photosymbionts in many marine invertebrates, including
corals [68,69], giant clams [70], and sponges [71], suggesting a degree of symbiosis between
them. The nudibranch, P. semperi, is known to harbour photosynthetic Symbiodiniaceae [72],
which could explain the ubiquity of Endozoicomonas bacteria found here. Additional work
is needed to confirm whether this is a symbiotic relationship, although the co-occurrence in
more than one taxon is suggestive of such. However, it is important to note that the near
ubiquity of these three bacteria genera found to associate with nudibranchs could simply
reflect their prevalence in the environment instead of playing core roles in promoting the
fitness of P. semperi.
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There was no fungal genus found across all samples. The genus Leucoagaricus had
the highest occurrence (29 of 43 samples) followed by Mortierella and Flammulina (both 19
of 43 samples). Despite having the highest occurrence, there are no previous reports of
Leucoagaricus in strictly marine environments; however, four species within this genus have
been found in sandy coastal habitats [73–75]. Comprising about 90 species, Leucoagaricus
are mostly found on forest soil [76,77], with the most notable L. gongylophorous known for
being farmed by its symbiotic partner, the fungus-growing ants, to be later consumed [78].
Several members of Leucoagaricus can also break down leaf matter through the production
of enzymes such as lignocellulase [79], cellulase, and xylanase [80]. As P. semperi are often
found on algae-covered surfaces [81], and this algae likely forms part of their diet [82], it is
possible that Leucoagaricus may play a role in degrading algal cellulose and xylan. Flam-
mulina has previously been detected in marine hosts such as corals and coralline algae [83],
and has a wide distribution in temperate regions [84]. The fungal genus Mortierella is also
commonly found on terrestrial soils [69], although it has previously been found in extreme
marine environments such as Antarctica [85] and deep-sea sediments [86].

The microbial co-occurrence network highlighted several taxa with a high number
of edges that may serve as keystone taxa. The edges in a co-occurrence network refer to
the connections one taxon has to another, and taxa with a high number of edges are often
regarded as keystone [50] as their removal can cause a drastic shift in the composition and
functioning of a microbiome [87]. Overall, only a few fungal taxa were connected in the
network, with most only having one edge indicating limited cross-domain interactions
between bacteria and fungi. Of the 13 fungal families within the network, the taxon
Hymenochaetales had the greatest number of edges at four. These fungi are commonly
known as white rot fungi and are usually associated with diseases in terrestrial plants [88]
containing ligninolytic enzymes [89], although they have also been found to associate with
marine organisms such as nematodes [90] and corals [91]. Hymenochaetales is most positively
correlated with Kangiellaceae and Oleiphilaceae, both common marine bacteria with roles in
nutrient cycling. Hymenochaetales could play a role in digesting lignin found in algae [92] to
amino compounds and hydrocarbons, which Kangiellaceae [93] and Oleiphilaceae [94] can
then utilise.

The bacteria family Colwelliaceae had a disproportionately central role in the network
with 11 edges. Colwelliaceae bacteria are strictly marine in distribution with many able to
hydrolyse starch [95], which could aid P. semperi in degrading algal food sources [96]. Many
members from this family are also known to digest chitin [97] found in hydroids [98], which
is a major food source for the nudibranchs [99]. In fact, within the same module (group of
tightly interconnected nodes), Colwelliaceae is most positively connected to Pseudoalteromon-
adaceae [100] and Alteromonadaceae [101], both are known to degrade agar and starch, also
major components of algae. As such, members within this module are likely to interact
and co-exist to synergistically aid P. semperi in the digestion of algae. Similarly, previous
studies on the nudibranch, Rostanga alisae, also associated bacteria capable of hydrolysing
major components of its sponge diet; this ability also likely contributes to host feeding
success [23]. It is also important to note that the bacterial genera Pseudoalteromonas from
the family Pseudoaltermonadaceae were found to have anti-microbial abilities in nudibranchs
that may help them prevent diseases [22,102].

In conclusion, our study used metabarcoding techniques to characterise the bacterial
and fungal communities associated with the nudibranch Pteraeolidia semperi in Singapore.
Characterisation of microbial members in the marine environment paves the way for further
understanding of how marine microbiomes are structured and the benefits their hosts
derive from their microbial communities. Additionally, we identified a module of bacterial
families that are likely working together synergistically, allowing P. semperi to digest algal
food sources more efficiently. Crucially, understanding hosts and their associated microbial
communities allows further development and testing of explicit hypotheses to facilitate
a better understanding of how species and their associated microorganisms interact and
evolve as environments change.
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conducted on the effect of site on the bacterial (16S) and fungal (ITS) community alpha diversity
metrics, Shannon diversity index and species richness, associated with Pteraeolidia semperi; Table S3:
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