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Abstract: Molecular markers play a crucial role in the improvement of rice. To benefit from these
markers, genotyping is carried out to identify the differences at a specific position in the genome
of individuals. The advances in sequencing technologies have led to the development of different
genotyping techniques such as genotyping-by-sequencing. Unlike PCR-fragment-based genotyping,
genotyping-by-sequencing has enabled the parallel sequencing and genotyping of hundreds of
samples in a single run, making it more cost-effective. Currently, GBS is being used in several pre-
breeding programs of rice to identify beneficial genes and QTL from different rice genetic resources.
In this review, we present the current advances in the utilization of genotyping-by-sequencing for
the development of rice pre-breeding materials and the improvement of existing rice cultivars. The
challenges and perspectives of using this approach are also highlighted.
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1. Introduction

Since the completion of the rice genome sequencing in 2005 [1], the identification
of agronomically important genes and QTL for rice improvement has been greatly ac-
celerated [2–4]. The information from the sequencing of the rice genome resulted in the
success of modern breeding practices in rice. However, the current yield performance of
the existing rice cultivars may not be sufficient due to the rapid increase in the human
population. In addition, intensive rice breeding practices have narrowed the genetic base
of elite germplasm. This has compromised the long-term genetic gain and increased the
genetic vulnerability to various stresses. Therefore, an efficient method for the identification
and incorporation of new genetic variations is necessary.

Pre-breeding refers to the intermediate step of breeding for rational use of unused lan-
draces, alien germplasm, or wild relatives, which are often not adapted to actual breeding
or production sites. The outcome of pre-breeding activities is the development of materials
that are suitable for evaluation at actual breeding sites. The materials are often referred
to as introgression lines [5] or as chromosome (segment) substitution lines in elite genetic
backgrounds. These materials have uniform genetic backgrounds and are well adapted
to the breeding sites, thus works as genetic “library” to screen various traits. The traits
can be associated with the chromosomal regions defined by DNA markers. In addition to
the pre-breeding materials, genetically fixed experimental materials, such as recombinant
inbred lines (RILs), nested association mapping (NAM) populations [6,7], multi-parent
advanced generation inter-cross (MAGIC) populations [8,9] or genome-wide association
(GWA) panels [10–12], are publicly available for gene discovery. Fine genotyping of these
genetic resources brings a big advantage to efficiently identify the causal genes (Figure 1).

Life 2022, 12, 1752. https://doi.org/10.3390/life12111752 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life12111752
https://doi.org/10.3390/life12111752
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0003-2493-0854
https://orcid.org/0000-0001-6571-4010
https://orcid.org/0000-0001-8932-4690
https://orcid.org/0000-0002-5742-239X
https://doi.org/10.3390/life12111752
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life12111752?type=check_update&version=1


Life 2022, 12, 1752 2 of 13

Life 2022, 12, x FOR PEER REVIEW 2 of 14 
 

 

genotyping of these genetic resources brings a big advantage to efficiently identify the 

causal genes (Figure 1). 

 

Figure 1. Conventional scheme for gene discovery and breeding. Materials in the hatched blue box 

are suitable to apply GBS. 

Genomic selection (GS), on the other hand, can be utilized to improve the efficiency 

in breeding of quantitative traits. Although bi-parental mapping and GWAS approaches 

were successful in dissecting the genetic architecture of a trait, only a limited proportion 

of the total genetic variance is explained by the markers. GS offers an alternative concept 

where favorable genetic variations are targeted across the whole genome without defining 

the threshold to find significant QTL [13]. In brief, this approach develops a prediction 

model based on the phenotypic and genotypic information of the training population. 

This information is then used to establish the genomic estimated breeding values (GEBVs) 

of all individuals of the breeding population from their genotypic information [14,15]. As 

compared to QTL-based marker-assisted selection (MAS), GS needs more markers than 

QTL analysis, hence the need for high throughput-sequencing technologies. 

Currently, most of the rice breeding projects are designed by combining phenotypic 

selection and MAS. At the actual breeding sites, MAS is conducted in early to late gener-

ations, depending on the breeding targets. It is supposed that most of the breeders are 

using PCR-fragment-based markers, such as SSR markers, for foreground selection for a 

limited number of favorable alleles. On the other hand, background or whole-genome se-

lection is becoming common, but its use is still limited. This is probably because most of 

the actual breeding materials are discarded, and thus the cost for whole genome selection 

never suits for a program. However, cost-effective genotyping approaches such as geno-

typing-by-sequencing (GBS) are promising for conducting background selection or GS. In 

this review, we present the current advances in the utilization of GBS in the pre-breeding 

and improvement of rice. Challenges and perspectives regarding the utilization of GBS 

are also presented. 

2. Advances in Chemistry of GBS 

Over the years, sequencing technologies have become a fundamental approach in the 

analysis of genetic variation. The rapid advancement in these technologies has led to the 

development of sequencing platforms that yield millions to billions of DNA bases per run, 

such as Roche 454, Illumina MiSeq and HiSeq, and Ion torrent [16–19]. This then enabled 

the identification of single nucleotide polymorphisms (SNPs) within the genome. Addi-

tionally, to overcome the drawbacks of hybridization-based and PCR-fragment-based 

markers, the use of single nucleotide polymorphism (SNP) markers has been adopted in 

Figure 1. Conventional scheme for gene discovery and breeding. Materials in the hatched blue box
are suitable to apply GBS.

Genomic selection (GS), on the other hand, can be utilized to improve the efficiency
in breeding of quantitative traits. Although bi-parental mapping and GWAS approaches
were successful in dissecting the genetic architecture of a trait, only a limited proportion
of the total genetic variance is explained by the markers. GS offers an alternative concept
where favorable genetic variations are targeted across the whole genome without defining
the threshold to find significant QTL [13]. In brief, this approach develops a prediction
model based on the phenotypic and genotypic information of the training population. This
information is then used to establish the genomic estimated breeding values (GEBVs) of
all individuals of the breeding population from their genotypic information [14,15]. As
compared to QTL-based marker-assisted selection (MAS), GS needs more markers than
QTL analysis, hence the need for high throughput-sequencing technologies.

Currently, most of the rice breeding projects are designed by combining phenotypic
selection and MAS. At the actual breeding sites, MAS is conducted in early to late gener-
ations, depending on the breeding targets. It is supposed that most of the breeders are
using PCR-fragment-based markers, such as SSR markers, for foreground selection for a
limited number of favorable alleles. On the other hand, background or whole-genome
selection is becoming common, but its use is still limited. This is probably because most
of the actual breeding materials are discarded, and thus the cost for whole genome selec-
tion never suits for a program. However, cost-effective genotyping approaches such as
genotyping-by-sequencing (GBS) are promising for conducting background selection or GS.
In this review, we present the current advances in the utilization of GBS in the pre-breeding
and improvement of rice. Challenges and perspectives regarding the utilization of GBS are
also presented.

2. Advances in Chemistry of GBS

Over the years, sequencing technologies have become a fundamental approach in the
analysis of genetic variation. The rapid advancement in these technologies has led to the
development of sequencing platforms that yield millions to billions of DNA bases per run,
such as Roche 454, Illumina MiSeq and HiSeq, and Ion torrent [16–19]. This then enabled the
identification of single nucleotide polymorphisms (SNPs) within the genome. Additionally,
to overcome the drawbacks of hybridization-based and PCR-fragment-based markers, the
use of single nucleotide polymorphism (SNP) markers has been adopted in rice genetics
research, as advances in chemistry have allowed cost-effective multiplex sequencing.



Life 2022, 12, 1752 3 of 13

GBS is a reduced representation sequencing approach that generates thousands of
markers at a low cost. As compared to other genotyping techniques, it is more flexible
as it is independent of prior genomic information in most cases. To enable different
GBS approaches, different chemistries for library construction have been developed. As
summarized in Table 1, approaches for GBS can be categorized into three different types:
(1) restriction enzyme-based, (2) PCR-based, and (3) target capture. Among these three,
restriction-enzyme based GBS has been widely used. However, the digest of sample DNA
and ligation to adaptors depends on the quality of DNA, whereas the PCR-based methods
can accept small amounts of low-quality DNA, and labor is reduced in library development.
Thus, it is more feasible as compared to other methods and will be more popular in the
future. On the other hand, the target capture needs preliminary information about the
target sites and the design of the probes, making it less cost-effective for breeding.

Table 1. Genotyping-by-sequencing methods based on the type of chemistry used.

Approach Type Advantages Disadvantages Examples References

Restriction
enzyme-based

Single
enzyme

• Decreased
sequencing
quality caused by
a high proportion
of short fragments

RRL, RAD-seq,
Elshire’s GBS, [20–22]

Double
enzyme

Provides a greater degree of
complexity reduction

• Repeatability
maybe dependent
on size-selection
step

ddRAD, Poland’s
GBS, SGB, eZRAD [23–25]

PCR-based
Random

• Only a small amount of
DNA is required

• High-quality and
high-quantity DNA is
not necessary

• Target SNPs can be
added flexibly

• High reproducibility

• Optimization is
necessary when
applied to
novel genome

Genotyping by
random amplicon
sequencing, direct

(GRAS-Di);
MIG-Seq

[26–28]

Targeted GT-seq; MTA-Seq; [29–31]

Target capture
• Efficiently enrich the

target sites

• Cost for designing
the probes

• Library
development
is costly

Exon capture;
Capture of known
polymorphic sites

[32]

2.1. Restriction Enzyme-Based (RE-Based) GBS

The RE-based GBS employs the use of a restriction enzyme to digest the genomic
DNA. This GBS approach is generally categorized into two types: single-enzyme and
double-enzyme. The use of the single-enzyme approach for reduced genome complexity
was first described by Baird et al. [21] in restriction association DNA sequencing (RAD-
seq). In this technique, the restriction enzyme is used to generate genomic fragments
(digestion), which are then ligated to a set of unique adapters that enables the pooling of
multiple samples (multiplexing). Pooled samples are then size selected (~300–600 bp for
Illumina sequencing), amplified by PCR, and then sequenced. In 2011, Elshire et al. [20]
simplified the RAD-seq, herein referred to as Elshire’s GBS, by removing random shearing
and size selection steps. In Elshire’s GBS, barcoded adapters and common adapters have
an overhanging site that matches the restriction sites. These sites are then ligated onto
digested fragments in a single sticky end-ligation. As compared to RAD-seq, Elshire’s GBS
is less complicated as the generation of restriction fragments is more straightforward.

The double-enzyme approach was introduced by Peterson et al. [23] using the double-
digest RAD (ddRAD). Unlike the single-enzyme GBS, this approach capitalizes on the use
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of two kinds of REs. This provides a greater degree of complexity reduction. The ddRAD
shares almost the same library construction steps as the RAD-seq with minor modifications.
In ddRAD, the barcoded adapter is ligated to one end and the common adapter is ligated to
the other. The random shearing step was also eliminated in ddRAD, but size selection was
retained to recover regions that are randomly distributed in the genome. Another double-
enzyme approach, the ezRAD, was introduced by Toonen et al. [33]. In this approach, the
flexibility to use any restriction enzyme (or combination) that frequently cuts to generate
a desired fragment size has been introduced. Unlike ddRAD, the adapters of ezRAD are
not custom designed for the preferred enzyme. This allows researchers to try different
enzymes without a costly investment for each enzyme of choice. Elshire’s GBS technique
was modified by Poland et al. [24] by adopting the two-enzyme approach. In Poland’s
GBS, a combination of rare- and common-cutting REs is used to digest the DNA sample.
The digested DNA fragments will contain alternate ends which are fitted to the barcode
adaptors and the reverse (Y) adaptor. This approach has been demonstrated to capture
fragments that are associated with rare-cutting enzymes. In addition, the use of a Y adaptor
on the common restriction avoids the amplification of more common fragment; this is a
preferential situation for larger and more complex genomes.

To date, the RE-based GBS approaches have been widely used due to their advantage
in terms of scalability, which is dependent on the choice and combinations of restriction
enzymes used. However, the enzyme of choice can be a major limitation of these approaches,
as the genomic distribution of SNPs is dependent on the specific choice and combination
of REs.

2.2. PCR-Based GBS

Although RE-based GBS approaches have been utilized in marker-assisted studies,
the need for high quality and quantities of DNA has become their limiting factor to being
widely adopted. To address this issue, Suyama and Matsuki [29] proposed changing the
RE-based steps to PCR-based steps. This approach was based on conventional RE-based
markers such as restriction fragment length polymorphism (RFLP) and amplified fragment
length polymorphism (AFLP), which were later replaced by the PCR-based marker, simple
sequence repeat (SSR).

Generally, PCR-based GBS can be categorized as either random or targeted. The ran-
dom PCR-based GBS was first introduced by Suyama and Matsuki [29] using multiplexed
ISSR genotyping by sequencing (MIG-seq). In brief, a two-step PCR is carried out in the
development of the library. The first PCR step is conducted to amplify the ISSR regions
in the genomic DNA using 12 bp SSR sequences with 2 bp anchor oligos at the 3′ tail.
The products from the first PCR are then used as a template for the second PCR step. In
the second PCR step (tailed PCR), complimentary sequences for the Illumina sequencing
flow cell and indices are added, and PCR products are pooled into a single sequencing
library. Like RAD, this method has a size selection (300–800 bp) step, and size selected
fragments are then sequenced. In a recent study by Nishimura et al. [34], MIG-seq has
been successfully applied in different crops for genetic analysis. It was highlighted that the
number of bases sequenced using this method is associated with genome size. Hence, this
method is more suited for crops with large genomes such as wheat (~17 Gb). Given this,
few loci could be sequenced in plant species with small genomes. However, it is worthy
of note that polymorphism is not only dependent on the number of loci but also on the
genetic distance between accessions. Therefore, MIG-seq also be used in plant species with
small genome as long as the samples have a high nucleotide diversity (π > 0.01). Another
type of random PCR-based GBS is the genotyping by random amplicon sequencing-direct
(GRAS-Di). Similar to MIG-seq, the development of GRAS-Di sequencing libraries consists
of two sequential PCR steps and a final purification step. However, in GRAS-Di, ampli-
fication at the first PCR step uses a 10 bp Illumina Nextera adaptor plus 3 bp random
oligomers at the 3′-end, which allows amplification of loci higher than the MIG-seq [26–28].
To date, this method has been only applied in several crop genetic research [27,35–37]. For
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example, Enoki and Takeuchi [28] developed this method and applied it to a population
of rice backcross inbred lines (BIL). Over 10,000 SNPs that were uniformly distributed in
the genome, were detected with a very low missing rate (~1.5%) in the data. Similarly,
Kumawat and Xu [36] used this approach and generated ~4000 markers that were used for
QTL mapping of seed size and shape in a soybean RIL population.

Another type of PCR-based GBS is the targeted approach, which was firstly introduced
by Campbell et al. [31] in their method, genotyping-in-thousands by sequencing (GT-seq).
Later on, a method that has the same concept as GT-seq was introduced by Onda et al. [30],
called multiplex PCR targeted amplicon sequencing (MTA-seq). These methods also share
the same concept as the two-step PCR of MT-Seq and GRAS-Di. However, preliminary
information on the identified SNPs is necessary, which makes it less flexible for species that
lacks genomic resources.

Among all the PCR-based GBS, although still in its infancy, GRAS-Di has great po-
tential to be routinely used in breeding for the following reasons: (1) it can be applied to
thousands of samples by using primer sets at a relatively low cost; (2) the amplified regions
are reproducible, hence suppressing the missing data will not be a problem; and (3) it can
be utilized even with a small quantity of DNA (<100 ng).

2.3. Target Capture

Target capture has been proposed as an alternative for complete sequencing of a large
and complex genome. To date, methods such as exome capture have been developed [32,38].
This method is focused on the coding and regulatory regions of the genome, which are
primary interests for functional genomics research [39]. In this method, genomic DNA
is hybridized to microarrays that contain oligonucleotides that are complementary to
the target sequences, followed by elution and sequencing of hybridized DNA. Over the
years, this method has been modified where biotin-labeled oligonucleotides are used and
retrieved using streptavidin beads, hence the solution-based hybridization [39,40].

The target capture GBS has been described to be advantageous over PCR-based
GBS as oligonucleotides in target capture have less specificity compared to PCR primers.
However, several drawbacks were also documented. For example, the efficiency of this
method can be reduced for probes that overlap multiple exons as intron sequences prevent
“probe:exon” hybridization [39]. This is a major issue for samples that do not have a
reference genome. Although this has been proposed in the past few years, a low adoption
rate of this approach in breeding programs is seen due to the costliness of the design of
probes and library development.

3. GBS for Rice Pre-Breeding

Over the years, GBS methods have been used in different rice pre-breeding studies.
In fact, these GBS methods were already used in rice complex crosses such as MAGIC
and NAM populations [6,8,9]. Bandillo et al. [8] developed four multi-parent populations
(Indica MAGIC, MAGIC plus, Japonica MAGIC, and Global MAGIC) and were subjected
to GBS. The sequence data that were obtained were used for GWAS which led to the
detection of known (Sub1, Xa4, and xa5) and novel QTL [8]. Ogawa et al. [9] developed
an improved allele mining approach using the Japan-MAGIC (JAM) population. Using
GBS, a total of 16, 345 SNPs were identified and used to predict the haplotype blocks.
Similarly, Fragoso et al. [7] also used GBS in the genotyping of rice NAM populations. The
genotyping data obtained were successfully used for simple QTL and joint QTL mapping.
Arbelaez et al. [41] developed two populations of interspecific introgression lines derived
from O. meridionalis × O. sativa cv Curinga and O. rufipogon × O. sativa cv. Curinga. The
utilization of GBS in their study increased the marker density by over 50-fold and led to
the identification of small donor introgressions that may have been missed using a lower
density of markers. Similarly, Spindel et al. [42] used GBS to generate 30,984 markers
for 176 RILs derived from an Indica × Japonica cross. Using these markers, QTL for leaf
width and aluminum tolerance were mapped. In 2018, Furuta et al. [43] modified the GBS
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method for rice by changing the rare-cutting enzyme PstI to KpnI. As a result, a higher
per-site coverage of sequence reads were generated, and more samples were multiplexed
in the sequencing library. However, a trade-off in the number of sites per sample was
observed, but the read information was still sufficient for certain applications. The modified
GBS method of Furuta et al. [43] has been successfully applied for linkage mapping,
introgression studies, recurrent genome recovery analysis, and GWAS in rice [6,44–46].
In a study conducted by Liang et al. [47], GBS was efficiently utilized to study cadmium
(Cd) accumulation in rice by conducting GWAS on 270 Indica rice varieties. A total of
79,545 genetic markers were identified and were used to identify QTL associated with
Cd accumulation. In a study by Goto et al. [48], GBS was utilized and obtained a total of
2221 SNPs. These SNPs were used to map QTL regions that are associated with sodium
removal ability in rice leaf sheaths. Similarly, Waheed et al. [49] utilized this approach and
identified qWU7 and qWU1 which are associated to drought response. Other QTL/genes
that were identified using GBS approach are presented in Table 2.

Table 2. Detected QTL using the genotyping-by-sequencing technique.

Trait QTL Type of Population Reference

Hybrid weakness hwj1 and hwj2 F2 [45]
Shoot Na+ concentration qSNC1-1, qSNC1-2, and qSNC11

F2 [48]Leaf sheath Na+ concentration qSHNC1 and qSHNC11
Leaf blade K+ -Na+ ratio qBKNR11

Water uptake qWU7 and qWU11 RIL [49]
Zinc content in polished rice qZPR1.1 BRIL [50]

Salinity Tolerance qSIS5.1b and qSIS6.30 RIL [51]
Grain quality qGS5.2, qGS7.1, and qPGWC8 RIL [52]

The success of the GBS approaches in genetic mapping of complex traits and its
application in complex populations such as NAM and MAGIC shows that it has great
potential to be implemented across various pre-breeding programs.

4. Implementation of GS and GBS for Rice Improvement

GS can be used to predict the performance of progeny and thus enrich the starting
pedigrees. Previous simulation and empirical studies have shown that GS selection can
speed up crop improvement [53,54]. In rice, several simulations and much empirical
research on GS have been conducted [55–63]. One of the benefits of integrating GBS to
GS programs is that it can effectively use genome-wide molecular markers from GBS. For
example, Spindel et al. [59] conducted GS and GWAS using 363 elite breeding lines from the
International Rice Research Institute (IRRI). Using GBS, the population was genotyped with
73,147 markers, and used for predicting grain yield, flowering time, and plant height. The
authors demonstrated that subsetting the SNP markers from 73,147 to 7142 (approximately
1 SNP for every 0.2 cM) and 73,147 to 13,101 SNPs (approximately 1 SNP for every 0.1 cM)
does not have a significant difference in GS models for a given trait or validation season.
However, when the markers were lower than 7142, prediction accuracies began to decrease
in most traits and models. Collectively, their results showed that using a SNP every 0.2 cM
(~10,000 markers) is a sufficient marker density for GS in inbreed rice populations.

A simplified adoption of GS combined with population breeding (bulk method) is
proposed in this paper (Figure 2). The breeding population (BP) is generated by single seed
descent or by bulk method without selection until F4 or F5 generation. All plants in BP are
genotyped, and a part of BP is subjected to phenotyping to construct the GS model. The
GEBV of all plants in BP is calculated and the plants with the best GEBV are selected. The
selected progeny are handled in a similar manner to pedigree breeding. If necessary, the
GS model can be refined by repeating the whole or a part of the process.
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Figure 2. Schematic diagram of a simplified implementation of genomic selection in rice.

A study by Bassi et al. [64] demonstrated that in wheat, GS in F3 or F4 generation is
the most cost-effective approach with respect to genetic gain and breeding cycles. The
same may hold true for rice. We propose to wait until F4 or F5 to obtain sufficient selection
accuracy because GS is most beneficial for polygenic traits. Another important factor is the
size of BP and training populations, a larger population provides more possibility to obtain
appropriate plants, but this is always limited by external factors such as spaces.

Another viewpoint on the use of GS is to use it for a trait that is not the primary target.
In our study using a rice NAM population, more than 90% of the phenotypic variance of
heading time can be explained by a model based on genotypes (Kitony et al. unpublished).
This means that breeders can enrich the materials by discarding those that do not have
the expected heading time. The primary target trait can be selected from the enriched
population that have the desired heading time.

5. Challenges in Informatics

Although GBS has become a popular genotyping approach, just like any other tool,
this approach has some drawbacks. The major drawbacks associated with GBS are: (1) a
large amount of missing data, (2) errors, and (3) undercalled heterozygous genotypes [65]
(Figure 3). Missing data in GBS can happen by chance and is primarily due to low coverage
sequencing (Figure 3A), whereas sequencing errors are inevitable (Figure 3B). The under-
called heterozygous genotypes result when true genotypes are heterozygous, yet the call
is homozygous (Figure 3C). These problems result in wrong calls of genotypes and may
affect GS prediction models as they need good molecular datasets [65]. To address these
issues, filtering by parents, filtering by minor allele frequency (MAF), and imputation and
error correction are necessary.



Life 2022, 12, 1752 8 of 13Life 2022, 12, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 3. General drawbacks of GBS. (A) missing reads resulting in missing genotypes. (B) sequenc-

ing errors resulting in incorrect genotypes. (C) undercalled heterozygosity, SNP4 of progeny 2 is 

likely to be “H” (heterozygous) but called as “A” (same as parent A). Hyphens (“-”) indicate mon-

omorphic sites. Letters highlighted in gray represent the type of drawback. 

Sequencing errors can be filtered out by several approaches. Filtering based on minor 

allele frequency (MAF) < (proportion of 2 different samples against all samples) can be 

carried out to remove sequencing errors, because if an allele is detected in 2 or more sam-

ples, it is likely that the allele is true. Filtering by MAF is not suitable for certain breeding 

populations such as ILs/CSSLs, but these populations can still be utilized for GBS by using 

two or more indices for each sample, especially parents. Similarly, filtering by parental 

genotypes is also an efficient way. This is carried out by selecting SNPs that are (1) not 

variable in a set of replicated parental samples, (2) non-heterozygous in both parents, and 

(3) polymorphic between parents. 

For missing data and undercalled heterozygosity, imputation and error correction 

can be implemented. Imputation refers to a statistical procedure that replaces the missing 

values in a dataset based on probability. In genotyping, imputation is carried out to pre-

dict the untyped loci from the sequencing call and is necessary in any genomic study for 

a more reliable result [66]. Based on a similar concept, error correction can be conducted. 

To date, several imputation pipelines have been implemented and evaluated in rice GBS 

datasets [67–70]. A comparative analysis by Nazzicari et al. [71] showed that the perfor-

mance of four general imputation methods (K-nearest neighbors, Random Forest, singular 

value decomposition, and mean value) and two genotype-specific methods (“Beagle” and 

“FILLIN”) on rice GBS datasets with up to a 67% missing rate. For general imputation 

methods, random forest showed the highest accuracy, 90%, whereas Beagle with ordered 

markers performed well in genotype-specific methods. As a result, the comparison of all 

methods showed that Beagle with ordered markers outperformed all other imputation 

methods. An R package called “ABHgenotypeR” for imputation and error-correction on 

F2 populations was previously developed by Furuta et al. [43]. One of the main features 

of this package is the easy visualization of graphical genotypes for direct comparison (Fig-

ure 4). In this analytical tool, imputation is carried out based on the flanking alleles 

Figure 3. General drawbacks of GBS. (A) missing reads resulting in missing genotypes. (B) sequenc-
ing errors resulting in incorrect genotypes. (C) undercalled heterozygosity, SNP4 of progeny 2 is likely
to be “H” (heterozygous) but called as “A” (same as parent A). Hyphens (“-”) indicate monomorphic
sites. Letters highlighted in gray represent the type of drawback.

Sequencing errors can be filtered out by several approaches. Filtering based on minor
allele frequency (MAF) < (proportion of 2 different samples against all samples) can be
carried out to remove sequencing errors, because if an allele is detected in 2 or more
samples, it is likely that the allele is true. Filtering by MAF is not suitable for certain
breeding populations such as ILs/CSSLs, but these populations can still be utilized for
GBS by using two or more indices for each sample, especially parents. Similarly, filtering
by parental genotypes is also an efficient way. This is carried out by selecting SNPs that
are (1) not variable in a set of replicated parental samples, (2) non-heterozygous in both
parents, and (3) polymorphic between parents.

For missing data and undercalled heterozygosity, imputation and error correction
can be implemented. Imputation refers to a statistical procedure that replaces the missing
values in a dataset based on probability. In genotyping, imputation is carried out to predict
the untyped loci from the sequencing call and is necessary in any genomic study for a
more reliable result [66]. Based on a similar concept, error correction can be conducted.
To date, several imputation pipelines have been implemented and evaluated in rice GBS
datasets [67–70]. A comparative analysis by Nazzicari et al. [71] showed that the perfor-
mance of four general imputation methods (K-nearest neighbors, Random Forest, singular
value decomposition, and mean value) and two genotype-specific methods (“Beagle” and
“FILLIN”) on rice GBS datasets with up to a 67% missing rate. For general imputation
methods, random forest showed the highest accuracy, 90%, whereas Beagle with ordered
markers performed well in genotype-specific methods. As a result, the comparison of all
methods showed that Beagle with ordered markers outperformed all other imputation
methods. An R package called “ABHgenotypeR” for imputation and error-correction on F2
populations was previously developed by Furuta et al. [43]. One of the main features of this
package is the easy visualization of graphical genotypes for direct comparison (Figure 4).
In this analytical tool, imputation is carried out based on the flanking alleles
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In this tool, if the genotypes on the left and right of the missing data are identical, then
the genotypes are filled in. The package also offers a two-way error correction for GBS
datasets: (i) correction of undercalled heterozygous genotypes, and (ii) correction of other
genotyping errors. However, in a report presented by Lorieux et al. [72], ABHgenotypeR
is not suited for noisy low-coverage sequence datasets. Although several studies have
demonstrated the importance of informatics pipelines, error-free GBS dataset is still impos-
sible. However, as demonstrated by Furuta et al. [43] the structural differences between
the genomes of the parental lines are more likely to be the major source of the erroneous
markers. Therefore, checking the GBS dataset even after the imputation and error correc-
tion steps is necessary. For example, manual curation (removal of suspicious SNP calls or
markers) of the dataset should be implemented for the outputs of the informatic pipeline.

The high volume of genetic data provided by parallel short-read sequencing also
brings serious challenges in the analysis [73]. To fully utilize these GBS datasets, develop-
ment of software and informatics pipelines that can effectively assemble reads, identify
alleles and genotypes, and monitor those genotypes in hundreds of individuals across
several populations using a statistically rigorous framework is necessary [74]. In a GBS
informatics pipeline, factors such as SNP calling strategies and ease of use must be consid-
ered. As summarized in Table 3, Wickland et al. [75] conducted a comparative study on
five GBS pipelines.

Table 3. Comparison of available GBS pipelines.

GBS-Pipeline SNP Calling Strategy Ease of Use 1 Reference

Trait Analysis by aSSociation,
Evolution and Linkage (TASSEL) Binomial likelihood ratio Needs extra steps to improve SNP call

accuracy. Not built into the pipeline [68]

IBIS genotyping by sequencing
tools (IGST) Bayesian - [76]

Fast-GBS Haplotype-based Needs extra steps to improve SNP call
accuracy. Not built into the pipeline [77]

Stacks Multinomial-based likelihood - [78]

GB-eaSy Bayesian Additional steps for SNP call accuracy is
not needed or built into the pipeline itself. [75]

1 In terms of carrying out all the steps needed to produce accurate SNPs.

Among these tools, the GB-eaSy, TASSEL-GBS, and IGST were found to have the
highest accuracy (~99%) in terms of SNP calling in comparison with the whole-genome se-
quence (WGS). Interestingly, a low percentage of common SNPs were detected in these SNP
calling tools. Looking at the common SNPs detected using these tools, Wickland et al. [75]
only found 12.08% common SNPs between TASSEL, GB-eaSy, and IGST. The difference
in the SNPs detected using these tools could be attributed to the SNP calling strategy
and read aligners. For example, Hwang et al. [79] conducted a comparison of three read
aligners and four variant callers and identified that BWA-MEM together with SAMtools
has the greatest accuracy for SNP identification. Similarly, the combination of GB-eaSy
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with BCFtools/SAMtools showed a great allelic concordance in reference to the WGS data
in Soybean lines.

6. Future Perspective

The cost reduction in sequencing is allowing a wider application of GBS. In terms of
cost-efficiency, multiplexing a greater number of samples for a single GBS run is beneficial
for breeders. Several approaches, such as the modification of sequencing adapters, can be
carried out to achieve a higher multiplexing capacity. Reyes et al. [80] demonstrated that the
addition of indexing reads to barcode adapters of Poland et al. [14] enabled the multiplexing
of 2304 samples from independent populations in a single sequencing run. This method
improved the convenience of genotyping different populations from multiple breeders.

GBS has enabled the genotyping of thousands of individuals. However, a lack of
phenotype information prevents the understanding of polygenic traits because the popula-
tion is a limiting factor in statistical genetics. Simultaneous utilization of high-throughput
phenotyping technologies and GBS will allow a new way of dissecting complex traits.
Currently, these new phenotyping technologies are first used for GWAS panels. However,
the construction of new genetic resources will greatly accelerate rice breeding.
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