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Abstract: Background: The use of artificial intelligence (AI) in health sciences is becoming increasingly
popular among doctors nowadays. This study evaluated the literature regarding the use of AI for
CBCT airway analysis. To our knowledge, this is the first systematic review that examines the
performance of artificial intelligence in CBCT airway analysis. Methods: Electronic databases and the
reference lists of the relevant research papers were searched for published and unpublished literature.
Study selection, data extraction, and risk of bias evaluation were all carried out independently and
twice. Finally, five articles were chosen. Results: The results suggested a high correlation between
the automatic and manual airway measurements indicating that the airway measurements may be
automatically and accurately calculated from CBCT images. Conclusions: According to the present
literature, automatic airway segmentation can be used for clinical purposes. The main key findings of
this systematic review are that the automatic airway segmentation is accurate in the measurement of
the airway and, at the same time, appears to be fast and easy to use. However, the present literature
is really limited, and more studies in the future providing high-quality evidence are needed.

Keywords: Artificial Intelligence; CBCT; airway

1. Introduction

The digital era in health sciences has been ushered in by recent innovations like cone
beam computed tomography (CBCT), 3D printing, and artificial intelligence (AI). Those
innovations have been playing an important role in the field of health sciences to support
diagnosis and customized treatment solutions [1–3]. In 1956, Dartmouth University was
the first to use the terminology “artificial intelligence”, which is defined as computerized
synthetic human cognitive function [4]. Since then, the application of AI has grown dra-
matically [5,6]. Thanks to improvements in analytics methods, computing power, and data
accessibility, AI may touch many aspects of modern culture. On a global scale, we are
already noticing its effects on our day-to-day lives. In addition to filtering information
for social media and web searches, it also does this for consumer electronics like cameras,
cellphones, tablets, and even cars. Due to the scientific method, which is presently under-
going a paradigm shift in the multidisciplinary link between AI and data science, all recent
advancements and advances in dentistry have been made possible [7,8].

Artificial intelligence (AI) refers to fundamental technologies including deep learning,
artificial neural networks (ANNs), and machine learning. A significant area of artificial
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intelligence is machine learning. Machine learning makes predictions about new data and
circumstances using the statistical patterns of previously learned data. Training data are
necessary for machine learning to function. Machine learning cannot work without training
data. With this approach, the computer model can develop over time by learning from
experience rather than through conventional explicit programming. A model needs a large
quantity of data to using abstractions from various processing levels. A subset of artificial
intelligence is deep learning. Deep learning is the process by which computers learn to
think utilizing structures inspired by the human brain, whereas machine learning is the
process by which computers learn to think and act with less human intervention. The
benefit of deep learning is that little engineering effort is needed to prepare the data for
analysis. Recognition of visual objects and item identification have seen the most use of
deep learning techniques. Orthodontic and Otolaryngology (ORL) clinical applications
favor more advanced AI solutions, such as cone beam computed tomography (CBCT) and
3D convolutional neural networks (3D CNN). “Strong AI” or “deep AI” is a type of artificial
general intelligence (AGI) that is comparable to humans in terms of problem-solving ability.
In contrast to the majority of today’s advanced AI algorithms, physicians possess the
capacities for abstract thought, strategic planning, and the generation of original ideas [9].
AGI will have the capacity to think very much like a human. Beyond our comprehension,
artificial super intelligence (ASI) will be able to learn and grow beyond human capacities.

A notable dilemma involving legal culpability for flaws in AI algorithm assessment
and potential erroneous medical intervention is one of the issues surrounding AI applica-
tion. As is well known, AI can be programmed to reflect the biases of any individual [10].
We do not know how deep AI algorithms generated the results, which is another dilemma
that Zhang et al. addressed [11]. Due to the black-box nature of AI processes, current
research has focused on “explainable artificial intelligence (XAI)” to get around this limita-
tion. In contrast to AI methods like deep learning, XAI may offer both decision-making
and model explanations [11]. Several publications cover this subject [12,13].

The upper airway, also known as the pharyngeal airway space, is a complicated
anatomical region that is closely related to the nearby bone and soft tissue components. It is
mostly in charge of carrying out actions including breathing, speaking, and swallowing [14].
Since multiple investigations have shown its connection to craniofacial growth and develop-
ment, the upper airway assessment has attracted the attention of physicians [15–18]. Since
the craniofacial complex could be responsible for possible constrictions of the upper airway,
physicians used surgical and non-invasive methods to change the anatomy and resolve the
airway constriction. The use of X-rays is really important to assess the effectiveness and find
the possible side effects of these treatments [19]. In the past, two-dimensional (2D) lateral
cephalometry was used to evaluate airway alterations in patients with dentofacial and
skeletal anomalies during the stages of diagnosis, treatment planning, and follow-up [20,21].
However, due to the possible drawbacks of 2D approaches to representing the upper air-
way, computed tomography (CT), cone-beam CT (CBCT), and magnetic resonance imaging
(MRI) have largely taken their position as a clinical standard for assessing upper airway
volume and dimensional changes in order to comprehend their pathogenesis [22–24]. CBCT
has proven to be as accurate as other gold standard methods for measuring the upper
airway volume and constricted area [25].

It is now proved that CBCT can be used in every day practice to accurately measure
the airway volume and minimum cross-section area; this plays a critical role in evaluating
and managing different airway disorders [25]. The use of artificial intelligence in CBCT
airway analysis could provide accurate and fast measurements to the clinicians. This
would be translated to faster management of different airway disorders that could be life
threatening. This article aims to systematically review the current literature on the use of
artificial intelligence in CBCT airway analysis. To our knowledge, this is the first systematic
review that examines the performance of artificial intelligence in CBCT airway analysis.
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2. Materials and Methods
2.1. Protocol and Registration

The protocol for this present systematic review was registered on the Open Science
Forum Database following the Prisma-P guidelines1 (Protocol: 10.17605/OSF.IO/4HWBJ).

This systematic review was conducted by using the following keywords in the search
strategy “Artificial Intelligence”, “airway volume”, “cbct”. Those keywords were com-
bined with the following Medical Subject Heading (MeSH terms): “Artificial Intelligence”
[Mesh], “Cone-Beam Computed Tomography” [Mesh]. The databases used for the elec-
tronic search were Med-line (PubMed), Cochrane Library, and Scopus. A manual search
was also carried out. There was a choice of exclusively English-written papers, and the
publication duration was unrestricted. Personal opinions were omitted from studies. The
search was conducted for studies published until July 2022. The search strategy for PubMed
is presented in Table 1.

Table 1. The search strategy for PubMed.

“Cone-Beam Computed Tomography” [Mesh] AND airway volume 330 results

“Cone-Beam Computed Tomography” [Mesh] AND Artificial Intelligence” [Mesh] 257 results

Artificial Intelligence” [Mesh] AND airway volume 76 results

“Cone-Beam Computed Tomography” [Mesh] AND Artificial Intelligence” [Mesh] AND airway volume 4 results

Studies were chosen by three authors separately and in duplication (I.A.T., E.P., E.G.K.).
Discussion with other authors helped to clarify any potential inconsistencies (O.K., A.I.T,
J.M.P). The names of the studies’ authors, their institutions, or their research conclusions
were revealed (not blinded). The authors first looked for possibly pertinent research by
title, then they read the abstract and eliminated any irrelevant papers. Later, to locate more
papers that were missed by database searches, a manual search of relevant study references
was conducted. Finally, after thoroughly reviewing all of the papers, a decision was taken
based on our inclusion and exclusion criteria (Table 2).

Table 2. Inclusion and Exclusion criteria.

Inclusion Criteria Exclusion Criteria
Studies that refer to the use of artificial intelligence for CBCT airway analysis Studies that are reviews or authors’ opinion

prospective or retrospective studies

2.2. Data Items and Collection Extraction and Management

The data were independently extracted and duplicated by three review writers (I.A.T.,
E.P., E.G.K.). Study participants, the intervention, the results, the techniques of outcome
evaluation, the findings, and the conclusion were among the data that were extracted. The
present authors reported and examined only the data that were available because they did
not have access to any missing data.

2.3. Risk of Bias/Quality Assessment in Individual Studies

The Cochrane Quality Assessment of the ACROBAT-NRSI tool was used to evaluate
the methodology of the included studies and determine whether there were any applicabil-
ity or bias problems. Based on the following, each domain was evaluated and classified as
high risk, low risk, or unclear:

1. Low risk of bias if all key domains of the study were at low risk of bias.
2. Unclear risk of bias if one or more key domains of the study were unclear.
3. High risk of bias if one or more key domains were at high risk of bias.
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3. Results

In the initial data search, 1050 studies were found from all data bases. Only 70 of these
papers were chosen, based on the study’s title. Each chosen article was then thoroughly
assessed by three independent authors who read the complete document. Five publications
in all were chosen for the present systematic review. Four studies were the result of PubMed
search while on extra research paper was found through Scopus.

All the final selected articles were prospective studies. All studies evaluated the
accuracy of AI systems in segmenting and calculating airway volume based on CNN and
RNN models. Three articles used their own model for software usage while one of the
remaining two used the Mimics 19.0, InVivo 5 software and the other one the Diognocat,
InVivo 5 software [26–30]. The procedure of article selection is presented on a flow diagram
(Figure 1), and data are briefly presented in Table 3.

Risk of Bias within Studies

The following seven criteria were applied to non-RCT studies: bias due to confounding,
bias in the selection of participants into the study, bias in the measurement of interven-
tions, bias due to departures from intended interventions, bias due to missing data, bias
in measurement outcomes and bias in the selection of the reported result. Two of the
studies presented high risk of bias while the other three presented low risk of bias in all
measurements (Table 4).Life 2022, 12, x FOR PEER REVIEW 5 of 13 

 

 

 
Figure 1. Prisma Flow diagram–selection of studies. 

 
Figure 1. Prisma Flow diagram–selection of studies.
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Table 3. Data extraction.

Authors/
Publication
Year

Study
Design

Participants
(Number of
CBCT)

Intervention Outcomes Method of Outcome
Assessment

Results Authors/
Publication Year

Leonardi
R et al.
[26]
(2021)

prospective 40 CBCT scans 1 CBCT device was
used.

Accuracy of the CNN fully
automatic segmentation of the
sinonasal cavity pharyngeal
airway

- Mimics software
(version 22.0,
materialize N.V.,
Leuven, Belgium).

- Surface-to-surface
matching
technique.

• Measurements were highly correlated with an intraclass correlation
coefficient value of 0.921, whereas the method error was 0.31 mm3.

• A mean difference of 1.93 ± 6 ± 0.73 mm3 was found to be not
statistically significant.

• The differences, measured as the Dice score coefficient in
percentage, between the assessments done with both methods were
3.3% and 5.8%, respectively.

The new deep
learning–based method
for automated
segmentation is accurate
for airway segmentation

Park et al.
[27]

prospective 315 CBCT
scans

1 CBCT device was
used.

Accuracy of the airway volume
measurement by a Regression
Neural
Network-based
deep-learning model

- MATLAB 2020a
(MathWorks,
Natick, MA, USA)

• The total volume was the most correlated intra-class correlation
coefficient (ICC) value in the oropharynx (0.986), followed by the
hypopharynx (0.964), and the nasopharynx (0.912).

• The slope of the two measurements was close to 1 and showed a
linear regression correlation (r2 = 0.975, slope = 1.02, p < 0.001).

These results indicate
that fully automatic
segmentation of the
airway is possible by
training via deep
learning of artificial
intelligence.

Shujaat S
et al.
[28]
(2021)

prospective 103 CT and
CBCT scans

Scans from 1 CT and 2
CBCTs were grouped
in:
- training set
- test set
- validation set

The performance of deep
learning based 3D CNN model
for automatic segmentation of
the pharyngeal airway space

- Mimics software
(version 22.0,
materialize N.V.,
Leuven, Belgium).

• The CNN model was able to identify the segmented region with
optimal precision and recall.

• The maximal difference between the automatic segmentation and
ground truth was 0.98 ± 0.74 mm.

• The dice score of 0.97 ± 0.02 confirmed the high similarity of the
segmented region to the ground truth.

The proposed 3D U-Net
model offered an
accurate method for the
segmentation of
Airway from CT/CBCT
images.

Sin Ç et al.
[29]
(2021)

prospective 306 CBCT
scans

1 CBCT device was
used and grouped in:

- training,
- validation
- test sets

The accuracy of an automatic
detection algorithm for
pharyngeal airway on CBCT
images using a deep-learning
artificial intelligence system

- Open-source
version 3.8 ITK
SNAP software

- MATLAB
implementation of
U-Net and SGD
Adam optimizer.

• There was no statistically significant difference between the human
observation of the average volume of the pharyngeal airway and
the results from artificial intelligence

• The ICC between researcher and AI measurements was found to be
highly correlated (0.985)

• The calculated Dice ratio across all slices of all CBCT images was
0.919, and the mean accuracy of 0.961 providing excellent accuracy.

AI models based on
deep learning
techniques can be used
for easy and error-free
segmentation of
pharyngeal airway
volume from CBCT

Orhan K
et al.
[30]
(2022)

prospective 200 CBCT
scans

3 CBCT devices To validate an automatic
detection algorithm for
pharyngeal airway on CBCT
data using an AI software for
OSA patients
To validate the newly
developed artificial intelligence
system in comparison to
commercially available
software for 3D CBCT
evaluation.

- Diagnocat, InVivo 5 • There was no statistically significant difference between the manual
technique and Diagnocat measurements in all groups (p > 0.05).

• Inter-class correlation coefficients were 0.954 for manual and
automatic segmentation, 0.956 for Diagnocat and automatic
segmentation, 0.972 for Diagnocat and manual segmentation.

• It was seen that the DC algorithm also measures the epiglottis
volume and the posterior nasal aperture volume due to the low
soft-tissue contrast in CBCT images; this leads to higher values in
airway volume measurement.

Activating this potential
collaboration for OSA
patients would
significantly reduce the
effort and time required
for the initial diagnosis
and follow-up of these
patients.
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Table 4. Risk of bias assessment.

Author (Year) Outcomes Bias Due to
Confound-
ing

Bias in
Selection of
Participants
into the
Study

Bias in Mea-
surement of
Interven-
tions

Bias Due to
Departures
from
Intended In-
terventions

Bias Due to
Missing
Data

Bias in Mea-
surement of
Outcomes

Bias in
Selection of
the
Reported
Result

Overall Bias

Leonardi R et al.
[26]
(2021)

• Accuracy of the CNN fully automatic
segmentation of the airway

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

High for all
outcomes

Low for all
outcomes

High for all
outcomes

Park et al.
[27]
(2021)

• Accuracy of the airway volume
measurement by a Regression Neural
Network

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

High for all
outcomes

Low for all
outcomes

High for all
outcomes

Shujaat S et al.
[28]
(2021)

• Accuracy of 3D CNN model for
automatic segmentation of the
pharyngeal airway space

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Sin Ç et al.
[29]
(2021)

• Accuracy of an automatic detection
algorithm for pharyngeal airway

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Orhan K et al.
[30]
(2022)

• To validate an automatic detection
algorithm for pharyngeal airway with AI
for OSA patients

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes

Low for all
outcomes
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4. Discussion

All studies in the present systematic review reported equal conclusions regarding the
accuracy and the benefit of automatic segmentation of the upper airway by deep learning
methods. It is important to mention that all studies were reported in 2021 and after. This
shows that the scientific interest in AI and airway volume segmentation has really increased
in the last few years. We were able to access all the known databases to minimize the
limitations of this study. However, a possible limitation could appear for articles not
included in any of the databases we used.

The first and most important stage in assessing the upper airway volume is segmenta-
tion, which allows the airway space to be distinguished from the rest of the scan and can
then be visualized and quantified in three dimensions. Various upper airway segmentation
methods and algorithms that are either manual, semiautomatic, or automatic in nature
have been developed over the past ten years [31]. Even while hand segmentation is the
gold standard and provides the most precise replication of the anatomical structure, it is
labor- and time-intensive. Numerous threshold-based semiautomatic software programs
have been approved for volumetric assessment as well [32]. In these programs, the user
specifies a volume of interest (VOI), and the program automatically combines the gray
threshold values in that area without effectively taking into account the image intensity
and anatomical variations. Similar to this, several studies have proposed a set threshold
value for segmenting the upper airway [33,34], although this value may change based on
the CBCT equipment, scanning parameters, machine calibration, and noise from patient
movement or metal artifacts [35,36]. The semiautomatic method has proven to be accu-
rately measured by different software [37]. For the segmentation of the upper airway, prior
studies have also presented fully automatic advanced and hybrid picture segmentation
techniques. However, due to either poor precision, fixed thresholding, manual localization
of seed points, manual VOI selection, reliance on picture orientation, or algorithmic failure
under varied scanning parameters, they are of limited value [32,38–40].

The first study discussed here was reported in early 2021 from Leonardi et al. Aiming
to fully automate the segmentation of the pharyngeal airway, and the sinonasal cavity from
cone-beam computed tomography (CBCT) scans, they evaluated the accuracy of a new
autonomous deep learning-based approach. In order to manually segment the sinonasal
cavity and pharyngeal subregions of 40 healthy patients’ CBCT scans (20 women and
20 men), Mimics software was used (version 20.0; Materialise, Leuven, Belgium). A total
of 20 CBCT scans were chosen at random from the entire sample and used to train the
AI model file. By contrasting the segmentation volumes of the 3D models created with
automatic and manual segmentations, the remaining 20 CBCT segmentation masks were
utilized to assess the precision of the CNN completely automatic technique. Their results
suggested a low model error (0.31 mm3), and all the measurements were highly correlated
with an intraclass correlation coefficient of 0.921. Between the approaches, there was a
mean difference of 1.93 ± 0.73 cm3, but it was not statistically significant (p > 0.05). The
average matching percentage found was 85.35 ± 2.59 and 93.44 ± 2.54. The disparities
between the assessments made using the two approaches were 3.3% and 5.8%, respectively,
as expressed by the Dice score coefficient in percentage [26].

In April of 2021, Park et al. reported on the precision of an airway volume measure-
ment made using a deep learning model based on regression neural networks. The system
for entirely automatic segmentation of a deep learning process was built using a set of
manually drawn airway data. One examiner used the mid-sagittal plane of 315 patients’
cone-beam computed tomography (CBCT) scans to identify the manual landmarks of
the airway. They performed clinical dataset-based training with data augmentation. The
airway channel was measured and segmented using markers that were annotated. The
authors were able to verify the accuracy of the model by assessing the following differences
between the examiner and the program: (1) a difference in the nasopharynx, oropharynx,
and hypopharynx volume; and (2) the Euclidean distance. A total of 61 samples were
collected and compared for the agreement analysis. The correlation test revealed a reliabil-
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ity range from high to outstanding. Regression analysis was used to examine differences
in volume. There was a strong linear regression connection between the slopes of the
two measurements, which was close to 1 (r2 = 0.975, slope = 1.02, p < 0.001). These findings
suggested that fully automatic airway segmentation is trainable using deep learning in
artificial intelligence. Furthermore, they found that there was a strong correlation between
manual data and deep learning data [27].

A month later, and more specifically in May of 2021, Shujaat et al. reported an evalua-
tion of a deep learning-based three-dimensional (3D) convolutional neural network (CNN)
model for automatically segmenting the pharyngeal airway space, and its performance
was examined. From a database of individuals undergoing orthognathic surgery, 103 CT
and CBCT scans were obtained. Two CBCT devices (Promax 3D Max, Planmeca, Helsinki,
Finland, and Newtom VGi evo, Cefla, Imola, Italy) and one CT (128-slice multi-slice spiral
CT, Siemens Somatom Definition Flash, Siemens AG, Erlangen, Germany) with various
scanning parameters made up the acquisition devices. The airway was automatically
segmented using a 3D CNN-based model called the 3D U-Net. The entire CT/CBCT
dataset was divided into three sets: training set (n = 48) for training the model based on
the observer-based manual segmentation that provided the basis for it; test set (n = 25)
for obtaining the model’s final performance; and validation set (n = 30) for comparing the
model’s performance to that of observer-based segmentation. Their results suggested that
the segmented region could be distinguished by the CNN model with the best precision
(0.97 ± 0.01) and recall (0.96 ± 0.03). The maximum deviation between the ground truth and
the artificial segmentation based on the 95% Hausdorff distance score was 0.98 ± 0.74 mm.
The segmented region’s high likeness to the real world was validated by the dice score of
0.97 ± 0.02. It was also discovered that the Intersection over Union (IoU) metric had a high
value (0.93 ± 0.03). In comparison to the Promax 3D Max and CT device, the Newtom VGi
Evo CBCT performed better based on the acquisition devices [28].

In December of 2021, Sin et al. reported on a deep learning artificial intelligence
(AI) system to assess an automatic segmentation algorithm for the pharyngeal airway
in cone-beam computed tomography (CBCT) images. In this retrospective investigation,
data from 306 participants on the pharyngeal airway were included after archives of
CBCT pictures were reviewed. Using serial CBCT images, a machine learning method
built on Convolutional Neural Networks (CNN) segmented the pharyngeal airway. The
airway was manually generated using semi-automatic software (ITK-SNAP), and the
outcomes were contrasted with those of artificial intelligence. When comparing the results
of measurements made by humans versus algorithms powered by artificial intelligence,
the dice similarity coefficient (DSC) and intersection over union (IoU) were utilized as
measures of segmentation accuracy. The average pharyngeal airway volume, according to
the human observer, was 18.08 cm3, while the average volume of artificial intelligence was
17.32 cm3. It is possible to segment the pharyngeal airways with a dice ratio of 0.919 and a
weighted IoU of 0.993 [29].

Finally, the study of Orhan et al. (2022) was characterized by two goals. The first
goal of this work was to develop and verify an algorithm for automatically detecting
the pharyngeal airway on CBCT data using artificial intelligence (AI) software called
Diacat. The second goal was to compare the recently created artificial intelligence system
to commercially available software for 3D CBCT evaluation in order to validate it. The
pharyngeal airway in obstructive sleep apnea (OSA) patients was automatically assessed
for the first time in this study. The segmentation of the pharyngeal airways in OSA and non-
OSA patients was performed using a machine learning technique based on convolutional
neural networks. Radiologists manually determined the airway using semi-automatic
software, and their measurements were compared with those of the AI. The mean airway
volumes of the several OSA patient groups (minimal, mild, moderate, and severe) were
compared. In addition, patients with OSA and those without it were compared in terms of
their airway’s narrowest points (mm), its field (mm2), and its volume (cc). In all groups,
there was no statistically significant difference between measures taken using the manual
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method and those taken using the Diagnocat (p > 0.05). For manual and automated
segmentation, the interclass correlation coefficients were 0.954 for Diagnocat, and 0.956 for
automatic segmentation. They examined the output images to determine why the mean
value for the total airway was higher in the DC measurement, even though there was
no statistically significant difference in total airway volume measurements between the
manual measurements, automatic measurements, and DC measurements in non-OSA and
OSA patients. Due to the low soft-tissue contrast in CBCT images, it was shown that the
DC algorithm also assesses the epiglottis volume and the posterior nasal aperture volume,
which results in greater values for airway volume measurement [30].

According to this systematic review the present literature is really limited as regards
studies that looked at the accuracy of artificial intelligence use for CBCT upper airway
analysis. In order to have strong evidence on how accurately CBCT airway analysis is
performed with the use of artificial intelligence, more randomized prospective studies
should be performed. Those studies should limit all kind of bias in order to provide high
quality evidence.

5. Conclusions

The pharyngeal airway may now be automatically segmented from CBCT images
thanks to a successful AI algorithm. According to the present literature, the automatic
segmentation can be put to clinical use. This is because it appears to be accurate in the
measurement of the airway but at the same time it appears to be fast and easy to use.
However, there were only 5 studies in the present literature to support these data and only
3 of them reported a low risk of bias. More studies in the future providing high-quality
evidence are needed.
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