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Abstract: The well-orchestrated process of wound healing may be negatively impacted from inter-
rupted or incomplete tissue regenerative processes. The healing potential is further compromised in
patients with diabetes mellitus, chronic venous insufficiency, critical limb ischemia, and immunocom-
promised conditions, with a high health care burden and expenditure. Stem cell-based therapy has
shown promising results in clinical studies. Mesenchymal stem cell-derived exosomes (MSC Exos)
may favorably impact intercellular signaling and immunomodulation, promoting neoangiogenesis,
collagen synthesis, and neoepithelization. This article gives an outline of the biogenesis and mech-
anism of extracellular vesicles (EVs), particularly exosomes, in the process of tissue regeneration
and discusses the use of preconditioned exosomes, platelet-rich plasma-derived exosomes, and
engineered exosomes in three-dimensional bioscaffolds such as hydrogels (collagen and chitosan) to
prolong the contact time of exosomes at the recipient site within the target tissue. An appropriate
antibiotic therapy based on culture-specific guidance coupled with the knowledge of biopolymers
helps to fabricate nanotherapeutic materials loaded with MSC Exos to effectively deliver drugs locally
and promote novel approaches for the management of chronic wounds.
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1. Introduction

Extracellular vesicles (EVs) are cell-specific lipid-bound organelles that facilitate in-
tercellular communication with their cargo elements, including proteins, nucleic acids,
and certain lipids [1]. Various types of EVs have been described, including ectosomes,
microvesicles, microparticles, exosomes, oncosomes, apoptotic bodies, and exomeres [2,3].
Exosomes are a nanosized clinically relevant EV type with diagnostic and therapeutic
applications [4–6]. The regulated biogenesis of exosomes and the specific targeting ac-
tion of cell-specific cargo materials over the recipient cells are of interest in the field of
immunological disorders and regenerative medicine [7–9].

The process of wound healing has four phases: (a) hemostasis; (b) inflammatory;
(c) proliferative; and (d) remodeling (Figure 1) [10–15].
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(a) Hemostasis: The earliest phase in wound healing starts with the formation of a platelet
plug and the activation of the coagulation cascade to reduce bleeding. Platelets are
activated when they come into contact with extracellular collagen, releasing growth
factors that cause platelet aggregation and clumping. This is followed by the activation
of the coagulation cascade.

(b) Inflammation: This phase begins within 24 h of the injury and lasts up to 2 weeks,
first with the recruitment of neutrophils and then macrophages. These cells release
various cytokines (IL-1, -6, -8, and TNF-alpha) and growth factors (PDGF, TGF-beta,
TGF-alpha, and fibroblast growth factors) to activate fibroblasts and epithelial cells.
Neutrophils serve as the first line of defense. Macrophages are activated later. The
classical proinflammatory pathway of macrophages is activated first, followed by the
alternate macrophage pathway (M2).

(c) Proliferative phase: This phase is characterized by fibroblast migration, collagen and
extracellular matrix production, angiogenesis, the laying of granulation tissue, and
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epithelialization. Fibroblasts begin moving by first binding to the matrix components
(such as fibronectin) via the integrity receptors. The direction of the fibroblast move-
ment is determined by the concentration gradient of cytokines and growth factors.
Fibroblasts secrete matrix metalloproteinase, collagenase, and gelatinase to degrade
the extracellular matrix, facilitating cell migration and movement. After fibroblast
migration, there is an increased production of the extracellular matrix through stim-
ulation by TGF-β and PDGF. Damaged vasculature must be replaced by new blood
vessels through angiogenesis, stimulated by VEGF, HIF, and PEGF. In epithelialization,
epithelial cells around the margin of the wound lose contact inhibition and epiboly
migrate into the wound area [16].

(d) Remodeling: This is the final phase of the healing process, with the formation of
granulation tissue. Type 3 collagen is gradually replaced by type 1 collagen.

This review provides a brief outline of the natural processes of wound healing as well
as the morphology, biogenesis, and applications of exosomes. In addition, the mechanism
and molecular signaling targets of exosomes in the management of chronic non-healing
wounds are described. Finally, we discuss the production of engineered bioscaffolds with
functionalized nanovesicles to use in chronic wounds.

2. Forms and Functions of Extracellular Vesicles

The International Society for Extracellular Vesicles (ISEV) has proposed guidelines for
the nomenclature, isolation, and characterization of EVs. EVs are broadly categorized into
small (exomeres (<50 mm), exosomes (<100 or 200 nm), and ectosomes (>200 nm) or shedding
microvesicles (MVs)) and large (migrasomes (500–3000 nm), apoptotic bodies (1000–5000 nm),
and large oncosomes (1000–10,000 nm)) (Figure 2) [4,17]. Exosomes evolve by sprouting as
intraluminal vesicles (ILVs) within the luminal space of late endosomes or so-called mul-
tivesicular bodies (MVBs). They are produced and released by various cells, tissues, and
body fluids [8]. EVs are involved in cell-to-cell interaction pathways with physiological and
pathological functions [18,19]. EVs possess immunomodulatory and immunosuppressive
effects and activate angiogenesis, the proliferative phase, and epithelialization.
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3. Biogenesis of MSC-Derived EVs

In this field, the best-known mechanism is probably the endosomal sorting complex re-
quired for transport (ESCRT) [20,21]. The cascade promotes the activation of rho-associated
protein kinase 1 (ROCK-1). ROCK-1 phosphorylates the myosin regulatory light chain and
stimulates the contractile activity of actomyosin. It then leads to the formation of apoptotic
bodies. Exosomes are formed during endosomal sorting. Intraluminal vesicles mature into
ESCRT [22,23]. Microvesicle biogenesis involves the calcium-dependent enzymes calpain,
gelsolin, phospholipid translocase, and scramblase [6,24].

The preconditioning of MSCs is performed in the first 24 h after harvesting. This
period of incubation alters the cell microenvironment by inducing hypoxia, oxidative stress,
and inflammation. Four cycles of ultracentrifugation are required to isolate the extracellular
vesicles from the preconditioned MSCs. At the end of the first spin, the cell debris is
formed; after the second spin, large-sized extracellular vesicles are collected. After the third
spin, medium-sized extracellular vesicles are collected and in the last spin, small-sized
extracellular vesicles are obtained [25–27]. Various techniques are available to assess the
regulation of EVs, namely: (a) a scratch wound assay (used to study cell growth and
healing and especially useful to study wound closure rates and tracking wound closures for
24 h) [28]; (b) a nanoparticle tracking analysis (performed in real time to quantify exosomes
in the range of 50 to 1000 nm in a liquid suspension) [29]; (c) dynamic light scattering
(using scattered light from the Brownian motion of particles to determine the particle
concentration and size) [30]; (d) electron microscopy (scanning electron microscopy (SEM)
and transmission electron microscopy (TEM) can be used to analyze the morphology of
exosomes) [31]; (e) tunable resistive pulse sensing (tRPS) (fluid is divided into two halves
by a non-conductive nanomembrane. One half contains a suspension and the other half
contains a particle-free electrolyte. An electric potential is applied and a resistive pulse
is generated. The length of the pulse is proportional to the particle size) [32]; and (f) cell
number recovery (CNR) (the ratio of cells in the wound region at time t to cells in the
wound region at time 0) [33,34]. Other biochemical methods such as Western blotting,
size-exclusion chromatography, flow cytometry, and thermophoretic profiling can also be
used to analyze extracellular vesicles [33,35–39].

4. Molecular Signaling Targets of EVs in Wound Healing
4.1. EVs in Hemostasis through Glycoproteins and Oxidases

Platelet-derived extracellular vesicles are most abundant in the circulation and help to
activate platelets and the formation of fibrin clots. Platelet-derived extracellular vesicles activate
both extrinsic and intrinsic pathways [40]. They indirectly exert procoagulant effects by binding
P-selectin to P-selectin glycoprotein ligand-1 (PSGL1) [40]. Platelet-derived extracellular vesicles
can also interact with NADPH oxidase (NOX) [41]. They are involved in superoxide generation
and enhance fibrin binding. Platelet-derived extracellular vesicles also induce platelet activation
by collagen receptors [42,43]. UC-MSC-derived EVs suppress ROS-induced apoptosis through
the suppression of AIF nuclear translocation and PARP-1 activation [44].

4.2. EVs in Inflammation through Adhesion Molecules and ROS Products

Neutrophil-derived extracellular vesicles (NDEVs) show anti-inflammatory and proin-
flammatory functions, depending on environmental factors [45,46]. They increase the
expression of adhesion molecules such as E-selectin and VCAM 1 and increase ROS
production. NDEVs mediate inflammation by producing danger signals. Endothelium-
attached NDEVs induce proinflammatory genes whereas non-adherent NDEVs induce
anti-inflammatory genes [45]. During the inflammatory phase, macrophages play an
important role in the transition from the inflammatory phase to the proliferative phase.
Macrophage-derived EVs induce the reprogramming of macrophages from the M1 to the
M2 phenotype [47,48]. Extracellular vesicles derived from keratinocytes from the wound
edge also cause a similar phenotype change in macrophages [49]. M2 extracellular vesicles
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decrease the expression of M1 marker iNOS but increase the expression of arginase, an M2
macrophage marker [49].

The TLR4/NF-κB/STAT3/AKT regulatory signaling pathway plays a critical role
in the regulation of macrophage plasticity [50]. LPS-preconditioned UC-MSCs modify
macrophage polarization for the resolution of chronic inflammation via Exos-shuttled
let-7b [51]. Macrophage reactivity, polarization, and modulation in the wound led by MSC-
derived EVs are facilitated by the transfer of miRNAs such as let-7b and -181c, which results
in the downregulation of proinflammatory (TNF-α and IL-1β) micromolecules and the up-
regulation of anti-inflammatory (TGF-β and IL-10) micromolecules [51,52]. Glycolysis is the
source of energy for proinflammatory M1 macrophages by inhibiting mitochondrial oxida-
tive phosphorylation and the TCA cycle whereas mitochondrial oxidative phosphorylation
is the energy feeder for anti-inflammatory M2 macrophages [53].

Human BM-MSC EVs, when administered as an IV injection at the wound site, promote
wound healing and the polarization of macrophages to the M2 phenotype. EVs in vitro
human monocytes/macrophages promote M2 macrophage polarization through the transfer
of miR-223 [54]. Melatonin-stimulated BM-MSC-derived EVs improve diabetic wound healing
through regulating macrophage polarization by targeting the PTEN/AKT pathway [55].

4.3. EVs in Proliferation and the Mechanism in Wound Healing

EVs derived from umbilical progenitor cells have proangiogenic effects [56]. They
stimulate angiogenesis through the modulation of the AKT/ERK/STAT 3 pathway, mod-
ulation of the NOTCH pathway, increased expression of miR-126, and stimulation of the
WNT/beta-catenin pathway [56]. Treg cells play a significant role in the healing of the
wound bed. Tissue-resident Treg cells provide a conductive environment for proper wound
healing through the amphiregulin-TGF-β cascade [57–60]. γδTreg cells secrete KGF and
IGF-1 to promote the proliferation and survival of keratinocyte [61]. The upregulation
of OCT-4 and NANOG expression and the downregulation of vinculin were observed
when MSCs were incubated along with MSC-derived EVs. Such a combination delays
premature senescence, facilitates stemness, and enhances glycolytic metabolism in MSCs
via the activation of miR-302b and HIF-1α [62].

BM-MSC-derived Exos accelerate wound healing by targeting fibroblasts via the Akt,
Erk1/2, and STAT3 signaling pathways [63]. FGF-2, IL-6, and -8 upregulate the Erk1/2
pathway, which results in cellular proliferation, migration, and angiogenesis [64–66] whereas
Id-1, Cox-2, VEGFA, and c-myc upregulate the Erk1/2 pathway at the mRNA level [67–70].
Mouse BM-MSC-derived EVs promoted the proliferation, migration, and tube formation of
in vitro endothelial cells and increased the p-AKT and p-eNOS signaling pathways to produce
angiogenesis in a healing wound [71]. BM-MSC-derived Exos lncRNA H19 promoted wound
healing in diabetic foot ulcers by upregulating PTEN via miRNA-152-3p [72]. BM-MSC-
derived EVs are rich in proliferative factors (the proliferation and promotion of the viability of
keratinocytes, fibroblasts, and endothelial cells) whereas AD-MSC-derived EVs are rich in
proangiogenic factors (the proliferation of endothelial cells) [73]. Enhanced vasculogenesis
was observed in wound beds when hBM-MSC-derived EVs were stimulated by deferoxamine.
The combination of deferoxamine and Exos activated the PI3K/AKT signaling pathway via
miR-126-mediated PTEN downregulation to stimulate angiogenesis in vitro [74]. Exos derived
from atorvastatin-pretreated BM-MSCs accelerated diabetic wound repair by enhancing angio-
genesis via the AKT/eNOS pathway by upregulating miR-221-3p in endothelial cells [75]. A
static magnetic field-induced BM-MSC-derived Exos promoted neovasculogenesis to enhance
wound healing through miR-21-5p by targeting SPRY2 to facilitate the PI3K/AKT and ERK1/2
signaling pathways [76].

Ren et al. demonstrated that AD-MSC-derived EVs facilitate wound healing via
the AKT serine/threonine kinase 1 (AKT) and mitogen-activated protein kinase 1 (ERK)
signaling pathways [77]. These AD-MSC-derived EVs upregulate cyclin D1, D2, A1, and A2
as well as growth factors (VEGF-A, PDGF-A, EGF, and FGF-2); hence, they increase wound
epithelialization, collagen synthesis, angiogenesis, and wound contracture [77]. AD-MSC-
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derived Exos accelerate wound healing through the PI3K/AKT signaling pathway [78].
AD-MSC-derived EVs promote the proliferation and migration—and stimulate the AKT
and ERK signaling—of in vitro fibroblasts, keratinocytes, and endothelial cells [77]. AD-
MSC-derived EVs facilitate wound healing by accelerating keratinocytes and fibroblasts
in an AKT/HIF-1α-dependent fashion [79]. Human AD-MSC-derived EVs attenuate
hypertrophic scars and fibrosis by the miR-192-5p/IL-17RA/SMAD axis [80]. Exos derived
from mmu_circ_0000250-modified AD-MSCs promoted wound healing in diabetic mice
by inducing miR-128-3p/SIRT1-mediated autophagy [14]. The overexpression of Nrf2
by AD-MSC-derived EVs facilitated wound healing by enhancing neovasculogenesis in
a diabetic foot ulcer in a rat model. Nrf2 overexpression leads to the robust formation of
granulation tissue, neovasculogenesis, and the raised expression of growth factors as well
as decreased levels of proinflammatory molecules and oxidative stress-related proteins in
wound beds [81].

In dermal fibroblasts and in a keratinocyte-deficient wound model, UC-MSC-derived
EVs promoted the proliferation and migration of fibroblasts and keratinocytes through miR-
27b, which acts by suppressing E3-ubiquitin ligase ITCH, thereby activating JUNB/IRE1α [82].
UC-MSC-derived Exos enhance wound healing by activating the WNT/β-catenin signaling
pathway [83]. Endothelial progenitor cell (EPC)-derived Exos accelerate wound healing by
facilitating vasculogenesis via Erk1/2 signaling [84]. UC-MSC-derived EVs, along with a
pluronic F127 hydrogel, facilitated wound healing by promoting neovasculogenesis and the
increased expression of VEGF and TGF-β1 [85].

Apoptotic body (AB)-derived EVs accelerate cutaneous wound healing, promote
macrophage M2 polarization through downregulated iNOS activity and an upregulated
ARG:iNOS ratio, and enhance the functions of fibroblasts and keratinocytes in the wound
healing pathway. Given the lack of standardization, cell sources, and retention rate of
MSCs after transplantation, AB-derived EVs provide a promising platform to develop a
cell-free therapy [86].

4.4. EVs in the Remodeling of Wound Healing

EVs facilitate collagen 1 cross-linking and promote collagen gel contraction. A few com-
ponents of fibrocyte-derived EVs (FDEVs) such as hsp-90 alpha and STAT-3 promote cell
motility and re-epithelialization [45,87,88]. FDEVs are also rich in anti-inflammatory miR-
NAs such as miR124a and miR125b [89]. MSC-derived EVs enhance the re-epithelialization,
neovasculogenesis, proliferation, and migration of cellular components to the injured site
by increasing MMP-9, PDGF-A, VEGF-A, FGF-2, TGF-β, and EGF and modulating the
NOTCH, AKT/ERK, and WNT/β-catenin signaling pathways, enhancing the production
of collagen 1 and 3, fibronectin, and extracellular matrix components [90–95]. Human
fetal dermis-bound MSC-derived Exos induce the expression of COL1, COL3, elastin, and
fibronectin by activating the NOTCH pathway [96].

TSG-6-modified BM-MSC-derived EVs suppress scar formation by suppressing
SMAD2/3 signaling and by inhibiting TGF-β1, COL1, COL3, and SMA-α protein syn-
thesis and inflammation in the wound site [97]. A local injection of EVs improves wound
healing by increasing the mRNA for COL1 and COL3 as well as the mRNA for N-cadherin
and elastin [98]. An IV injection of AD-MSC-derived EVs migrates to the wound site and
spleen, promoting wound healing [98]. In vitro fibroblasts in response to AD-MSC-derived
EVs promote the proliferation and migration of fibroblasts and keratinocytes and receive
signals from COL1, COL3, MMP1, FGF2, and TGF-β1 mRNAs along with the increased
expression of VEGF, c-myc, MMP-9, and fibronectin [77,99]. The application of PI3K/AKT
inhibitor Ly294002 abrogated the EV-induced effects of fibroblasts on a wound surface [78].

AD-MSC-derived Exos facilitate extracellular matrix remodulation in wound repairs
by enhancing and regulating the COL3:1, TGF-β3:TGF-β1, and MMP3:TIMP1 ratios via the
ERK/MAPK signaling pathways to mitigate the minimization of scar formation [100]. The
promotion of wound healing by AD-MSC-derived Exos/EVs is facilitated by the overex-
pression of miR-486-5P by targeting Sp5 and CCND2 expression [101]. The overexpression



Life 2022, 12, 1733 7 of 17

of miR-135a downregulates LATS2; hence, it upregulates cellular migration and enhances
wound healing [102]. AD-MSC-derived miR-192-5p downregulates pro-fibrosis protein
and upregulates wound healing via the inhibition of IL-17RA/SMAD expression [80].

UC-MSC-derived EVs suppressed TGF-β-induced myofibroblast formation in a mouse
skin wound model. These EVs were enriched with miR-21, -23a, -125b, and -145, which re-
duced the TGF-β/SMAD2 signaling in the fibroblasts [103]. An accelerated re-epithelization
of burned skin on rats was observed with the administration of UC-MSC-derived Exos
via Wnt-4 signaling [83]. In a skin defect mouse model, UC-MSC-derived Exos inhib-
ited myofibroblast differentiation by suppressing the TGF-β2/SMAD2 pathway through
miRNAs (miR-21, -23a, -125b, and -145), which resulted in reduced fibrosis and scar forma-
tion [103,104]. Amniotic fluid-MSC-derived EVs inhibited and suppressed myofibroblast
aggregation and ECM synthesis via the TGF-β pathway through miRNAs such as let-7-5p,
-22-3p, -27a-3p, -21-5p, and -23a-3p [105]. UC-MSC-derived Exos promoted the phosphory-
lation of YAP by transporting the 14-3-3ζ protein, which inhibited WNT/β-catenin signal
transduction, enhanced collagen deposition, and inhibited excess fibroblast expansion
in burn wounds. Such mechanisms have improved tissue remodeling and reduced scar
formation in burn wounds [106]. MSC-derived EVs act by targeting the injured site by
producing scarless re-epithelialization and decreasing cell senescence (Figure 3) [107,108].
A summary of the role of MSC-derived EVs is described in Table 1.
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Table 1. Summary of MSC-derived EVs in wound healing.

Form of MSC Extracellular Vesicles Significance

BM-MSC EVs

Promote M2 macrophage polarization through
transfer of miR-223.
Macrophage polarization by targeting the
PTEN/AKT pathway.
Promote proliferation, migration, and tube
formation of in vitro endothelial cells and increase
the p-AKT and p-eNOS signaling pathways to
produce angiogenesis in the healing wound.

BM-MSC Exos
Accelerate wound healing by targeting fibroblasts
via the Akt, Erk1/2, and STAT3
signaling pathways.

BM-MSC Exos lncRNA H19 Promotes wound healing in diabetic foot ulcers by
upregulating PTEN via miRNA-152-3p.

BM-MSC Exos + deferoxamine
Activate the PI3K/AKT signaling pathway via
miR-126-mediated PTEN downregulation to
stimulate angiogenesis in vitro.

BM-MSC Exos + atorvastatin Enhance angiogenesis via the AKT/eNOS pathway
by upregulating miR-221-3p in endothelial cells.

BM-MSC Exos + static magnetic field

Promote neovasculogenesis to enhance wound
healing through miR-21-5p by targeting SPRY2 to
facilitate the PI3K/AKT and ERK1/2
signaling pathways.

TSG-6-modified BM-MSC EVs

Suppress scar formation by suppressing SMAD2/3
signaling and inhibiting TGF-β1, COL1, COL3,
and SMA-α protein synthesis and inflammation in
the wound site.

Adipose tissue-derived MSCs

AD-MSC EVs

Facilitate wound healing via the AKT
serine/threonine kinase 1 (AKT) and
mitogen-activated protein kinase 1 (ERK)
signaling pathways.
Promote the proliferation and migration—and
stimulate the AKT and ERK signaling—of in vitro
fibroblasts, keratinocytes, and endothelial cells.
Facilitate wound healing by accelerating
keratinocytes and fibroblasts in an
AKT/HIF-1α-dependent fashion.
Attenuate hypertrophic scars and fibrosis by the
miR-192-5p/IL-17RA/SMAD axis.
Promote the proliferation and migration of
fibroblasts and keratinocytes, receive signals from
COL1, COL3, MMP1, FGF-2, and TGF-β1 mRNAs,
along with the increased expression of VEGF,
c-myc, MMP-9, and fibronectin.

AD-MSC Exos

Accelerate wound healing through the PI3K/AKT
signaling pathway.
Facilitate extracellular matrix remodulation in
wound repair by enhancing and regulating the
COL3:1, TGF-β3:TGF-β1, and MMP3:TIMP1 ratios
via the ERK/MAPK signaling pathways to
mitigate the minimization of scar formation.
Facilitate wound healing by the overexpression of
miR-486-5p by targeting the Sp5 and
CCND2 expression.

Exos derived from
mmu_circ_0000250-modified AD-MSCs

Promoted wound healing in diabetic mice by
inducing miR-128-3p/SIRT1-mediated autophagy.

AD-MSC-derived miR-192-5p
Downregulates pro-fibrosis protein and
upregulates wound healing via the inhibition of
the IL-17RA/SMAD expression.
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Table 1. Cont.

Form of MSC Extracellular Vesicles Significance

Umbilical cord-derived MSCs

UC-MSC EVs

Promote the proliferation and migration of
fibroblasts and keratinocytes through miR-27b,
which acts by suppressing E3-ubiquitin ligase
ITCH, thereby activating JUNB/IRE1α.
Suppressed TGF-β-induced myofibroblast
formation in a mouse skin wound model through
TGF-β/SMAD2 signaling in fibroblasts.

UC-MSC Exos

Enhance wound healing by activating the
WNT/β-catenin signaling pathway.
Promote the phosphorylation of YAP by
transporting the 14-3-3ζ protein, which inhibited
WNT/β-catenin signal transduction, enhanced
collagen deposition, and inhibited excess fibroblast
expansion in burn wounds.

UC-MSC Exos + pluronic F127 hydrogel Promote neovasculogenesis by increasing the
expression of VEGF and TGF-β1.

Amniotic fluid-derived MSCs AF-MSC EVs

Inhibit and suppress myofibroblast aggregation
and ECM synthesis via the TGF-β pathway
through miRNAs such as let-7-5p, -22-3p, -27a-3p,
-21-5p, and -23a-3p.

Human fetal dermis-derived MSCs Human fetal dermis-MSC EVs induce the expression of COL1, COL3, elastin, and
fibronectin by activating the NOTCH pathway.

5. New Perspectives of EV-based Therapy in Wound Healing

EVs have been classically thought to be vestigial and have been poorly investigated
for regenerative medicine purposes. Pluripotent nanovesicles can be retrieved from MSCs
of various origins (bone marrow, placenta, umbilical cord, and adipose tissue-derived) and
endothelial progenitor cells, and only recently have MSC-derived EVs been more inten-
sively studied for their application in tissue-specific regenerative medicine. Intercellular
communication and the specific tissue targeting effect mediated by these nanobiomolecules
play a role in immunomodulation, angiogenesis, the amplification of the growth potential,
and regeneration [109–113]. The proteomic and transcriptomic analysis of EVs with loaded
bioactive cargo molecules provides an interesting bioprofile regarding their diagnostic and
therapeutic efficacy.

5.1. Engineered EV Therapy

The wound healing tendency in immunocompromised conditions such as diabetes
mellitus and chronic kidney disease is negatively impacted by an impaired local immunity,
which leads to a prolonged inflammatory phase and poor vascularity. In such conditions,
the priming and recruitment of neutrophils are compromised and innate immunity tends
to be defective. In these chronic wounds, engineered EVs have the potential to improve
the chemotactic response, activate the respiratory burst of the neutrophils, and facilitate
neoangiogenesis and site-specific tissue differentiation, promoting healing [114]. EV ther-
apy yields many advantages over cell-based therapies, including immunocompatibility,
no shear stress following an injectable therapy, and a non-carcinogenic growth potential.
Loco-regional angiogenesis accelerates collagen synthesis and full-thickness wound healing
and improves the quality of the scar formation [115,116]. MSC EVs can be administered via
an intravenous route, a direct injection, or a topical application. Injected MSCs exert their
physiological effect at the recipient site by their paracrine secretion of extracellular vesicles
rather than a direct differentiation [117].

5.2. EV-Induced Immunomodulation

Macrophages are involved in phagocytosis and the process of tissue healing. They are
phenotypically classified into M1 (classically activated) and M2 (alternatively activated)
macrophages. Studies have shown improved wound healing after the administration of
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bone marrow-derived MSCs to a wound site by promoting M2 polarization [54]. Polarized
M2 macrophages induce the secretion of chemokines such as TNF-α, IFN-γ, and IL-1 and
mediate the surge of VEGF, PDGF, and TGF-β into the local environment. Thus, the correct
temporal sequence of the M1 to M2 shift mediated by EVs is important in the treatment of
chronic wounds.

5.3. PRP-Derived EV Therapy

The activation of the Hippo/YAP (Yes-associated protein) signal pathway is essential
for the process of epidermal re-epithelization. Platelet-rich plasma contains various growth
factors essential for wound healing. EVs derived from PRP show benefits for tissue
regeneration by activating the YAP pathway [118]. A PRP-derived exosomal therapy
can accelerate the process of collagen deposition in wound beds. When analyzing the dose-
dependent therapeutic efficacy of platelet lysate-derived exosomes, the isolated exosomes
were shown to contain a higher amount of essential growth factors (βFGF, VEGF, PDGF-BB,
and TGF-β1) and small RNAs compared with the donor platelets [119].

5.4. Bioscaffolds with Functionalized EV Therapy

Most commonly, EVs are delivered via a direct injection at the desired site. However,
this can impair the function because of rapid metabolic clearance. Although MSC-derived
exosomes have great potential in disease treatment, issues such as rapid clearance and the
maintenance of their inadequate preservation for their viability and function remain to be
addressed [120,121]. To date, there is no effective method to retain retrieved MSC-based EVs
at the wound site. Thus, tissue-engineered biocompatible scaffold constructs provide the
skeletal framework for the extracellular vesicles at the desired site to exert their prolonged
therapeutic effect of healing and regeneration [122,123]. However, many studies have recently
reported that these traditional scaffolds lack the porous structure needed for cell growth,
proliferation, and migration [124,125]. Liu et al. designed a hydrogel glue that could retain
stem cell-derived exosomes (SC Exos) to enhance the chondrogenic potential at the defect
area [126]. Furthermore, they suggested that this novel acellular exosome-rich hydrogel glue
(EHG) could be used as scaffold material for tissue regeneration in chronic wounds.

Chronic diabetic wounds require a relatively long time for tissue regeneration and
healing. Wang et al. developed a novel stem cell-derived exosome-rich biocompatible
scaffold that could serve as a sustained release of growth factors with a local immunomod-
ulation to maintain their bioactivity at the wound site. This is more advantageous than the
previously used injection technique, given its enhanced bioavailability and its anchorage
to the surrounding tissue [127]. Recent research has investigated the superior angiogenic
properties in wound repair using bone marrow-derived MSCs (BMSCs) preconditioned
by dimethyloxaloyl glycine [128], pioglitazone [128], deferoxamine (DFO Exos) [74], and
atorvastatin [75] in animal models.

Hydrogels of thiolated chitosan (CSS) and polyethylene glycol-maleimide-modified
ε-polylysine (EPL-PEG-MAL) showed enhanced elastic and adhesive properties and no
cytotoxicity. These scaffolds with EVs have been developed to accelerate angiogenesis,
tissue regeneration, and wound healing [129]. However, the development of an ideal
hydrogel scaffold composed of natural polypeptides with biocompatibility and antibacterial
properties for EV delivery and tissue regeneration is still in the early stages [130].

Li et al. constructed a genipin cross-linked dual-sensitive hydrogel loaded with hu-
man umbilical cord-derived MSC (hUC-MSC)-derived EVs to boost cutaneous wound
healing. The authors showed accelerated collagen deposition, increased epidermal re-
epithelialization rates, and early wound closure [131]. In addition, Yang et al. reported
that they constructed F127 hydrogels as release carriers for exosomes; the exosomes re-
leased from the hydrogel markedly improved skin regeneration and promoted wound
healing compared with the exosomes-alone group [85]. Salivary peptides such as histatin-1
accelerate wound healing, but their mechanism of action is still unknown. In vitro and
in vivo studies have shown that saliva Exos were the source of an ubiquitin-conjugating
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enzyme E2O (UBE2O) type of mRNA. The activation of UBE2O decreased the expression
of SMAD6 and increased the expression of BMP2, which, in turn, induced angiogenesis
and accelerated wound healing [132].

Recently, researchers constructed a 3D scaffold composed of decellularized small
intestinal submucosa (SIS) combined with a mesoporous bioactive glass (MBG), which
facilitated the sustained release of BMSC-derived exosomes. They induced diabetes in
rats by injecting streptozocin and then produced a 1.5 cm full-thickness skin wound. A
cryogenic 3D SIS/MBG@Exos hydrogel scaffold was structured according to the size of
the wound and they covered the wound with that scaffolding material appropriately. The
result showed neoangiogenesis with patterned collagen deposition, the early formation of
granulation tissue, and accelerated full-thickness wound healing in the control group [133].
Split-skin grafts and flap surgeries are widely used to cover the surface of chronic wounds
once they are germ-free, but graft failure is not uncommon; an early failure may lead to
wound dehiscence and further complications. In vivo, adipose mesenchymal stem cell exo-
somes preconditioned with H2O2 (H2O2-ADSC Exos) reduced apoptosis and increased the
capillary density and blood perfusion unit (BPU) of the graft. Therefore, they significantly
increased the flap survival rate following an ischemia/reperfusion (I/R) injury [134].

Currently, none of the extracellular vesicle products have been approved by the FDA for
therapeutic use in humans. The FDA has only approved umbilical cord-derived stem cells
for treating certain hematopoietic disorders and issued a Public Safety Notification in June
2019 to prevent the manufacturing or marketing of illegal “stem cell” products [135]. Further
guidelines to regulate regenerative medicine products were issued in September 2021 [136].

Most of the studies to date were preclinical. The results of two clinical trials evaluating
the efficacy of serum-derived EVs in wound therapy are still awaited [137,138]. Therefore,
future generations need to gain a deeper knowledge about the biogenesis, isolation, action
mechanisms, therapeutic dose, mode of administration, and complications of EV therapy
to effectively treat chronic wounds.

6. Conclusions

Full-thickness cutaneous wound therapy and regeneration remain major clinical chal-
lenges. Wound healing is a highly integrated complex biological process that involves
hemostasis, immunomodulation, intercellular communication, and the well-orchestrated
release of various growth factors. This combined effect of local molecular homeostasis
eventually induces collagen deposition and tissue regeneration. Stem cell-derived EVs
can build up a pro-healing environment by activating intercellular signaling, angiogenesis,
proliferation, and the regional differentiation of the various cell types in tissue regeneration.

In addition, the development of 3D printing technologies can help to fabricate size-
specific functional scaffolds to be used in the treatment of chronic non-healing wounds.
Continued advances in controlled drug delivery using MSC EVs should allow for the
development of new highly effective loco-regional antibiotic delivery strategies. However,
the therapeutic benefits of MSC EVs need to be proven in large-scale clinical studies to test
the efficacy of such novel treatment modalities.

Author Contributions: Conceptualization, A.N., M.J. and A.G.; formal analysis, A.N., M.J. and
N.J.; writing—original draft preparation, A.N., M.J., N.M., N.J., V.S., S.R., M.G., A.G.P., S.F.E.-A.III,
M.K. and A.G.; writing—review and editing, N.M. and A.G.; supervision, M.J. and A.G.; project
administration, A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Life 2022, 12, 1733 12 of 17

Abbreviations

AD-MSCs: adipose tissue-derived mesenchymal stem cells; AF-MSCs: amniotic fluid-
derived mesenchymal stem cells; BM-MSCs: bone marrow-derived mesenchymal stem
cells; ESCRT: endosomal sorting complex required for transport; EVs: extracellular vesicles;
Exos: exosomes; ILVs: intraluminal vesicles; ISEV: International Society for Extracellular
Vesicles; LPS: lipopolysaccharide; MSCs Exos: mesenchymal stem cell-derived exosomes;
MVBs: multivesicular bodies; NDEVs: neutrophil-derived extracellular vesicles; ROS:
reactive oxygen species; UC-MSCs: umbilical cord-derived mesenchymal stem cells.
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