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for Plant Disease Epidemic Severity When Outbreak and At-Risk
Populations Differ in Susceptibility
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Abstract: In silico study of biologically invading organisms provide a means to evaluate the complex
and potentially cryptic factors that can influence invasion success in scenarios where empirical
studies would be difficult, if not impossible, to conduct. I used a disease event simulation program
to evaluate whether the two most frequently used types of plant pathogen dispersal kernels for
epidemiological projections would provide complementary or divergent projections of epidemic
severity when the hosts in a disease outbreak differed from the hosts in the at-risk population in
the degree of susceptibility. Exponential dispersal kernel simulations of wheat stripe rust (Puccinia
striiformis var trittici) predicted a relatively strong and dominant influence of the at-risk population
on the end epidemic severity regardless of outbreak disease levels. Simulations using a modified
power law dispersal kernel gave projections that varied depending on the amount of disease in the
outbreak and some interactions were counter-intuitive and opposite of the exponential dispersal
kernel projections. Although relatively straightforward, the disease spread simulations in the present
study strongly suggest that a more biologically accurate dispersal kernel generates complexity that
would not be revealed by an exponential dispersal gradient and that selecting a less accurate dispersal
kernel may obscure important interactions during biological invasions.

Keywords: disease gradient; disease outbreak; Puccinia; wheat stripe rust; plant epidemic; dispersal ecology

1. Introduction

Complex systems are difficult to study empirically, but its components can be un-
derstood or at least statistically described in a way that the information can be used to
create models to project responses under scenarios that may be impossible to create ex-
perimentally [1–3]. For invasion biology, models are an important tool for projecting the
spatio-temporal patterns of a biological invasion, and they can also facilitate investigations
into difficult to study factors and how they may suppress or encourage organism invasion.
The insights gained from carefully constructed models containing well-established ties to
biologically realistic mechanisms can be crucial for implementing mitigation strategies to
control the invading organism [4,5]. While in silico studies are an obvious departure from
on-the-ground empirical study and require simplifying assumptions, they are an important
method to understand and project the impacts and spatio-temporal patterns associated
with biological invasions. A wait and see strategy for the empirical study of a biological
invasion is simply not pro-active enough given the world-wide loss of biodiversity, hu-
man life, and ecosystem changes that are now the text-book outcomes of uncontrolled
biological invasions.

To create a potentially useful statistical model of organism invasion, the stages of
the invading organism in terms of colonization, reproduction, and dispersal need to be
integrated and preferably run in a spatially explicit, virtual landscape [6]. Demographic
rates (e.g., vital rates) and colonization probability can be measured through observation
and/or estimated through direct empirical study, manipulative experimentation, and/or
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in combination with in silico methods that use sensitivity analyses and pattern-oriented
modeling [2,6]. One of the more difficult, but critically important, aspects of biological
invasion models to measure and/or estimate is the dispersal kernel. The dispersal kernel is
a mathematical function that is used to statistically describe how an organism disperses
through a landscape over time. Dispersal kernels are notoriously difficult to measure and
to accurately parameterize for organisms that are prone to rare, long-distance dispersal
events. The challenge to represent the rarer successful long-distance dispersal events are
that the successful events are sparse and embedded within a large expanse of absences and
this is type of data is information poor compared to the area near an invasion source which
contains a relatively large number of successful dispersal events over shorter distances.
Because these long-distance events are rare, they can be easily underestimated by a dispersal
kernel but be biologically meaningful for the patterns of invasion spread [7].

Disease epidemics are considered a form of biological invasion [8] and they share
similar factors that influence epidemic severity as well as control philosophies [9–13]. For
plant pathogens, there are two primary types of dispersal kernels that have been used to
project the spread of aerially vectored plant diseases (primarily fungal diseases). One family
of dispersal kernels are those with functions that are exponentially bound (e.g., exponential,
double exponential) and the other family consists of those functions that are not bound by
an exponential (e.g., modified power law, modified Pareto distribution) [7,14]. Exponential
functions have longer distributional tails (more kurtotic) than a normal distribution and
describe the decrease of inoculum/disease dispersed from a source over a greater expanse
with rapidly decreasing disease levels as the distance from the source increases. Exponential
family dispersal kernels eventually terminate when either the fitted function to empirically
collected data crosses the x-axis or the probability of occurrence reaches zero (for probability
density functions). The non-exponentially bound dispersal kernels are comparatively more
leptokurtic (fatter, thicker, or heavier tails) than the exponentially bounded functions,
with the distribution’s tails extending for a much greater distance at very low predicted
probabilities. In comparison, these more kurtotic functions expand the small probability of
long-distance dispersal events over a much greater distance than exponential kernels.

It is a mathematically demonstrated outcome that if the amount of host is approxi-
mately continuous and homogenously distributed, and in a sufficiently sized area, that
exponentially bound functions will produce disease invasion fronts that move through the
host population with a constant rate following a short period of acceleration [14,15]. These
exponentially bound dispersal kernel functions simplify to a diffusion rate, a constant
rate of disease spread over space, and this property facilitates straightforward predictive
diffusion-based epidemiological projections. However, there is also empirical evidence
that wind vectored plant diseases are inadequately described by an exponential function
(the function’s tails are significantly truncated compared to the actual observed dispersal
gradient) and that non-exponentially bound functions (dispersal kernels with much longer
distribution tails) are biologically more appropriate [7,16–18]. In contrast to the exponential
family of dispersal kernels, the long-tailed, non-exponentially bound dispersal kernels
produce disease invasions with fronts that appear to always increase in velocity over space
until host and/or space become limiting, and therefore cannot be represented by a rate
constant, even as a simplification [14,16,18]. Provided the same raw data which were
modeled under the same environmental (and host) conditions, these two dispersal kernel
types not only generate different rates of organism spread but they also predict markedly
different patterns of disease abundance with respect to its source [14–17].

The issue of disease susceptibility, especially as it pertains to understanding and
projecting the spread of disease, is an important topic given that vaccinations are expected to
generate specific outcomes in the at-risk population and disease resistance bred into plants
should suppress disease. However, this issue is not straightforward to study empirically,
as between field borders can differ in cultivar composition, fields may be intercropped,
cultivar mixtures can be planted, and even alternating rows of different cultivars and
fungicide treatments (a cost saving technique that lowers fungicide application rates) are
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not uncommon grower practices. For such scenarios, it reasonable to ask whether there
is a suppressive or facilitative influence (and whether this impact may be predictable) on
subsequent epidemic severity when disease disperses from the outbreak into an at-risk
population where host resistance is either greater or lower than that of the outbreak host
population. For the purposes of this manuscript, I consider the outbreak to be the area (and
its host plants) that the initial disease generation occupies and the at-risk population to be all
hosts outside of the outbreak. It is possible that the answer to this question could be purely
demographic in nature - simply that the reduction or increase in relative reproductive rates
is the primary determinant of later disease severity in an at-risk population. However,
the shape and degree of dispersal kernel kurtosis can generate a strong impact on the
subsequent patterns of spread and the spatial patterns of disease intensification from an
outbreak as it spreads into the at-risk population [14,16,19–21].

I used a series of in silico experiments to understand whether the dispersal kernel type,
exponentially bound or non-exponentially bound, substantively influences the patterns
of disease projections when disease transitions between outbreak and at-risk host popula-
tions that differ in disease susceptibility. I focused on wheat stripe rust, an economically
important, world-wide, disease of wheat caused by the fungus Puccinia striiformis var tritici
(hereafter Pst), a well-studied and relatively well characterized plant pathosystem from
an epidemiological perspective. In particular, I was interested in evaluating whether one
or both dispersal kernel types (exponentially bound or non-exponentially bound) could
yield relationships that are consistently predictable over a range of disease outbreak levels
and whether those projections are similar enough to suggest that a simplified approxima-
tion could be made about the potential interactions. For example, it is possible that the
overall difference in susceptibility between the outbreak and at-risk populations propor-
tionally increases or decreases the amount of disease in the at-risk population according to
a predictable linear relationship.

2. Materials and Methods
2.1. Wheat Stripe Rust

Wheat stripe rust (WSR) is caused by the fungus Puccinia striiformis var tritici (Pst)
and it is an obligate parasite of its host plant (obligate plant pathogens require relatively
healthy and vigorous hosts for disease to occur). WSR can be encountered wherever
wheat is grown [22–25] and its alternative host plants appear to be Berberis spp. [26,27].
However, it is unlikely that Berberis spp. are necessary for WSR epidemics as Pst spores
can overwinter in the soil and thatch when conditions are mostly above freezing [23,28].
Pst produces spores (~10 to 20 microns which appear to be somewhat environmentally
resilient to temperature and some UV light exposure [29]) that are borne on uredinia
in small aggregates referred to as pustules. Groups of pustules form lesions, which are
presented linearly on the upper and lower leaf surfaces, and elongate over time parallel to
wheat leaf veins, yielding the “striped” appearance of WSR. Spores are produced in large
amounts, several hundred or more uridineospores/day per square millimeter of lesion [25],
and R0 (the basic reproductive number, the mean number of daughter infections arising
from a single infection) can be very high (ranging from 35 to ~800) depending on host
availability and pre-existing disease levels [30,31]. Disease occurs as long as the wheat
plant can physiologically support either new infections or the expansion of existing lesions.
As WSR outbreaks intensify, the disease grows at an exponential rate [10], but successful
dispersal events can occur over large distances even from relatively small outbreaks [32]
and rarer long-distance events are known at continental scales [28,33].

Although wheat stripe rust can be theoretically well-managed through the appro-
priate timing of fungicide applications [34], WSR epidemics can cause massive damage
on susceptible wheat cultivars [23,24,28,35]. Unfortunately, there is also recent evidence
that some Pst lineages have evolved fungicide resistant mutations [36], which has caused
considerable problems for the management other wheat fungal diseases on wheat such
as Septoria leaf blotch (Zymoseptoria trittici) [37–40], eyespot (Oculimacula spp.) [41], and



Life 2022, 12, 1727 4 of 11

wheat blast (Magnaporthe oryzae) [42]. With the increasing incidence of fungicide resistant
wheat plant diseases across the world, including Pst, control will probably be accomplished
through the breeding of durable disease resistance [43]. This means that understanding how
disease susceptibility may alter epidemic behavior is an important aspect to understand
going forward.

2.2. Wheat Stripe Rust Disease Spread Simulations

I used an updated and highly modified version of the plant disease simulation pro-
gram EPIMUL [44] to run the in silico projected disease spread experiments. EPIMUL
is a spatially explicit, compartmental disease event simulator, which is parameterized
to represent real space in a wheat field. Each compartment was filled with virtual host
plants that were similar in density to production fields and previously published empirical
studies of WSR spread. Plants within the compartment were assigned properties (e.g., den-
sity, disease carrying capacity, latent and infectious periods, disease reproduction rates,
infection probability, outbreak or at-risk population) and effective disease spores were
distributed across this landscape according to a specified dispersal kernel. The epidemi-
ological variables used in the present model originated from published intensive field
studies performed in western and central Oregon, USA (see below for simulation and
parameter details). For this study, I used deterministic simulations as I was interested in the
mean differences between scenarios rather than focusing on the variation within a single
scenario and how that variation overlaps with a slightly different set of parameter values.
In EPIMUL, stochasticity is built into the dispersal gradient as a Poisson resampling of
the original dispersal gradient [10]. In previous simulations, the mean disease levels over
space and time in each compartment from 100 stochastic simulations was nearly equivalent
to one deterministic run in EPIMUL [10], so while there was information in variability to
be gained from stochastic simulations this approach was not necessary given the goals of
the present study.

Compartment parameters for the simulations were consistent with previous WSR
simulations [17,45] and updated with more accurate parameter values when supported
by newer published data. The simulation field size was 800 × 800 compartments, with
each compartment having dimensions of 1.52 m × 1.52 m (the width of a wheat planter)
and each compartment had a carrying capacity of 200,000 infection sites, which is the
average number of sites estimated from a standard wheat planting density over the life
of the average wheat plant [17]. I used a latent and infectious period of 12 days, which
is common for WSR outbreaks in the late spring and early summer when conditions
are optimal for the disease in central Oregon. R0, the basic reproduction number [46],
which is the mean number of daughter infections arising from a single mother infection,
was set at 70 for the completely susceptible genotype and reduced proportionally with a
decrease in susceptibility (an increase in disease resistance). This method is described below
in a separate paragraph. The fully susceptible host R0 = 70 is consistent with previous
experiments featuring fully susceptible and partially susceptible wheat genotypes [45,47]
and studies of WSR development [30] over a range of environmental conditions that were
comparable to central Oregon.

I used two different dispersal kernels to simulate WSR disease spread in the exact
same virtual field arrangement to understand the influence of each dispersal kernel type
on epidemic projections. The first gradient was the modified power law dispersal kernel
reported by Farber et al. [32]. This is the most accurately and precisely described dispersal
gradient for WSR available in the published literature. For the modified power law, the
dispersal kernel was described by the formula y = a (x + c)−b where “a” was a value that
adjusts the amount of disease produced at the source; b modified the steepness of the
dispersal kernel; and the c value allowed for the power law dispersal kernel to have a
non-zero value when x = 0 and also modified the kernel shape. For the modified power law
simulations, the values of each variable were: a = 425, b = 2.28, c = 0.23. The exponential
function was calculated from the original data used by Farber et al. [32] (which was
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originally and appropriately best-fit to the power law kernel above) and an exponential
model was forced on the Farber et al. [32] raw data with the method traditionally used by
plant pathologists to fit disease gradients to an exponential kernel [48]. The exponential
dispersal kernel was described by the following formula: y = a exp (−bx); for this study
a = 19.2, b = 0.1903. WSR infections were dispersed equally (radially) from the source using
the downwind dispersal gradient reported by Farber et al. [32].

I also evaluated the potential influence of the amount of disease in the outbreak on
the projections. Disease levels in the outbreak can have a strong and dominant impact
on the severity of the subsequent WSR epidemic in the at-risk population, in field experi-
ments [45,47] and in simulations [10]. It is possible there were dispersal kernel × outbreak
disease level interactions that influence epidemic severity when host populations differ in
disease susceptibility. The outbreak levels of disease in my simulations were set at 0.05%,
1.0%, and 5.0% of the total sites available (disease carrying capacity), and these values span
the range of biologically reasonable outbreak levels (0.05% and 1.0%) and exceptionally
high outbreak levels (5%).

I set up two virtual landscapes that were used with both dispersal kernels and each
disease outbreak level to project the interactions of epidemic severity given the differences
in host disease susceptibility in a standardized landscape. Both fields contained an outbreak
(focus) that was one compartment (1.52 m × 1.52 m) in the center of an 800 × 800 com-
partment landscape. All compartments other than the outbreak represent the at-risk host
population. In one scenario, the outbreak compartment was always 100% susceptible but
the at-risk population host susceptibility varied in increments of 10% (from 100% to 10%).
A susceptibility of 0 would not generate disease in the model as these hosts are completely
resistant and useless in the present study. In the second scenario, the at-risk population
was always 100% susceptible but the outbreak varied in susceptibility by increments of 10%
(Figure 1). To compare the relative effect of the transition from populations of host that
differed in susceptibilities, an internal control, I simulated disease spread in monocultures
for the same increments of susceptibility (e.g., 10% focus to 10% at-risk, 50% focus to 50%
at-risk, 100% focus to 100% at-risk).
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Figure 1. Schematic representation of two different landscape simulation scenarios where the out-
break (focus) and the at-risk population differed in the degree of quantitative resistance (susceptibility)
by increments of 10% through the proportional reduction of R0 (see methods below). The left field
depicts the scenario where the outbreak (focus) is comprised of a 100% WSR susceptible genotype
and the at-risk population (the remainder of the field) decreases in the degree of susceptibility by
increments of 10%. The right field depicts the opposite scenario where the focus is comprised of host
plants that are variably susceptible and the at-risk population is 100% susceptible. Note that the focus
and the at-risk field is not to the scale of the simulations. In the simulations the focus is considerably
smaller relative to the at-risk field size.
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To model the differences in host susceptibility within the two landscape scenarios,
I proportionally decreased R0 in 10% increments and assigned the desired levels of sus-
ceptibility to the outbreak and at-risk compartments (e.g., 100% susceptible hosts had an
R0 = 70, 10% susceptible hosts have an R0 = 7). I held the infection probability the same for
the dispersed effective spores which, in combination with a decreased R0, reduced their
capacity for disease production if infected. Although, this approach is overly simplistic, as
biologically resistance can arise from different mechanisms (e.g., reduced infection proba-
bility, reduced virulence, smaller lesions, lower sporulation rates), proportionally reducing
the R0 is a straightforward method to represent hypothetical quantitative resistance from
any mechanism and evaluate the resultant patterns of epidemic progression. To index the
relative amount of disease that accumulated in the at-risk population from the outbreak
after five disease generations (60 days), I calculated the area under the disease gradient
(AUDG) for a 1 × 301 compartment area extending from the outbreak in a straight line
(Figure 1). I subtracted the amount of disease in the outbreak compartment to arrive at an
end epidemic AUDG value for the at-risk population. Calculating the amount of disease
along a transect in the simulations mimics empirical studies of plant disease spread that
sample disease at points along a straight line from the source [16,17,45,47,48]. I plotted
the AUDG values for all different combinations of outbreak disease levels, monocultures,
and disease accumulated in the at-risk populations and grouped the simulations by the
two different landscape scenarios for comparison.

3. Results

There were general patterns of disease increase that were consistent regardless of the
dispersal model. Overall, the AUDG values (an index of relative epidemic severity) was
predictably greater when the amount of disease in the outbreak was greater (Figure 2).
Additionally, when the outbreak and at-risk populations were both at 100% susceptibility,
the projected amount of disease was the greatest observed, and when either the outbreak or
at-risk population was comprised of host plants with 10% susceptibility, epidemic severity
was the lowest observed (Figure 2). However, projections from the two dispersal kernel
types yielded differently shaped responses in the amount of disease accumulated after
5 generations.

The exponential dispersal kernel projected relatively consistent epidemic responses
when disease developed from an outbreak and intensified over time in at-risk population
which differed from the outbreak in the degree of disease susceptibility (Figure 2D–F).
When the at-risk population was 100% susceptible, the at-risk population susceptibility
exerted a dominant influence on the amount of disease that accumulated over time in the at-
risk population, regardless of host susceptibility in the outbreak (Figure 2D–F orange lines).
When the outbreak was 100% susceptible, the at-risk population degree of susceptibility
also strongly influenced the amount of disease that accumulated in the at-risk population
(Figure 2D–F blue lines). For both landscape scenarios, the projected relationships were
approximately linear at the lower outbreak disease levels (0.05% and 1%), suggesting
that host susceptibility of the at-risk population drives epidemic severity in a potentially
straightforward and predictable manner. Only at the greatest outbreak disease level (5%),
did the projected relationships become more curvilinear (Figure 2F), but the influence of
the at-risk host population susceptibility on the end epidemic severity was consistent with
lower outbreak disease levels.

There was no consistent pattern of end epidemic severity when disease was dispersed
with the modified power law (Figure 2A–C). For each outbreak disease level, the influence
of either the outbreak or the at-risk population’s level of susceptibility appeared to generate
different projections of end epidemic severity (Figure 2A–C). In all circumstances, including
the monocultures, the projected epidemic severity relationships did not appear to behave in
any obvious generalizable manner and different outbreak disease levels projected different
relationships. For example, at the lowest outbreak disease level, 0.05%, the projected
epidemic severities were strongly curvilinear while at the greatest outbreak disease level
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(5% disease) the projected relationships were more linear than curvilinear compared with
lower outbreak disease levels. Unlike the exponential dispersal kernel simulations, the
outbreak could either strongly influence the epidemic outcome (Figure 2A), be roughly
equivalent in its influence to that of the at-risk population (Figure 2B), or be slightly
suppressed by the level of susceptibility of the at-risk population (Figure 2C).

Life 2022, 12, x FOR PEER REVIEW 7 of 11 
 

 

did the projected relationships become more curvilinear (Figure 2 F), but the influence of 
the at-risk host population susceptibility on the end epidemic severity was consistent with 
lower outbreak disease levels.  

There was no consistent pattern of end epidemic severity when disease was dis-
persed with the modified power law (Figure 2A–C). For each outbreak disease level, the 
influence of either the outbreak or the at-risk population’s level of susceptibility appeared 
to generate different projections of end epidemic severity (Figure 2A–C). In all circum-
stances, including the monocultures, the projected epidemic severity relationships did not 
appear to behave in any obvious generalizable manner and different outbreak disease lev-
els projected different relationships. For example, at the lowest outbreak disease level, 
0.05%, the projected epidemic severities were strongly curvilinear while at the greatest 
outbreak disease level (5% disease) the projected relationships were more linear than cur-
vilinear compared with lower outbreak disease levels. Unlike the exponential dispersal 
kernel simulations, the outbreak could either strongly influence the epidemic outcome 
(Figure 2A), be roughly equivalent in its influence to that of the at-risk population (Figure 
2B), or be slightly suppressed by the level of susceptibility of the at-risk population (Figure 
2C). 

 
Figure 2. (A) (0.05% outbreak disease levels), (B) (1% outbreak disease levels), (C) (5% 
outbreak disease levels) are the trends projected from AUDG (area under the disease gra-
dient) values generated from the two field scenario simulations where the outbreak and 
at-risk populations varied in their relative degree of susceptibility (quantitative resistance 
to WSR) using the modified power law dispersal kernel. (D) (0.05% outbreak disease levels), 
(E) (1% outbreak disease levels), (F) (5% outbreak disease levels) are the same projections 
and disease summary statistics that were generated by the simulations using the expo-
nential dispersal kernel (note that the susceptibility is the same, but it is presented differ-
ently on the x-axis, with (*10) to draw attention that these figures were generated from the 
exponential dispersal kernel). Gray dots and trend lines represent simulation results from 
monocultures (e.g., 10% focus to 10% at-risk, to 100% focus to 100% at-risk), the blue dots 
and trend lines represent the scenario where the focus is 100% susceptible but the at-risk 
population has variable susceptibility, and the orange dots and trend line represents the 
scenario where the focus varies in susceptibility but the at-risk population is 100% suscep-
tible. 

Figure 2. (A) (0.05% outbreak disease levels), (B) (1% outbreak disease levels), (C) (5% outbreak
disease levels) are the trends projected from AUDG (area under the disease gradient) values generated
from the two field scenario simulations where the outbreak and at-risk populations varied in their
relative degree of susceptibility (quantitative resistance to WSR) using the modified power law
dispersal kernel. (D) (0.05% outbreak disease levels), (E) (1% outbreak disease levels), (F) (5% outbreak
disease levels) are the same projections and disease summary statistics that were generated by the
simulations using the exponential dispersal kernel (note that the susceptibility is the same, but it is
presented differently on the x-axis, with (*10) to draw attention that these figures were generated
from the exponential dispersal kernel). Gray dots and trend lines represent simulation results from
monocultures (e.g., 10% focus to 10% at-risk, to 100% focus to 100% at-risk), the blue dots and trend
lines represent the scenario where the focus is 100% susceptible but the at-risk population has variable
susceptibility, and the orange dots and trend line represents the scenario where the focus varies in
susceptibility but the at-risk population is 100% susceptible.

4. Discussion

WSR disease spread simulations, which were calibrated against well-characterized
demographic, epidemiological and dispersal parameters, yielded conflicting projections
of how disease susceptibility may alter epidemic severity when the outbreak and at-risk
host populations differ in their degree of resistance. These differences emerged as an
interaction between the dispersal kernel type and the amount of disease that founded the
outbreak. Host arrangement, including the virtual field size, compartment number and its
dimensions, the location of the outbreak within the virtual field, the area from which disease
was estimated, the latent and infectious periods, host density, generation time, infection
probability and R0 (for 100% susceptible genotypes) were standardized throughout the
simulations. Disease was also dispersed in a radially symmetric manner from the focus
(there was no asymmetric anisotropy; e.g., upwind, downwind, changing wind directions
and magnitude) to keep the scenarios as straightforward as possible for comparison. Only
the dispersal kernel, the amount of disease in the focus at the outbreak onset, and the
susceptibility of host plants in specific compartments (through the proportional reduction
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of R0) were modified. Despite this degree of standardization and constant conditions that
are obvious departures from a “real life” WSR outbreak, simulations suggested that rule of
thumb guidelines for predicting where, when and how much disease may be generated may
be possible for organisms with exponential dispersal kernels but unrealistic for organisms
characterized by long-distance dispersal. The penalty for over-simplification (a truncated
dispersal gradient) was a suite of facile but potentially seriously misleading epidemic
projections. These projections were attractive for suggesting a potential predictable pattern
of disease spread, whereas attempting to reflect a more biological realistic scenario (through
a well-fit dispersal kernel) gave a less intuitive assemblage of epidemic projections. There
appeared to be an important tradeoff threshold between convenient interpretation and
attempting to reasonably represent the biological reality of long-distance dispersal due
specifically to the dispersal kernel.

For the sake of disease management and projecting the impacts of having a mosaic
landscape of hosts that differ in disease resistance, it would be convenient if WSR was
dispersed according to an exponential function. If WSR dispersal was realistically approxi-
mated by an exponential type kernel, understanding and projecting WSR impacts would
be relatively tractable, as the constant rate of disease spread after an initial and short period
of increasing velocity [15] could be approximated by a diffusion rate [49]. Diffusion rate
projections are often applied in invasive species models [7,50,51] as they are in plant epi-
demiological models [48,49,52]. Furthermore, the exponential dispersal kernel simulations
consistently projected a dominant influence of the at-risk population disease resistance
properties (susceptibility) on the end epidemic severity (Figure 2). Conceptually, disease
resistance properties and host density within the at-risk population are the fundamental
underpinnings and assumptions of effective modern disease management tactics, such as
quarantine zones, vaccinations, and ring culls [1,53–55]. Although, the prioritization of the
at-risk population to control disease outbreaks is intuitive, as on-the-ground approaches
often prioritize protecting and modifying the at-risk population to contain and dampen the
impacts of any disease outbreak, it may be only a partial solution [55].

In contrast to the relatively consistent and potentially straightforward projections of
the exponential dispersal kernel simulations, the modified power law dispersal kernel
projections were markedly variable and not intuitively predictable over the range of con-
ditions evaluated. Modified power law kernel simulations suggested that the outbreak
may generate a strong and dominant influence on the resulting epidemic severity when
compared to the at-risk population, especially at low outbreak disease levels. These disease
projection results are counter to most disease mitigation approaches which are directed
towards treating and prioritizing the at-risk population (e.g., quarantines, vaccinations,
ring culling). There is theoretical [56], empirical [10,45,47] and in silico support [45] for a
dominant influence of the outbreak on the epidemic severity in the at-risk population, but
the mechanisms governing this phenomenon are not yet well-understood. However, at
higher outbreak disease levels, >1% of the total possible infections at the outbreak onset,
the power law dispersal kernel projections suggested that the outbreak and at-risk popula-
tion susceptibility properties may exert a roughly equal contribution to the end epidemic
severity and at higher outbreak disease levels the at-risk population was projected to have
a greater influence than the outbreak (Figure 2A vs. Figure 2B,C). These results suggest
that the contributions of the outbreak and the at-risk population may be highly context
dependent and challenging to predict if non-exponentially bound, heavy-tailed dispersal
kernels are used to more realistically account for the potential of long-distance dispersal.
This suggests that with increasing biological accuracy in the dispersal kernel, epidemic
projections will likely become both more complex, context dependent, and unfortunately
maybe necessarily nuanced.

The landscape scenarios I used in this study were straightforward (Figure 1) and rela-
tively simple compared with the host spatial complexity of cultivar mixtures, intercropping,
and a patchwork landscape mosaic of variably sized agricultural fields featuring different
wheat cultivars interspersed with fields/habitats without WSR host plants. Regardless,
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when applying a modified power law dispersal kernel, which empirical data strongly
supports over an exponential dispersal kernel [17,18,32], it is clear that the most biolog-
ically accurate of the two dispersal kernels yields unintuitive WSR disease projections
even though there was no anisotropic disease dispersal (a well-known feature of wind
dispersed pathogens [49,57]), homogenous host distribution, and host plants with invariant
physiological states (both of which are not biologically true). As attractive, convenient,
and readily interpretable as the disease projections from the exponential model appear to
be, such biologically inaccurate models have the distinct potential to lead epidemiological
understanding and the resulting control management practices down a deceptive path.

Funding: P.M. Severns was supported by the Advancing plant epidemiology for the growers of
Georgia and beyond [project accession no. 1023738] from the USDA National Institute of Food
and Agriculture.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data from the simulations are available upon request.

Acknowledgments: I thank Katheryn Sackett for providing the parameter values for the exponen-
tially fit equation and three anonymous reviewers who helped to improve this manuscript.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Keeling, M.J.; Woolhouse, M.E.J.; May, R.M.; Davies, G.; Grenfell, B.T. Modelling vaccination strategies against foot-and-mouth

disease. Nature 2003, 421, 136–142. [CrossRef] [PubMed]
2. Grimm, V.; Revilla, E.; Berger, U.; Jeltsch, F.; Mooij, W.M.; Railsback, S.F.; Thulke, H.H.; Weiner, J.; Wiegand, T.; DeAngelis, D.L.

Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science 2005, 310, 987–991. [CrossRef]
3. Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus machine learning. Nat. Methods 2018, 15, 233–234. [CrossRef] [PubMed]
4. Sardain, A.; Sardain, E.; Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2019, 2,

274–282. [CrossRef]
5. Manzoor, S.A.; Griffiths, G.; Lukac, M. Land use and climate change interaction triggers contrasting trajectories of biological

invasion. Ecol. Indic. 2021, 120, 106936. [CrossRef]
6. Pili, A.N.; Tingley, R.; Chapple, D.G.; Schumaker, N.H. VirToad: Simulating the spatiotemporal population dynamics and

management of a global invader. Landsc. Ecol. 2022, 37, 2273–2292. [CrossRef]
7. Clobert, J.; Baguette, M.; Benton, T.G.; Bullock, J.M. Dispersal Ecology and Evolution; Oxford University Press: Oxford, UK, 2012.
8. Simberloff, D. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 81–102. [CrossRef]
9. Holle, B.V.; Simberloff, D. Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 2005, 86,

3212–3218. [CrossRef]
10. Severns, P.M.; Sackett, K.; Mundt, C.C. Outbreak propagule pressure influences the landscape spread of a wind-dispersed,

epidemic-causing, plant pathogen. Landsc. Ecol. 2015, 30, 2111–2119. [CrossRef]
11. Howard, P.L. Human adaptation to invasive species: A conceptual framework based on a case study metasynthesis. Ambio 2019,

48, 1401–1430. [CrossRef]
12. Espinoza, B.; Castillo-Chavez, C.; Perrings, C. Mobility restrictions for the control of epidemics: When do they work? PLoS ONE

2020, 15, e0235731. [CrossRef]
13. Lucardi, R.D.; Bellis, E.S.; Cunard, C.E.; Gravesande, J.K.; Hughes, S.C.; Whitehurst, L.E.; Worthy, S.J.; Burgess, K.S.; Marsico,

T.D. Seeds attached to refrigerated shipping containers represent a substantial risk of nonnative plant species introduction and
establishment. Sci. Rep. 2020, 10, 15017. [CrossRef] [PubMed]

14. Kot, M.; Lewis, M.A.; van den Driessche, P. Dispersal data and the spread of invading organisms. Ecology 1996, 77, 2027–2042.
[CrossRef]

15. Frantzen, J.; Van den Bosch, F. Spread of organisms: Can travelling and dispersive waves be distinguished? Basic Appl. Ecol. 2000,
1, 83–92. [CrossRef]

16. Ferrandino, F.J. Dispersive epidemic waves: I. Focus expansion within a linear planting. Phytopathology 1993, 83, 795–802.
[CrossRef]

17. Sackett, K.E.; Mundt, C.C. Primary disease gradients of wheat stripe rust in large field plots. Phytopathology 2005, 95, 983–991.
[CrossRef]

http://doi.org/10.1038/nature01343
http://www.ncbi.nlm.nih.gov/pubmed/12508120
http://doi.org/10.1126/science.1116681
http://doi.org/10.1038/nmeth.4642
http://www.ncbi.nlm.nih.gov/pubmed/30100822
http://doi.org/10.1038/s41893-019-0245-y
http://doi.org/10.1016/j.ecolind.2020.106936
http://doi.org/10.1007/s10980-022-01468-y
http://doi.org/10.1146/annurev.ecolsys.110308.120304
http://doi.org/10.1890/05-0427
http://doi.org/10.1007/s10980-015-0234-0
http://doi.org/10.1007/s13280-019-01297-5
http://doi.org/10.1371/journal.pone.0235731
http://doi.org/10.1038/s41598-020-71954-3
http://www.ncbi.nlm.nih.gov/pubmed/32929143
http://doi.org/10.2307/2265698
http://doi.org/10.1078/1439-1791-00010
http://doi.org/10.1094/Phyto-83-795
http://doi.org/10.1094/PHYTO-95-0983


Life 2022, 12, 1727 10 of 11

18. Mundt, C.C.; Sackett, K.E.; Wallace, L.D.; Cowger, C.; Dudley, J.P. Long-distance dispersal and accelerating waves of disease:
Empirical relationships. Am. Nat. 2009, 173, 456–466. [CrossRef] [PubMed]

19. Lindström, T.; Håkansson, N.; Wennergren, U. The shape of the spatial kernel and its implications for biological invasions in
patchy environments. Proc. R. Soc. B Biol. Sci. 2011, 278, 1564–1571. [CrossRef] [PubMed]

20. Byrne, A.W.; Quinn, J.L.; O’Keeffe, J.J.; Green, S.; Paddy Sleeman, D.; Wayne Martin, S.; Davenport, J. Large-scale movements in
European badgers: Has the tail of the movement kernel been underestimated? J. Anim. Ecol. 2014, 83, 991–1001. [CrossRef]

21. Sullivan, L.L.; Michalska-Smith, M.J.; Sperry, K.P.; Moeller, D.A.; Shaw, A.K. Consequences of ignoring dispersal variation in
network models for landscape connectivity. Conserv. Biol. 2021, 35, 944–954. [CrossRef]

22. Wan, A.; Zhao, Z.; Chen, X.; He, Z.; Jin, S. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in
2002. Plant Dis. 2004, 88, 896–904. [CrossRef] [PubMed]

23. Chen, X.M. Epidemiology and control of stripe rust on wheat. Can. J. Plant Pathol. 2005, 27, 314–337. [CrossRef]
24. Wellings, C.R. Puccinia stiiformis in Australia: A review of the incursion, evolution and adaptation of stripe rust in the period

1979–2006. Aust. J. Agric. Res. 2007, 58, 567–575. [CrossRef]
25. Milus, E.A.; Kristensen, K.; Hovmøller, M.S. Evidence for increased aggressiveness in a recent widespread strain of Puccinia

striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 2009, 99, 89–94. [CrossRef] [PubMed]
26. Wang, M.N.; Chen, X.M. First report of Oregon grape (Mahonia aquifolium) as an alternate host for the wheat stripe rust pathogen

(Puccinia striiformis f. sp. tritici) under artificial inoculation. Plant Dis. 2013, 97, 839. [CrossRef]
27. Rodriguez-Algaba, J.; Walter, S.; Sørensen, C.K.; Hovmøller, M.S.; Justesen, A.F. Sexual structures and recombination of the wheat

rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genet. Biol. 2014, 70, 77–78. [CrossRef]
28. Zeng, S.M.; Luo, Y. Long-distance spread and interregional epidemics of wheat stripe rust in China. Plant Dis. 2006, 90, 980–988.

[CrossRef]
29. Maddison, A.C.; Manners, J.G. Lethal effects of artificial ultraviolet radiation on cereal rust uredospores. Trans. Br. Mycol. Soc.

1973, 60, 471–494. [CrossRef]
30. Papastamati, K.; van den Bosch, F. The sensitivity of epidemic growth rate to weather variables, with an application to yellow

rust on wheat. Phytopathology 2006, 97, 202–210. [CrossRef]
31. Farber, D.H.; Medlock, J.; Mundt, C.C. Local dispersal of Puccinia striiformis f. sp. tritici from isolated source lesions. Plant Pathol.

2017, 66, 28–37. [CrossRef]
32. Farber, D.H.; De Leenheer, P.; Mundt, C.C. Dispersal kernels may be scalable: Implications from a plant pathogen. J. Biogeogr.

2019, 46, 2042–2055. [CrossRef] [PubMed]
33. Brown, J.K.; Hovmøller, M.S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease.

Science 2002, 297, 537–541. [CrossRef] [PubMed]
34. Carmona, M.; Sautua, F.; Pérez-Hérnandez, O.; Reis, M. Role of fungicide applications on the integrated management of wheat

stripe rust. Front. Plant Sci. 2020, 11, 733. [CrossRef]
35. Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases-a field perspective. Mol. Plant Pathol. 2018, 19,

1523–1536. [CrossRef]
36. Cook, N.M.; Chang, S.; Woodman, T.L.; Warren, R.; Oliver, R.P.; Saunders, D.G. High frequency of fungicide resistance-associated

mutations in the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. Pest Manag. Sci. 2021, 77, 3358–3371. [CrossRef]
37. Hawkins, N.J.; Fraaije, B.A. Fitness penalties in the evolution of fungicide resistance. Annu. Rev. Phytopathol. 2018, 56, 339–360.

[CrossRef]
38. Sykes, E.M.; Sackett, K.E.; Severns, P.M.; Mundt, C.C. Sensitivity variation and cross-resistance of Zymoseptoria tritici to azole

fungicides in North America. Eur. J. Plant Pathol. 2018, 151, 269–274. [CrossRef]
39. McDonald, M.C.; Renkin, M.; Spackman, M.; Orchard, B.; Croll, D.; Solomon, P.S.; Milgate, A. Rapid parallel evolution of

azole fungicide resistance in Australian populations of the wheat pathogen Zymoseptoria tritici. Appl. Environ. Microbiol. 2019,
85, e01908-18. [CrossRef]

40. Garnault, M.; Duplaix, C.; Leroux, P.; Couleaud, G.; David, O.; Walker, A.S.; Carpentier, F. Large-scale study validates that
regional fungicide applications are major determinants of resistance evolution in the wheat pathogen Zymoseptoria tritici in France.
New Phytol. 2021, 229, 3508–3521. [CrossRef]

41. Leroux, P.; Gredt, M.; Remuson, F.; Micoud, A.; Walker, A.S. Fungicide resistance status in French populations of the wheat
eyespot fungi Oculimacula acuformis and Oculimacula yallundae. Pest Manag. Sci. 2013, 69, 15–26. [CrossRef]

42. Castroagudín, V.L.; Ceresini, P.C.; de Oliveira, S.C.; Reges, J.T.; Maciel, J.L.; Bonato, A.L.; McDonald, B.A. Resistance to QoI
fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology 2015, 105,
284–294. [CrossRef] [PubMed]

43. Mundt, C.C. Pyramiding for resistance durability: Theory and practice. Phytopatology 2018, 108, 792–802. [CrossRef] [PubMed]
44. Kampmeijer, P.; Zadocks, J.C. EPIMUL, a Simulator of Foci and Epidemics in Mixtures of Resistant and Susceptible Plants, Mosaics and

Multilines; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1977.
45. Severns, P.M.; Mundt, C.C. Delays in epidemic outbreak control cost disproportionately large treatment footprints to offset.

Pathogens 2022, 11, 393. [CrossRef] [PubMed]
46. Diekmann, O.; Heesterbeek, J.A.P. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation; John

Wiley & Sons: Hoboken, NJ, USA, 2000.

http://doi.org/10.1086/597220
http://www.ncbi.nlm.nih.gov/pubmed/19249979
http://doi.org/10.1098/rspb.2010.1902
http://www.ncbi.nlm.nih.gov/pubmed/21047854
http://doi.org/10.1111/1365-2656.12197
http://doi.org/10.1111/cobi.13640
http://doi.org/10.1094/PDIS.2004.88.8.896
http://www.ncbi.nlm.nih.gov/pubmed/30812521
http://doi.org/10.1080/07060660509507230
http://doi.org/10.1071/AR07130
http://doi.org/10.1094/PHYTO-99-1-0089
http://www.ncbi.nlm.nih.gov/pubmed/19055439
http://doi.org/10.1094/PDIS-09-12-0864-PDN
http://doi.org/10.1016/j.fgb.2014.07.005
http://doi.org/10.1094/PD-90-0980
http://doi.org/10.1016/S0007-1536(73)80032-4
http://doi.org/10.1094/PHYTO-97-2-0202
http://doi.org/10.1111/ppa.12554
http://doi.org/10.1111/jbi.13642
http://www.ncbi.nlm.nih.gov/pubmed/33041433
http://doi.org/10.1126/science.1072678
http://www.ncbi.nlm.nih.gov/pubmed/12142520
http://doi.org/10.3389/fpls.2020.00733
http://doi.org/10.1111/mpp.12618
http://doi.org/10.1002/ps.6380
http://doi.org/10.1146/annurev-phyto-080417-050012
http://doi.org/10.1007/s10658-017-1370-y
http://doi.org/10.1128/AEM.01908-18
http://doi.org/10.1111/nph.17107
http://doi.org/10.1002/ps.3408
http://doi.org/10.1094/PHYTO-06-14-0184-R
http://www.ncbi.nlm.nih.gov/pubmed/25226525
http://doi.org/10.1094/PHYTO-12-17-0426-RVW
http://www.ncbi.nlm.nih.gov/pubmed/29648947
http://doi.org/10.3390/pathogens11040393
http://www.ncbi.nlm.nih.gov/pubmed/35456068


Life 2022, 12, 1727 11 of 11

47. Severns, P.M.; Estep, L.K.; Sackett, K.E.; Mundt, C.C. Degree of host susceptibility in the initial disease outbreak influences
subsequent epidemic spread. J. Appl. Ecol. 2014, 51, 1622–1630. [CrossRef]

48. Madden, L.V.; Hughes, G.; van den Bosch, F. The Study of Plant Disease Epidemics; American Phytopathological Society: St. Paul,
MN, USA, 2007.

49. Aylor, D.E. Aerial Dispersal of Pollen and Spores; APS Press: St. Paul, MN, USA, 2017; 418p.
50. Neubert, M.G.; Parker, I.M. Projecting rates of spread for invasive species. Risk Anal. 2004, 24, 817–831. [CrossRef]
51. Srivastava, V.; Lafond, V.; Griess, V.C. Species distribution models (SDM): Applications, benefits and challenges in invasive

species management. CABI Rev. 2019, 24, 7. [CrossRef]
52. Atallah, S.S.; Gómez, M.I.; Conrad, J.M.; Nyrop, J.P. A plant-level, spatial, bioeconomic model of plant disease diffusion and

control: Grapevine leafroll disease. Am. J. Agric. Econ. 2015, 97, 199–218. [CrossRef]
53. Anderson, R.M.; May, R.M. The invasion, persistence and spread of infectious diseases within animal and plant communities.

Phil. Trans. R. Soc. Lond. B Biol. Sci. 1986, 314, 533–570. [CrossRef]
54. Shearer, F.M.; Moyes, C.L.; Pigott, D.M.; Brady, O.J.; Marinho, F.; Deshpande, A.; Longbottom, J.; Browne, A.J.; Kraemer, M.U.;

O’Reilly, K.M.; et al. Global yellow fever vaccination coverage from 1970 to 2016: An adjusted retrospective analysis. Lancet Infect.
Dis. 2017, 17, 1209–1217. [CrossRef]

55. Ogden, N.H.; Wilson, J.R.; Richardson, D.M.; Hui, C.; Davies, S.J.; Kumschick, S.; Le Roux, J.J.; Measey, J.; Saul, W.C.; Pulliam, J.R.
Emerging infectious diseases and biological invasions: A call for a One Health collaboration in science and management. R. Soc.
Open Sci. 2019, 6, 181577. [CrossRef]

56. Zadoks, J.C.; van den Bosch, F. On the spread of plant disease: A theory on foci. Annu. Rev. Phytopathol. 1994, 32, 503–521.
[CrossRef] [PubMed]

57. Isard, S.A.; Chamecki, M. A physically based theoretical model of spore deposition for predicting spread of plant diseases.
Phytopathology 2016, 106, 244–253. [CrossRef] [PubMed]

http://doi.org/10.1111/1365-2664.12326
http://doi.org/10.1111/j.0272-4332.2004.00481.x
http://doi.org/10.1079/PAVSNNR201914020
http://doi.org/10.1093/ajae/aau032
http://doi.org/10.1098/rstb.1986.0072
http://doi.org/10.1016/S1473-3099(17)30419-X
http://doi.org/10.1098/rsos.181577
http://doi.org/10.1146/annurev.py.32.090194.002443
http://www.ncbi.nlm.nih.gov/pubmed/19877849
http://doi.org/10.1094/PHYTO-10-15-0275-R
http://www.ncbi.nlm.nih.gov/pubmed/26595112

	Introduction 
	Materials and Methods 
	Wheat Stripe Rust 
	Wheat Stripe Rust Disease Spread Simulations 

	Results 
	Discussion 
	References

