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Abstract: Spinal cord injury (SCI) possesses a complicated etiology. There is no FDA-approved
treatment for SCI, and the majority of current interventions focus on reducing symptoms. During
SCI, inflammation, oxidative stress, apoptosis, and autophagy are behind the secondary phase of SCI
and cause serious consequences. It urges the need for providing multi-targeting agents, that possess
lower side effects and higher efficacy. The plant secondary metabolites are multi-targeting agents
and seem to provide new roads in combating diseases. Flavonoids are phytochemicals of continual
interest to scientists in combating neurodegenerative diseases (NDDs). Flavonoids are being studied
for their biological and pharmacological effects, particularly as antioxidants, anti-inflammatory
agents, anti-apoptotic, and autophagy regulators. Quercetin is one of the most well-known flavonols
known for its preventative and therapeutic properties. It is a naturally occurring bioactive flavonoid
that has recently received a lot of attention for its beneficial effects on NDDs. Several preclinical
evidence demonstrated its neuroprotective effects. In this systematic review, we aimed at providing
the biological activities of quercetin and related derivatives against SCI. Detailed neuroprotective
mechanisms of quercetin derivatives are also highlighted in combating SCI.
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1. Introduction

Spinal cord injury (SCI) is a devastating irreversible neurological process consequence
of high morbidity that can affect various aspects of patient life. As a serious injury to the
nervous system, SCI result from a fall, a shooting, or an accident [1]. SCI is diagnosed at
an annual rate of 10.4–83 per million people worldwide [2]. Two stages are behind SCI-
associated pathological processes; the primary and secondary injuries. Following a sudden
trauma, spinal fracture, or vertebral dislocation, primary injury begins [3]. Following
the primary SCI, magnetic resonance imaging scans have revealed spinal cord swelling,
cytotoxic edema, and hemorrhage [4]. Following the primary injury, oxidative stress,
inflammation, apoptosis, autophagy, and mitochondrial dysfunction [5], are triggered by
the secondary injury. Because the primary injury is a one-time and irreversible pathway,
the secondary SCI has become a golden time for treatment to stop further damage. Since
no effective treatment has been approved for treating SCI, providing novel compounds to
suppress inflammation, apoptosis, and oxidative stress while increasing autophagy is of
great importance. Neuronal atrophy, synaptic abnormalities, and axon regeneration are
also the main dysregulated events impeded by glial scar formation in SCI [6].
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Phytochemicals are a critical candidate in modulating chronic diseases such as cancer,
diabetes, and cardiovascular disease [7,8]. Polyphenols can be found in fruits, vegetables,
and beverages derived from plants, are micro-constituents. Over the past three decades, a
lot of research has been conducted on plant-derived phenolic compounds. Growing reports
are showing the protective effects of polyphenols on major diseases such as cardiovascular
disease [9], cancer [10], diabetes [11], obesity, and viral infections [12,13]. The potential
role of polyphenols in modulating neurological disorders has been the focus of ongoing
intensive efforts [14].

In this line, polyphenols have opened promising avenues for developing new and ef-
fective pharmaceuticals. The most diverse class of phytochemicals are flavonoids, which are
abundant in higher plants and have the tremendous therapeutic potential [8]. Based on their
chemical skeleton, flavonoids are categorized into six classes, including isoflavonoids and
anthocyanidins, as well as flavanols, flavanones, flavones, and flavonols [15]. Flavonoids
have shown a prospect in preventing/treatment of neurodegenerative diseases (NDDs)
through multiple mechanisms [16].

Quercetin is one of the predominant flavonoids that are more frequently found in
edible plants and is one of the most potent antioxidants of plant origin [17]. Flavonols
are a major class of polyphenols known as flavonoids [18,19]. As an anti-inflammatory,
anti-carcinogenic, anti-infective, and antioxidant flavonol, quercetin has shown numerous
biological activities and beneficial effects on human health. It also stimulates mitochondrial
biogenesis and prevents platelet aggregation and lipid peroxidation [20]. Previously, the
neuroprotective effects of quercetin have been investigated in NDDs such as cognitive
impairment [21], ischemia, traumatic injury [22], Parkinson’s disease (PD) [23], and Hunt-
ington’s disease (HD) [24]. We have previously provided the critical role of polyphenols
against SCI complications. Quercetin showed neuroprotective activities and significantly
promoted functional recovery following SCI via targeting p38 mitogen-activated protein
kinase (MAPK)/inducible nitric oxide synthase (iNOS), NLR family pyrin domain con-
taining 3 (NLRP3), NF-E2-related factor 2 (Nrf2)/Keap1/antioxidant response element
(ARE), and phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt)/mammalian target
of rapamycin (mTOR) signaling pathways [25–31]. A recent report has also highlighted
the mTOR-mediated neuroprotective roles of quercetin in combating SCI [32]. To the best
of our knowledge, this is the first systematic review providing biological activities and
pharmacological mechanisms of quercetin derivatives against SCI. Additionally, the whole
pharmacological mechanisms of quercetin complexes (e.g., quercetin, rutin, quercetin-3-O-
glucoside, quercetin-3-O-glucoronide, and luteolin) have been revealed against SCI.

2. Materials and Methods

Based on the PubMed, Web of Science, Proquest, and Scopus databases, a compre-
hensive and systematic review was conducted. The keywords (“spinal cord injury”) AND
(“quercetin” OR “3-hydroxyflavone” OR “isoquercetin” OR “hyperoside” OR “rutin” OR
“rhamnetin” OR “isorhamnetin” OR “solophenol” OR “uralenol” OR “quercetin 3, 7, 3’, 4’
tetrasulfate” OR “icaritin” OR “rhamnazin” OR “isorhamnetin-3-O-glucoside” OR “dora-
mannin” OR “dihydroquercetin” OR “quercetin glucuronide” OR “Quercetin pentaacetate”
OR “Quercetin 7-O-paramethyl” OR “Quercetin7-O-paranitro” OR “7-O-paramethylbenzyl
quercetin complex” OR “7-O-paranitrobenzyl quercetin complex”) were searched in [All
fields]. From the beginning to October 2022, data were collected, with an emphasis on
English-language papers. M.M.G. and S.Z.M., two independent researchers, carried out
the search screening. As a result, any disagreements were discussed with the first author
(S.F.) and resolved. A systematic search of electronic databases yielded 261 articles, but 77
were left out due to duplication and reviews, respectively. In addition, title/abstract, and
full text of 62, and 39 articles indicated that they were irrelevant. The systematic portion of
this review included 36 reports after excluding non-relevant full texts (Figure 1).



Life 2022, 12, 1960 3 of 15

Life 2022, 12, x FOR PEER REVIEW 3 of 16 
 

 

systematic portion of this review included 36 reports after excluding non-relevant full 
texts (Figure 1). 

 
Figure 1. PRISMA flowchart on the literature search process. 

3. Results and Discussion 
3.1. Biological Sources, Chemical Structure, and Pharmacokinetics of Quercetin 

In comparison with other phytochemicals, quercetin is an abundant flavonol [33]. 
Quercetin includes five hydroxyl (OH) groups which are located at 3, 3′, 5, 7, and 4′ posi-
tions (Figure 2). The replacement of the OH group with a glycosyl group leads to the pro-
duction of quercetin glycoside from aglycone form [34].  
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3. Results and Discussion
3.1. Biological Sources, Chemical Structure, and Pharmacokinetics of Quercetin

In comparison with other phytochemicals, quercetin is an abundant flavonol [33].
Quercetin includes five hydroxyl (OH) groups which are located at 3, 3′, 5, 7, and 4′ positions
(Figure 2). The replacement of the OH group with a glycosyl group leads to the production
of quercetin glycoside from aglycone form [34].

Quercetin solubility is high in lipids and alcohol, while this compound is quite water-
insoluble [35]. Due to the presence of a glycosyl group, quercetin glycoside is water soluble.
There is a complicated metabolic pathway behind quercetin. Both glycosidic and aglycone
forms could be absorbed by passive diffusion or via organic ion transporting polypep-
tide through the small intestine [36]. The liver, intestine, and kidneys are responsible
for quercetin metabolism. There is a low bioavailability (0–50%) and short half-life (1–2
h) for quercetin in humans [37]. According to the structure-activity relationship (SAR),
quercetin possesses a free radical neutralizing potential for combating NDDs [38]. Con-
sidering quercetin SAR, has also shown features of antioxidation, and anti-inflammation,
inhibiting apoptosis and promoting autophagy, towards improving pathological changes
in SCI [12,13,32]. Multiple studies have demonstrated that the microenvironment and cell
survival after SCI can be improved by regulating mTOR, nuclear factor-kappa B (NF-κB),
MAPK, and PI3K [39].
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In vitro cell culture experiments demonstrated that OH substitution positioned at C5
and C7; C3 positioned at methoxy (OCH3) or H substitution, and OH/OCH3 substitution
at the C4 position improved the neuroprotective properties of phenolic compounds. The
B- ring’s ortho-dihydroxy substitution, C-ring’s 4-carbonyl, and A-ring’s 5 or 3 hydroxy
substitutions proved quercetin ion chelating activity, and reduced hydrogen peroxide
(H2O2)-induced calcium (Ca2+) dysregulation and oxidative stress [40]. The OH groups in
the C-ring and A-ring are important for the neuroprotective activities of quercetin.

Antioxidant, anti-inflammatory, and anti-apoptotic properties are important biological
features of quercetin that make this compound attractive for controlling NDDs [41].

3.2. Neuroprotective Potentials of Quercetin Derivatives

Quercetin’s neuroprotective effects have been extensively researched. It prevents
neuronal oxidative stress-induced cell toxicity at low micromolar concentrations. Quercetin
also stimulates neuronal regeneration while suppressing neuroinflammation by inhibiting
inflammatory mediators such as iNOS and NF-кB. Quercetin active metabolites (e.g., glu-
curonidated, methylated, or sulfated) have also shown neuroprotective responses, in
preclinical models [42–44]. Quercetin showed protective roles against mitochondria and
dopaminergic neurons through the PKD1-Akt signaling pathway in both in vivo and
in vitro models of PD [45].

Quercetin is effective as a treatment for Alzheimer’s disease (AD), enhancing learn-
ing, memory, and cognitive functions [46]. The OH groups in quercetin strongly interact
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with the acetylcholinesterase (AChE) enzyme at the catalytic anionic site through hydro-
gen bonding. Quercetin glycosylation at position 3 makes a decrease in AChE blockage
potential as well as free radical scavenging activity [47]. This conjugation system is an
essential factor for free radical scavenging activity and the beneficial effects of quercetin
for managing oxidative stress in NDDs [38]. Wand and co-authors, in a mouse model of
AD, evaluated the effects of long-term administration of quercetin on cognition and mito-
chondrial dysfunction. They noted that quercetin improved mitochondrial dysfunction by
restoring ATP synthesis, lowering reactive oxygen species (ROS) production, and restoring
mitochondrial membrane potential. Additionally, quercetin increased the expression of
AMP-activated protein kinase (AMPK), a vital energy metabolism regulator in cells [48].
Quercetin and rutin have also been shown to improve memory in zebrafish subjected
to scopolamine-induced memory impairment. This suggests that quercetin derivatives
may improve cholinergic neurotransmission [49]. Khan and coworkers [50] and Shim-
myo et al. [51] concluded that the administration of quercetin inhibited AChE and secretase
enzymes in vitro models, thereby preventing acetylcholine degradation and decreasing Aβ

production [52]. Administration of quercetin nanoparticles significantly reduced neuronal
degenerative changes, decreased the formation of amyloid plaques (APs) and neurofib-
rillary tangles (NFTs), and increased cellular proliferation. At molecular, cellular, and
subcellular levels, quercetin nanoparticles reduced aluminum chloride-induced damaging
effects on hippocampal neurons [53].

Electrical discharges, neurotransmitters, and associated ion channels are the main
pathologies of epilepsy, so quercetin is targeted as the primary treatment. Through its
effects on various cell types, quercetin has been shown to reduce seizures [54].

Sharma et al. concluded that the combination of quercetin and piperine improved
the antioxidant, anti-inflammatory, and neuroprotective effects of PD. In experimental
rats, quercetin reduced rotenone and iron supplement-induced motor deficits and also
modulated biochemical and neurotransmitter changes. Nonetheless, a combination of
quercetin with piperine upgraded its neuroprotective impact as contrasted and treatment
with quercetin alone [55]. In addition, quercetin and its nanocrystals reduced the level
of malondialdehyde (MDA) in the hippocampal area, prevented memory disruption in a
6-hydroxydopamine model of PD, and increased activities of antioxidant enzyme (e.g., cata-
lase, glutathione, and superoxide dismutase) [56].

3.3. Pathophysiological Mechanisms of Spinal Cord Injury

SCI is accompanied by primary and secondary damage phases. The primary stage of
SCI is initiated immediately after the injury following spinal ligament tearing and features
of bone fragments [57–59]. Axonal disruption, glial membrane disruption, hemorrhage,
and destruction of neural parenchyma comprise first-phase events. The primary injury
facilitates secondary injury that leads to more mechanical and chemical damage to spinal
tissues [1,57–59]. Also, enhancing concentrations and production of reactive oxygen, and
increasing the accumulation and levels of glutamate and Ca2+ within cells promote neu-
ronal excitotoxicity as well as phospholipids, proteins, and nucleic acid damage that cause
neurological dysfunction. Typically, secondary phases of injury are classified into three
phases: acute, chronic, and sub-acute [1,57–59]. Acute secondary injury is initiated follow-
ing the primary phase that is accompanied by several clinical features, including vascular
damage, necrosis, ionic imbalance, edema, excitotoxicity, inflammation, production of free
radicals, lipid peroxidation, and increasing Ca2+ influx. Persists of acute secondary injury
led to the beginning of sub-acute secondary injury that was specified by neuronal apopto-
sis, formation of the glial scar, axonal demyelination, axonal remodeling, and Wallerian
degeneration [1,57–59]. Chronic secondary injury is the last phase of SCI that is described
by the maturation of glial scar, axonal dieback, and cystic cavity formation. The pathophys-
iology of SCI comprises interrelated consecutive mechanisms and events. Simultaneously
occurrence of multiple events leads to complicated attributes that make difficulties in the
treatment process. Inflammatory responses, ROS, free radicals, N-methyl-D-aspartate
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(NMDA), excitatory amino acids, opiate receptors, and apoptosis-related signaling are
some of the important mechanisms and parameters involved in the SCI process [57,58].

3.3.1. Inflammatory Responses

Following SCI, an inflammatory response can be initiated with several peripheral
immune cells such as T cells, neutrophils, and macrophages. Depending on the time
and duration of inflammatory responses following SCI, these complex responses can
produce neuroprotective and neurotoxic effects [57,58]. Meaningful beneficial functions
from macrophages and other early inflammatory mediators and cells. The levels of vari-
ant inflammatory mediators such as platelet-activating factors, leukotrienes, serotonin,
bradykinin, and prostaglandins enhanced in the lesion sites [57,58]. Pathological changes
in microglia are subsequent inflammatory cytokines including interleukin (IL)-10, tumor
necrosis factor (TNF), IL-6, and IL-1 that promote inflammatory reactions in the lesion
sites [60,61]. Similarly, neutrophils and macrophages can facilitate tissue damage and lead
to the growth of lesions. Furthermore, several cytokines, nitric oxide, chemokines, oxygen,
as well as various nitrogen-containing molecules may induce the commencement of central
nervous system inflammatory responses [57,58].

3.3.2. ROS and Free Radicals

The generation of high levels of ROS and reactive nitrogen species (RNS) can lead
to several damaging effects, such as lipid peroxidation in variant organs [58]. Production
of ROS and free radicals exert a considerable role in the progression of variant disorders,
including variant types of cancer, cardiovascular, AD, PD, and other NDDs [25–31,62–65].
Suppression of free radical’s generation is essential for enhancing the viability of cells.
Reducing the activity of the endogenous antioxidant system exerts a pivotal impact on SCI.
In several in vivo and in vitro studies, variant plant secondary metabolites, including cur-
cumin, resveratrol, quercetin, and ginsenoside, as well as vitamin E, and selenium showed
significant neuroprotective activities, and effective potentials in the management of SCI via
diminishing lipid peroxidation, and alternating ROS production and free radicals [57,58].

3.3.3. NMDA, Excitatory Amino Acids, and Opiate Receptors

One of the important and known excitatory neurotransmitters in the central nervous
system is glutamate and the overactivation of glutamate receptors leads to neuronal dam-
age. The levels and activity of excitatory amino acids such as aspartate and glutamate
enhanced shortly following SCI. NMDA, AMPA, metabotropic glutamate, and kainate
receptors are four major known classes of glutamate biochemical receptors that regulate
the entry of Na+, K+, and Ca2+. NMDA receptors are a family of L-glutamate receptors
that play a considerable role in memory, learning, and spatial memory [57,58,66]. Excita-
tory neurotransmitter exerts direct influence in the spinal cord by NMDA receptors and
blocking these receptors lead to significant protection against secondary damage owing
to ischemia and trauma. Antagonists of NMDA can remarkably reduce the incidence of
edema and improve neurological functions [57,58,67]. Also, ion channels of the NMDA
receptors can be blocked by magnesium ions. The lipid peroxidation process can be sup-
pressed by magnesium ions through antagonizing glutamate receptors. It was reported that
the administration of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid antagonists
leads to improvement of function and decreases the injured area [57,58]. Moreover, it was
reported that the local release of opioid peptides was elevated during SCI which makes
more strengthens this hypothesis that endogenous opioids may have substantial effects
on neuronal damage and secondary injury as blocking opiate receptors lead to protecting
the neuronal cell against damage via suppression release of cellular contents [68]. Also, it
was demonstrated that Ca2+ channel blockers agents can notably prevent secondary SCI
due to the role of Ca2+ ions in cell death, and activating the phosphorylase, proteases, and
phospholipase in cells [69]. Similarly, administering naloxone, a non-selective antagonist,
lead to improving clinical outcomes and blood flow following acute SCI [57,58,66].
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3.3.4. Apoptosis

Free radicals and the release of inflammatory cytokines following SCI facilitate apop-
tosis leading to excitotoxicity and inflammation. After 3 h to 8 weeks following SCI in the
areas surrounding the injured spinal cord tissue apoptosis occurs. Moreover, neuronal
demyelination resulting from apoptosis of oligodendrocytes appears after a few weeks
of injury [70–72]. Oligodendrocyte changes are one of the characteristics of SCI. Variant
previous studies emphasized that apoptosis promotes secondary inflammatory damage via
increasing neuronal loss and deterioration of the microglia [57,58]. Caspases are cysteine
proteases that promote inflammation and programmed cell death. Following SCI, the levels
and activity of several caspases are enhanced via activation of their components that lead
to inducing apoptosis in particular cells, such as neurons, microglia, oligodendrocytes, and
astrocytes. Due to the inability of spinal cord neuron cells to reproduce, the concern about
recovery and treatment of patients with SCI is crucial [57,58]. Contrariwise, glial cells have
a meaningful ability to divide and regenerate that can elevate neuronal protection via two
mechanisms [70–72]. The central potentials of glial cells to metabolic and neurotrophic sup-
port of neurons promote recovery of the injured neurons. Similarly, scavenging apoptotic
mediators such as cytokines, and suppression of free radicals leak from dying neuronal
cells are reported as the second neuroprotective mechanism of glial cells to protect injured
neurons in SCI [70–72].

3.3.5. Local Vascular Effects

Reducing blood supply is reported as one of the substantial consequences of severe
SCI that lead to the initiation of ischemia. Disruption in autoregulation of the spinal
cord facilitates abnormal alteration in systemic hemodynamics, systemic hypotension, and
hypoxia that can reduce blood flow in the spinal cord and exacerbate ischemia [57,58].
Moreover, due to ischemia, the generation of ATP, transportation, and supply the oxygen
and glucose to tissues diminish [73]. Focal narrowing of sulcal arterioles, aneurysmal
dilatation, occlusion, or fragmentation is suggested as one of the reasons for post-traumatic
ischemia. Endothelium capillary damage, accumulation of vasoactive cytokines, and
congestive compounds, including fibrin and platelets, enhancing the lactic acidosis that
leads to reducing pH of tissue are other factors that may have effects on the progression
of ischemia after trauma [57,58]. The permeation of protein from damaged spinal cord
veins causes edema around peripheral tissues and injured areas that led to enhancing the
pressure of the spinal cord and disruption of blood flow. In addition, the concentration
of electrolytes abnormally changes after spinal cord trauma, due to ischemia-reperfusion
injury the levels and production of free radicals and glutamate elevate which can accelerate
and intensify the devastation of the blood-spinal cord barrier [57,58].

Figure 3 provides the complex pathophysiological mechanisms behind SCI.

3.4. Quercetin Derivatives against Spinal Cord Injury

Rutin as a flavonoid polyphenol and a quercetin derivative has shown antioxidant
and anti-inflammatory activities [74]. Rutin prevents morphological changes by reducing
the expression of p53 and apoptosis while increasing the enzymatic activity of endoge-
nous antioxidants. Rutin significantly reduced reactive oxygen species NLRP3, MDA,
IL-18, IL-1β, TNF-α, and caspase-1, caspase-3 and 9. It also reduced macrophage inflam-
matory protein-2 (MIP-2), matrix metalloproteinase-9 (MMP-9), and phosphorylation of
p-Akt [74] in a rat model of SCI. It also blocked the p38MAPK pathway, thereby controlling
inflammatory processes [75], as well as histological damages to improve motor recovery.
Mild hypothermia plus rutin increased the rat’s BBB score; improved spinal cord tissue
regeneration; and reduced TNF-α after SCI. This adjuvant therapy increased MPO; and
reduced spinal cord MDA and ROS, indicating the anti-inflammatory and antioxidative
stress mechanism of rutin in alleviating SCI complications [76,77]. The anti-nociceptive
and neuroprotective responses of rutin-containing compounds have also been shown to
pass through MAPK activation [78]. As another quercetin complex, trihydroxyethyl rutin
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showed neuroprotective responses, improving nerve electrophysiological parameters and
limb motor function following SCI, maintaining microvascular density, and decreasing
injury area and demyelination degree [79]. Overall, as a quercetin complex, rutin has shown
promising anti-inflammatory and antioxidant effects in the modulation of SCI-induced
sensory-motor dysfunction.
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Quercetin is a flavonoid commonly found in food, and with a high concentration in
onion, apple, tea, wine, and in varieties of Chinese herbs. It is an important flavonoid
found, showing antioxidative properties and scavenging free radicals, anti-inflammatory,
balancing apoptotic processes [80], interaction with important specific proteins of intra-
cellular signaling cascades, and iron chelation [81,82]. The critical role and novel insights
of quercetin have been shown in SCI [83,84]. Quercetin exerted antioxidant effects [85] by
blocking p38MAPK/iNOS signaling pathway, downregulating MDA content, and upreg-
ulation of superoxide dismutase activity, which together inhibited secondary oxidation
following SCI in rats [86,87]. Quercetin inhibited apoptosis by targeting the p38MAPK
pathway in rats following SCI. In line, the anti-apoptotic activity of a common quercetin
glycoside in onions, quercetin 3,4′-O-β-D-diglucoside, was applied through modulation
of Bax/Bcl-2 ratio in human striatal precursor cells via nutrient deprivation. On the other
side, hyperoside (3-O-galactoside of quercetin) exhibited protective effects against neuronal
ischemia-reperfusion through suppression of extracellular-regulated kinase (ERK), c-Jun N-
terminal Kinase (JNK) and Bcl-2 family-related apoptotic signaling pathways in rat cortical
nerve cells. Quercetin also reduced the rate of nitric oxide and MDA while enhancing total
antioxidant levels in rats with SCI injury [88,89].

Quercetin-3-O-glucuronide exhibits neuroprotective effects in human embryonic neu-
ral stem cells by enhancing Akt phosphorylation, cyclin D1 expression, and brain-derived
neurotrophic factor production in a model of monosodium glutamate-induced excitotox-
icity of spinal cord motoneurons [90]. Quercetin inhibited glial fibrillary acidic protein
in the satellite glial cells of the bilateral L5 dorsal root ganglions (DRGs). In their study,
quercetin suppressed the development of neuropathic pain through the inhibition of satel-
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lite glial cells in male Sprague-Dawley rats [91]. Quercetin also showed inhibitory effects on
the production of IL-1, IL-6, TNF-α, and IL-8 in lipopolysaccharide-stimulated models of
neuronal damage [92]. This flavonol compound meaningfully reduced necroptosis of oligo-
dendrocytes after SCI and suppressed macrophages/microglia polarized to M1 phenotype
through inhibition of signal transducer and activator of transcription 1 (STAT1) and NF-κB
pathway in male Sprague-Dawley rats [93]. Quercetin also decreased the level of MPO
which stimulated H2O2 causing cellular damage in adult male Wistar rats [94]. During
a rat model of SCI, quercetin increased the 5-HT-positive nerve fibers, NF-200-positive
neurons, and brain-derived neurotrophic factor (BDNF), while decreasing glial fibrillary
acidic protein (GFAP) positive astrocytes, p-JNK2 and p-STAT3 production [95]. Quercetin
blocked the production of GFAP, blocked the phosphorylation of Akt, mTOR, and p70S6K,
and improved axonal regeneration after SCI [96]. In combination therapy of quercetin
and human umbilical cord mesenchymal stromal cells (HUMSCs) beneficial impacts were
shown on Sprague-Dawley (SD) female rats SCI models. Such effects were applied by
decreasing inflammatory mediators such as IL-1β and IL-6 and the size of the cystic cavity,
enhancing anti-inflammatory agents such as IL-4, IL-10, and transforming growth factor
(TGF)-β1 [97]. Also, the combined administration of quercetin and bone marrow stromal
cells (BMSC) showed better improvement in adult male Sprague-Dawley rats with SCI via
increasing the expression of Cldn5, Ocln, and Tjp1, decreasing blood-spinal cord barrier,
therefore, reducing inflammatory processes in neuronal cells, and lowering the production
of NF-кB [98]. In line, the anti-neuroinflammatory effects of quercetin were shown in
similar reports on SCI [99]. During another in-line report, in vivo neuroprotective mecha-
nisms of rutin were shown to pass through anti-inflammatory, antioxidant and suppressing
p38MAPK after SCI [100,101]. In similar models of neuropathic pain, quercetin also showed
neuroprotective responses through anti-apoptotic pathways [102,103]. Histological and
biochemical staining also confirmed the potential of resveratrol and quercetin in preventing
secondary damage during SCI [102,104,105].

The combination of curcumin and quercetin showed beneficial effects in the treatment
of SCI via decreasing serum S-100b levels and spinal cord tissue S-100b levels [106], reducing
the activity of MAPK, and increasing Fe2+-chelation and Fe2+-clearance after SCI. The
combination of curcumin and quercetin decreased a delay in Ca2+ deregulation, MDA, and
phosphorylated-p38MAPK levels, reducing the reactivation of astrocyte and the activity
of 6-hydroxydapamine, increasing the activity of catalase after traumatic SCI [107]. In an
in vivo model of SCI, isoquercetin (quercetin-3-O-glucoside) improved synaptic plasticity
and motor dysfunctions. Isoquercetin also modulated histopathological damages, reduced
the fibrillization of α-synuclein, and hippocampal neuronal cell death, in vivo [108]. In all,
quercetin has shown anti-inflammatory, anti-apoptotic, and antioxidant effects in combating
SCI. To apply such neuroprotective effects, quercetin modulated multiple dysregulated
mediators during the secondary phase of SCI.

As another derivative of quercetin, luteolin, a flavone compound gained from Cissus
quadrangularis L. [Vitaceae], the blocked activity of caspase-1 and Rho-associated pro-
tein kinase 2 (ROCK2) that is involved in inflammatory processes of SCI [109]. Isorham-
netin, another quercetin derivative, promoted functional recovery in rats by activating
Nrf2/heme oxygenase 1 (HO-1) pathway and thereby combating oxidative stress following
SCI. Isorhamnetin also promoted M2 macrophage activation and suppressed the acti-
vation of microglial/glial and suppressed inflammatory cytokines including monocyte
chemotactic protein-1 (MCP-1), TNF-α, and IL-1β [110].

Altogether, quercetin complexes have shown a bright future in the attenuation of
dysregulated pathways after SCI. Accordingly, quercetin improved sensory and motor
function, as well as, neuronal survival through multiple mechanisms, including anti-
apoptosis, antioxidant and anti-inflammatory responses.

Table 1 provides the neuroprotective roles of quercetin derivatives in SCI.
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Table 1. Neuroprotective mechanisms of quercetin derivatives in spinal cord injury.

Quercetin and
Derivatives Study Type Cell Line/Animal

Type Mechanism Reference

Quercetin In vivo
Sprague-Dawley rats

↓ROS, ↓NLRP3, ↓TNF-α, ↓IL-1β [111]
↓neuropathic pain, ↓satellite glial

cells, ↑ability to walk, ↑Cldn5,
↑Ocln, ↑Tjp1

[81,87,98]

↑SOD, ↑GSH,
↓polymorphonuclearleukocyte

infiltration,
[85]

↓iNOS, ↓p38MAPK, ↑SOD, ↑MDA [86]
↓MDA, ↓NO [112]

↓GFAP, ↓neuropathic pain [91]
↓TNF-α, ↓IL-1β, ↓IL-6, ↓ IL-8 [92]

↓STAT1, ↓NF-κB [93]
↓MPO [94]

↑5-HT-positvie nerve fibers,
↑BDNF [95]

↓GFAP, ↓phosphorylation of Akt,
↓mTOR, [96]

↑IL-4, ↑IL-10, ↑TGF, ↓IL-6, ↓IL-1 [97]

C57BL/6J mice ↑neuronal intrinsic growth
capacity, ↑functional recovery, [80]

Wistar albino rats ↓MDA, ↓NO, ↓caspase-3, ↑SOD,
↑GSH [89]

Quercetin
3,4′-O-β-D-diglucoside In vivo Sprague-Dawley rats ↓MDA, ↓NO, ↑total antioxidant

levels [88]

Quercetin-3-O-
glucuronide In vivo Sprague-Dawley rats

↓MDA, ↓IL-1, ↓IL-6, ↓TNFα,
↓INF
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macrophage inflammatory protein, MMP: matrix metallopeptidase, MAPK: mitogen-activated protein kinases,
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4. Conclusions

Despite perspective progressions in treating NDDs, SCI remained a primary cause
of disability and a global challenge. Oxidative stress, inflammation, apoptosis, and au-
tophagy have shown crucial roles in the pathogenesis of SCI. In most studies, increased
inflammation, oxidative stress, and apoptosis is associated with cell survival after SCI.
Besides, preventing aforementioned dysregulated pathways has been demonstrated to play
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an impressive role in improving post-SCI complications. Such complicated mechanisms
urge the need for finding novel multi-targeting agents. Phytochemicals are promising
multi-targeting agents in combating NDDs and SCI.

Quercetin is a plant-derived flavonoid with antioxidative, anti-inflammatory, anti-
apoptotic, and autophagy regulation [80] in NDDs [81]. Quercetin and its derivatives
promoted the process of neuronal cell regeneration in SCI via the attenuation of sev-
eral dysregulated pathways. Quercetin derivatives showed the potential of blocking the
p38MAPK/iNOS signaling pathway [86], suppressing the production of inflammatory
mediators such as IL-1, TNF-α, IL-6, and IL-8 [92], and increasing the 5-HT-positive nerve
fibers [106], and brain-derived neurotrophic factor (BDNF). Quercetin derivatives decreased
the production of NF-кB [98], myeloperoxidase [94], GFAP positive astrocytes, p-JNK2 and
p-STAT3 production [95], serum S-100b levels [106], and reducing reactivation of astrocyte
and the activity of 6-hydroxydopamine [107] during SCI. Additionally, ongoing reports are
reporting novel strategies towards regeneration, including the application of novel delivery
systems [112] and targeting senescent cells by natural products for SCI [113] (Figure 3).

Future reports should include extensive in vitro and in vivo experimentation to re-
veal precise signaling pathways followed by well-controlled clinical trials to assess the
potential of quercetin derivatives against SCI. Such research will highlight more potential
applications of quercetin derivatives in the prevention, management, and treatment of SCI.
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