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Abstract: Depression is a disease with several molecular mechanisms involved, such as problems in
the serotonergic pathway. This disease is very complex and prevalent, and thus important to deeply
study and aim to overcome high rates of relapse and therapeutic failure. In this study, two cellular
lines were used (HT-22 and SH-SY5Y cells) to gain insight about the role of the serotonin type 3
(5-HT3) receptor in cellular stress induced by hydrogen peroxide and/or corticosterone. In research,
these compounds are known to mimic the high levels of oxidative stress and dysfunction of the
hypothalamus–hypophysis–adrenal axis by the action of glucocorticoids, usually present in depressed
individuals. The receptor 5-HT3 is also known to be involved in depression, previously demonstrated
in studies that highlight the role of these receptors as promising targets for antidepressant therapy.
Indeed, the drugs used in this work (mirtazapine, scopolamine, and lamotrigine) interact with
this serotonergic receptor. Thus, by using cell morphology, cell viability (neutral red and MTT),
and HPLC assays, this work aimed to understand the role of these drugs in the stress induced by
H2O2/corticosterone to HT-22 and SH-SY5Y cell lines. We concluded that the antagonism of the
5-HT3 receptor by these drugs may be important in the attenuation of H2O2-induced oxidative stress
to the cells, but not in the corticosterone-induced stress.

Keywords: serotonin; 5-HT3 receptor; mirtazapine; scopolamine; lamotrigine; hydrogen perox-
ide; corticosterone

1. Introduction

Depression is a complex and common disease worldwide, characterized by several
abnormalities such as lack of energy and anhedonia and affecting the daily lives of in-
dividuals. In severe cases, death by suicide is a reality. According to the World Health
Organization, depression is the most prevalent health problem in the European Union,
affecting around 50 million people. Statistics also reveal that 11% of the population will
suffer a depressive episode during their lifetime, and that this is the second leading cause
of disability. Particularly, Portugal occupies the 5th position among the countries with
the most cases of depression: about 8% of the population suffers from the disease [1].
Deficiency in serotonin (5-HT) and other neurotransmitters such as noradrenaline are
one of the factors underlying depression, despite the presence of dysregulation of, for
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example, immune and endocrine factors [2]. In fact, it is an extremely complex disease
and is difficult to study because different molecular mechanisms are involved, varying
widely between individuals. Indeed, high rates of relapse are associated with depression,
highlighting the importance of more research about this disease [3,4]. Cellular studies
enable faster and simpler research associated with depression’s pathophysiology at a
molecular/cellular level, avoiding the use of animals in the initial stages of research [5].
Thus, in our study, we used two cellular lines: HT-22 (mouse hippocampal neuronal
cell line) and SH-SY5Y cells (human neuroblastoma cell line), commonly reported in the
study of molecular aspects involved in depression [6–9]. The potential role of the 5-HT3
receptor in hydrogen peroxide (H2O2)/corticosterone-induced cellular stress was explored
in this study. Several studies report the use of these two compounds to induce cellular
stress [10–13]. Indeed, increased levels of oxidative stress markers and dysfunction of the
hypothalamus–hypophysis–adrenal (HPA) axis by the action of glucocorticoids (such as
corticosterone) are widely reported in depression [14,15]. In this study, these responses
were mimicked by H2O2 and corticosterone, respectively, as previously reported.

5-HT3 receptors are ligand-gated ion channels, contrasting with the other subtypes of
5-HT receptors. They are present in the central and peripheral nervous system, being widely
expressed in brain stem nuclei and higher cortical areas, such as the hippocampus [16].
Additionally, these receptors are composed of five subunits that surround a central pore,
occurring in both homopentameric (only 5-HT3A subunits) and heteropentameric forms
(5-HT3A and 5-HT3B receptor subunits) [17]. These receptors are associated with molecular
mechanisms present in depression. Indeed, several studies evidenced the role of these
receptors as potential targets for antidepressant drugs [18,19]. For example, the application
of a selective antagonist of these receptors (ondansetron) to mice demonstrated significant
antidepressant-like effects [20]. Some clinical studies also highlighted the role of 5-HT3
receptor antagonists in the reversion of depressive symptoms in humans [16].

Mirtazapine, scopolamine, and lamotrigine interact with this receptor. Mirtazapine is
a clinically used antidepressant that increases noradrenergic and serotonergic transmission,
being an antagonist of adrenergic α2 and the 5-HT2 and 5-HT3 receptors, previously used
in our investigation group as a reverser of H2O2 stress induction [21]. Regarding scopo-
lamine, it is a drug typically used to treat postoperative nausea and vomiting and motion
sickness [22], being a non-specific antagonist of acetylcholine muscarinic receptors [23]. Ad-
ditionally, this drug was also reported to function as an antagonist of 5-HT3 receptors [24].
The potential of scopolamine to be used in treating depression has also been reported [25].
Indeed, in mice, this drug improved depressive symptoms [26]. In clinical studies, scopo-
lamine also revealed rapid antidepressant effects in both unipolar and bipolar depressive
individuals [27]. This drug downregulates glutamate receptor production, leading to a de-
crease of glutamate transmission and decreased excitotoxicity. In addition, by upregulating
acetylcholine production, this drug modulates nicotinic, serotonergic, and dopaminergic
systems, mechanisms important in antidepressant response [28]. Reports of the interaction
of lamotrigine with the 5-HT3 receptor also indicate that this drug inhibits this receptor.
Indeed, this drug inhibits currents activated by this receptor, binding to the open state
of the channels and blocking channel activation or accelerating desensitization [29,30].
This drug selectively binds and inhibits voltage-gated sodium channels, characterized by
being an anti-seizure/anti-epileptic drug, also used in bipolar I disorder [31]. In persistent
depression, lamotrigine was also reported to be possibly effective for the treatment of indi-
viduals with persistent depression who were antidepressant resistant [32]. A meta-analysis
also concluded that this drug was also better than the placebo in improving unipolar and
bipolar depressive symptoms [33].

Hereupon, we aimed to study the potential role of drugs that interact with the 5-HT3 re-
ceptor (mirtazapine, scopolamine, and lamotrigine) in the attenuation of H2O2/corticosterone-
induced stress to HT-22 and SH-SY5Y cells, mainly by using cell morphology, cell viability,
and HPLC assays. Our main findings reveal that the antagonism of the 5-HT3 receptor by



Life 2022, 12, 1645 3 of 18

these drugs may be relevant in the attenuation of oxidative stress in the cells (H2O2-induced),
but not corticosterone-induced stress.

2. Results
2.1. Presence of 5-HT3 Receptor on SH-SY5Y and HT-22 Cells

To demonstrate the presence of the 5-HT3 receptor on both SH-SY5Y and HT-22 cells,
immunofluorescence experiments on both cell lines were performed (Figure 1). The proce-
dure is described in the Materials and Methods section.
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Figure 1. Representative images (400× total magnification) of (A) HT-22 and (B) SH-SY5Y cells after
immunostaining with DAPI (blue) and primary antibody rabbit polyclonal anti-5-HT3AR/donkey
anti-rabbit 488 secondary antibody (green). Scale bar: 100 µm.

Our results demonstrate that 5-HT3A receptor (represented in green) is present in
both HT-22 and SH-SY5Y cell lines.

2.2. Effect of Mirtazapine, Scopolamine, and Lamotrigine on SH-SY5Y and HT-22 Viability

To understand the effects on the cellular viability of three drugs that interact with the
5-HT3 receptor, mirtazapine (Figure 2), scopolamine (Figure 3), and lamotrigine (Figure 4)
were added to SH-SY5Y and HT-22 cells for 48 h, in concentrations that varied between
0.01 µM and 20 µM. The results were obtained by MTT and NR assays, as described in the
Materials and Methods section. Morphological analysis of both cell lines was also carried
out (Figure 5).

Taken together, our results reveal that overall, mirtazapine, scopolamine and lam-
otrigine did not decrease SH-SY5Y and HT-22 viability and did not alter the morphol-
ogy/number of these cells, as evidenced in viability and morphological experiments
(Figures 2–5). These results demonstrate that these drugs, in these concentrations, were not
toxic to the cells.
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Figure 2. HT-22 and SH-SY5Y viability after incubation of mirtazapine (0.01 µM–20 µM) for 48 h, 
obtained by MTT (left) and NR (right) assays. The results represent the mean ± SEM of 3 
independent assays. For SH-SY5Y, these results were previously developed by our Research Group 
[21]. 

 

Figure 2. HT-22 and SH-SY5Y viability after incubation of mirtazapine (0.01 µM–20 µM) for 48 h,
obtained by MTT (left) and NR (right) assays. The results represent the mean ± SEM of 3 independent
assays. For SH-SY5Y, these results were previously developed by our Research Group [21].
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 Figure 3. HT-22 and SH-SY5Y viability after incubation of scopolamine (0.01 µM–20 µM) for
48 h, obtained by MTT (left) and NR (right) assays. The results represent the mean ± SEM of
3 independent assays.
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Figure 5. HT-22 and SH-SY5Y morphology after incubation of (A,E) vehicle, (B,F) mirtazapine 20 µM,
(C,G) scopolamine 20 µM, and (D,H) lamotrigine 20 µM, for 48 h (100× total magnification). Scale
bar: 50 µm.

2.3. Effect of Hydrogen Peroxide and Corticosterone on SH-SY5Y and HT-22 Viability

Previously [21], we established a cellular stress model on SH-SY5Y cells with the
application of H2O2 (Figure 6). To understand if this harmful effect was maintained in
HT-22 cells, these cells were also treated with crescent concentrations of H2O2 for 48 h
(Figure 6). Additionally, to test the effect of another stressor, both SH-SY5Y and HT-22
cells were incubated with crescent concentrations of corticosterone for 48 h (Figure 7). The
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results were obtained by MTT and NR assays, as described in the Materials and Methods
section. Figure 8 represents morphological observations of both cell lines, after treatment
of the cells with the mean of the obtained half-maximal inhibitory concentrations (IC50)
values for H2O2 and corticosterone, by NR and MTT assays.
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Figure 8. HT-22 and SH-SY5Y morphology after 48 h-incubation of (A,D) vehicle, (B,E) H2O2 105 µM
and 132 µM, respectively, and (C,F) corticosterone 35 µM and 322 µM, respectively (100× total
magnification). Scale bar: 50 µm (A,B,D,E) and 179.3 µm (C,F).

These results reveal that overall, both H2O2 and corticosterone decreased HT-22 and
SH-SY5Y viability, proportionally to the increase in the concentration, as highlighted in the
cell viability assays and morphological assays (Figures 6–8). For SH-SY5Y cells, the mean
of the obtained IC50 with the application of H2O2 and corticosterone was 132 µM and
322 µM, respectively. For HT-22, these values were 105 µM and 35 µM, respectively. The
concentration-response curves and IC50 determinations are present in the Supplementary
Materials (Figures S1 and S2). Together, these data support the stress effect of H2O2 and
corticosterone on both cell lines.

2.4. Effect of Mirtazapine, Scopolamine, and Lamotrigine in Combination with Hydrogen Peroxide
and Corticosterone on Cellular Viability

To understand if the three drugs, mirtazapine, scopolamine, and lamotrigine, that inter-
act with the 5-HT3A receptor, could alleviate the harmful effects of H2O2 (Figures 9 and 10)
and corticosterone (Figures 11 and 12) in both SH-SY5Y and HT-22 cells, mirtazapine,
scopolamine, and lamotrigine were added to the cells in a concentration of 20 µM, in
combination with H2O2 and corticosterone, for 48 h. After that, morphological evaluation
was carried out, and cellular viability was obtained by NR and MTT assays, as described
in the Materials and Methods section. H2O2 was added to SH-SY5Y and HT-22 cells at a
concentration of 132 µM and 105 µM, respectively (mean IC50 values). Corticosterone was
added to SH-SY5Y and HT-22 cells in a concentration of 322 µM and 35 µM, respectively
(mean IC50 values). The comparison between the two cell lines regarding the percentage of
stress attenuation is represented in Figure 13.
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Figure 9. HT-22 and SH-SY5Y viability after incubation of H2O2 (105 µM and 132 µM) combined
with mirtazapine, scopolamine, and lamotrigine (20 µM) for 48 h, obtained by MTT assay. The results
represent the mean ± SEM of 3–6 independent assays. Statistical significance at * p < 0.05, and
**** p < 0.0001 vs. vehicle.
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Figure 10. HT-22 and SH-SY5Y morphology after 48 h-incubation of (A,E) vehicle, (B,F) H2O2 105 µM
(for HT-22)/132 µM (for SH-SH5Y) combined with mirtazapine 20 µM, (C,G) H2O2 105 µM (for
HT-22)/132 µM (for SH-SH5Y) combined with scopolamine 20 µM, and (D,H) H2O2 105 µM (for
HT-22)/132 µM (for SH-SH5Y) combined with lamotrigine 20 µM (100× total magnification). Scale
bar: 50 µm.
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*** p < 0.001, and **** p < 0.0001 vs. vehicle.

Life 2022, 12, 1645 11 of 20 
 

 

 
Figure 12. HT-22 and SH-SY5Y morphology after 48 h-incubation of (A,E) vehicle (B,F) 
corticosterone 35 µM (for HT-22)/322 µM (for SH-SH5Y) combined with mirtazapine 20 µM, (C,G) 
corticosterone 35 µM (for HT-22)/322 µM combined with scopolamine 20 µM, and (D,H) 
corticosterone 35 µM (for HT-22)/322 µM combined with lamotrigine 20 µM (100× total 
magnification). Scale bar: 179.3 µm. 

 

Figure 12. HT-22 and SH-SY5Y morphology after 48 h-incubation of (A,E) vehicle (B,F) corticosterone
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Our results evidence that mirtazapine, scopolamine, and lamotrigine attenuated the
H2O2-induced stress in both HT-22 and SH-SY5Y cells (Figures 9, 10 and 13). Indeed,
mirtazapine attenuated H2O2-induced cell stress in approximately 12% (for HT-22) and
28% (for SH-SY5Y), scopolamine attenuated this cell stress in approximately 40% (for
HT-22) and 34% (for SH-SY5Y) and, for lamotrigine, the cell stress attenuation was 31%
for HT-22 and 23% for SH-SY5Y cells. On the other hand, mirtazapine, scopolamine,
and lamotrigine did not attenuate the corticosterone-induced stress in both HT-22 and
SH-SY5Y cells (Figures 11–13). Both combinations led to viability values (like those ob-
tained with corticosterone alone, or even more decreased). Indeed, mirtazapine increased
corticosterone-induced stress by approximately 8% (for HT-22) and 14% (for SH-SY5Y). For
scopolamine, this stress was also induced by approximately 7% (for HT-22) and 18% (for
SH-SY5Y) and, for lamotrigine, the cell stress also increased in 15% for HT-22 and 23% for
SH-SY5Y cells.

2.5. Effect of the Drugs and Drug Combinations in Extracellular 5-HT Levels

Next, to understand the effect of the drugs and drug combinations under study in the
extracellular 5-HT levels (Figures 14 and 15), 5-HT concentration was determined by HPLC,
after 48 h of treatment incubation, as described in the Materials and Methods section.
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3. Discussion

Depression represents a worldwide concern. New therapies for this disease and
intensive research require urgent implementation [4]. Thus, by using two different neuronal
cell lines (SH-SY5Y and HT-22 cells), this work aimed to understand if the receptor 5-HT3
may have an important role in glucocorticoid stress and oxidative stress. To perform
these experiments, we used well-known inducers of stress (corticosterone and H2O2), as
well as drugs that are known to interact with 5-HT3 receptor (mirtazapine, lamotrigine,
and scopolamine) and that may have the potential to be used in the corticosterone/H2O2
stress attenuation, as described in the Introduction section. Indeed, our previous work
demonstrated that mirtazapine was a good stress reverser for H2O2, in SH-SY5Y cells [21].

Our results revealed that 5-HT3 receptors were present in both cell lines. To the best of
our knowledge, to date, there is no substantial literature that reports the presence of this
receptor in these cell lines. Nevertheless, it is known that 5-HT3 is expressed in many brain
areas, such as the hippocampus [17].

The three drugs that interact with 5-HT3 receptor (mirtazapine, scopolamine, and
lamotrigine), in all the tested concentrations, did not lead to cell damage/toxicity, revealing



Life 2022, 12, 1645 13 of 18

to be good stress reversers in these concentrations. These observations are in concordance
with some of the literature, which reports the potential of these drugs to be used in the
therapy of depression [26,34,35], as described in the Introduction section. Additionally,
HPLC results for these drugs demonstrated that they do not substantially affect 5-HT levels
on the extracellular medium, compared to the vehicle, for both cell lines. An exception can
be observed with the decreased levels of 5-HT after the application of lamotrigine 20 µM,
for SH-SY5Y cells. A hypothesis is that this drug may alter 5-HT levels intracellularly.

Regarding the results obtained with H2O2, our results revealed that, as expected, this
agent led to cellular damage in both SH-SY5Y and HT-22 cells, consistent with previous
literature reports [13,36,37]. Additionally, a clear reduction in the 5-HT levels in the
extracellular medium was also observed for both cell lines, supporting the hypothesis
that H2O2 disturbs 5-HT-connected pathways in the cells. Indeed, in depression, it is
known that suffering individuals present dysfunctions of 5-HT pathways, as well as high
levels of oxidative stress [4,38]. Additionally, there are also some evidence that reports that
5-HT protects against oxidative stress in brain [39]. Furthermore, in animals, extracellular
levels of 5-HT were observed were increased in active behavioral states and decreased in
somnolent periods, demonstrating that extracellular 5-HT levels correlate with depressive
behavior. Thus, this data support that high levels of oxidative stress decrease extracellular
5-HT levels, which may correlate with depression [40].

The combinations of H2O2 with mirtazapine, scopolamine, and lamotrigine revealed
that these three drugs could increase the levels of extracellular 5-HT, compared with H2O2
alone, in both cell lines. Additionally, the cellular damage caused by H2O2 alone was
attenuated by the presence of the three drugs, highlighting the possibility that 5-HT3
receptors may be important in the stress reversion of oxidative stress caused by H2O2. On
the other hand, although corticosterone also led to cellular damage in both SH-SY5Y and
HT-22 cells (as previously described [41,42]), neither drug alleviated the stress induced
by this stress agent, in opposition to the effects observed with H2O2. These results raise
the hypothesis that 5-HT3 receptor may be important in fighting oxidative stress but not
glucocorticoid stress. Indeed, corticosterone-induced stress is caused by mechanisms such
as the recently described disruption of AMPK/mTOR-mediated autophagy flux [43]. An
interesting study revealed that an experimental 5-HT3 receptor antagonist (6z) attenuated
brain oxidative damage, demonstrating antidepressant-like activity [19]. However, in
another study, an experimental 5-HT3 receptor antagonist (4i) reversed corticosterone
induced depressive-like deficits in mice [44]. Additionally, our results also revealed that
in SH-SY5Y cells, mirtazapine in combination with corticosterone increased 5-HT levels
compared with corticosterone alone, not reflected in the viability results. Thus, more
investigation is important in order to clarify the interplay between corticosterone/5-HT3
receptors and discover how this interplay may have a role in depression.

Analyzing our results, it is also possible to observe that in HT-22 cells, the damage
caused by corticosterone is more notable than in SH-SY5Y cells. HT-22 are mice cells and
respond better to corticosterone than human cells (SH-SY5Y), because corticosterone is the
primary adrenal corticosteroid in mice [45]. Additionally, it is also important to highlight
the fact that differences observed between the cell lines can also be explained by the fact that
HT-22 cells are hippocampal non-tumoral cells [46], whereas SH-SY5Y are neuroblastoma
cells [47]. For example, it was notable that the concentration of 5-HT in the extracellular
medium of the cells treated only with the vehicle was different between cell lines, being
higher in the non-tumoral HT-22 cells. Indeed, cells use higher concentrations of 5-HT to
activate 5-HT-related pathways [48]. As tumoral cells, SH-SY5Y may have higher metabolic
activity, having a higher demand of 5-HT [49], which may relate to less availability of 5-HT
in the extracellular medium.

Taken together, our results support the idea that the antagonism of the 5-HT3 receptor
by lamotrigine, scopolamine, and mirtazapine may be important in the context of oxidative
stress relief in the cells, but not corticosterone-induced stress. This oxidative stress relief was
reflected in more cellular viability and more 5-HT concentration in the extracellular medium
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of the cells, compared with H2O2 alone. However, future studies to verify the involvement
of 5-HT3 receptor in this context are needed. For example, 5-HT3 knockdown/knockout
studies in these cells are necessary. Nevertheless, this work evidences the potential role of
5-HT3 receptor in depression. By using cells as the experimental model, this represents a
faster and simplified way to study depression, sparing animal use. However, depression
is a complex disorder and intense research, including animal studies, must be done in
more advanced stages. Nevertheless, in the future, animal study is crucial in order to
complement this study.

4. Materials and Methods
4.1. Materials

From Millipore Sigma (Merck KGaA, Darmstadt, Germany), we purchased Dulbecco’s
Modified Eagle’s Medium (DMEM, cat. No. FG0415) and Fetal Bovine Serum (FBS, cat.
No. S0615). From Sigma-Aldrich (Merck KGaA, Darmstadt, Germany), we acquired peni-
cillin/streptomycin solution (cat. No. P4333), thiazolyl blue tetrazolium bromide (MTT,
cat. No. M5655), neutral red solution (cat. No. N2889), corticosterone (cat. No. 27840),
hydrogen peroxide 30% (cat. No. 1.07209), scopolamine hydrobromide (cat. No. PHR1470),
laminin (cat. No. L2020), and DAPI (cat. No. D9542). Mirtazapine (cat. No. 19994) and
lamotrigine (cat. No. 15428) were acquired from Cayman Chemical Company (Ann Arbor,
Michigan, USA). Rabbit polyclonal anti- 5-HT3AR primary antibody (cat. No. ab13897)
was obtained from Abcam (Cambridge, United Kingdom), whereas donkey anti-rabbit 488
secondary antibody was purchased from Molecular Probes (Waltham, OR, USA). Donor
horse serum (cat. No. S0900) was obtained from Biowest (Nuaillé, France), poly-D-lysine
(cat. No. A3890401) was purchased from Gibco (Thermo Fisher Scientifics, Waltham, MA,
USA), prolong gold antifade reagent (cat. No. P10144) was purchased from Invitrogen (Eu-
gene, MA, USA), and for the HPLC procedure, waters alliance 2695 pump and 3030 reagent
kit® were obtained from Waters Corporation (Milford, MA, USA), rheodyne loop injector
was purchased from Chromsystems GmbH (Munich, Germany), and from Antec Scientific
(Zoeterwoude, The Netherlands), we acquired the Decade electrochemical detector (ECD).

4.2. Cell Treatments

Mirtazapine and H2O2 were prepared and added to the cells as previously described [21].
Corticosterone and lamotrigine were dissolved in DMSO (or methanol, for HPLC analysis
purposes), 0.1% in the cell culture medium. Scopolamine was prepared in sterilized water
(0.1% in culture medium). Mirtazapine, lamotrigine, and scopolamine were added to the cells
in concentrations ranging between 10 nM and 20 µM, depending on the experiment. Corti-
costerone and H2O2 were added to the cells in concentrations ranging 100 µM–500 µM and
50 µM–300 µM, respectively. For mirtazapine, lamotrigine, scopolamine, and corticosterone
alone, the vehicle was composed of 0.1% DMSO in the cell culture medium, whereas for
scopolamine and H2O2 alone, the vehicle was composed of 0.1% sterilized water in cell culture
medium. For mirtazapine and lamotrigine combined with H2O2, vehicles were composed
of 0.1% sterilized water/0.1% DMSO or methanol. For scopolamine combined with H2O2,
the vehicle was 0.2% sterilized water. For corticosterone combined with mirtazapine and
lamotrigine, the vehicle was 0.2% DMSO or methanol and, finally a vehicle of 0.1% DMSO or
methanol/0.1% sterilized water was used for corticosterone combined with scopolamine. All
the drugs were added to the cells for a period of 48 h.

4.3. Cell Culture

The SH-SY5Y cell line (American Type Culture Collection, VA, USA), and HT-22
cells (provided by Professor Ana Cristina Rego’s group, University of Coimbra, Por-
tugal) were incubated at 37 ◦C (95% air, 5% CO2) in DMEM (10% FBS, 1% penicillin
(1000 U/mL)/streptomycin (10 mg/mL)). Trypsinization (0.25% trypsin-EDTA) and cen-
trifugation (800 rpm for HT-22 and 1100 rpm for SH-SY5Y, 5 min; Hettich, Tuttlingen,
Germany) were carried out before each cellular assay. Cells were seeded at a density of
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1.0 × 105 cells/mL (SH-SY5Y cells) and 1.5 × 104 cells/mL (HT-22 cells) in 96-well plates
(200 µL/well), or 1.3 × 104 cells/mL in 24-well plates (500 µL/well).

4.4. Immunofluorescence

HT-22 and SH-SY5Y cells were grown on 24-well plates, covered with 13-mm cov-
erslips, and coated with poly-D-lysine (20 µg/mL in PBS-1x) and laminin (5 µg/mL in
PBS-1x). After that, the cells were washed with PBS-1x and plated at a seeding density of
6500 cells/well. Then, cells were fixed with 4% paraformaldehyde at room temperature for
10 min and washed 3 × 5 min with 0.1% Triton X-100 in PBS-1x. Next, cells were blocked
with donor horse serum 5% in PBST (PBS-Tween 20 0.1%), for 1 h, at room temperature.
After that, the primary antibody rabbit polyclonal anti-5-HT3AR) was diluted in donor
horse serum 5% in PBST and added to the cells in a ratio of 1:500, following an overnight
period of incubation. Then, cells were washed with 0.1% Triton X-100 in PBS-1x (3 × 5 min)
and incubated for 1 h at room temperature with the donkey anti-rabbit 488 secondary
antibody (1:1000, diluted in donor horse serum 5% in PBST). Finally, cells were washed
with 0.1% Triton X-100 in PBS-1x (3 × 5 min), incubated with DAPI (1:1000 in PBS-1x) for
10 min, and washed twice with PBS-1x. For mounting, ProLongTM gold antifade mountant
was used on each slide. Images were acquired on ApoTome Slider (Zeiss®) fluorescence
microscope coupled to the AxioVision Rel. 4.8. software (Zeiss®).

4.5. Cell Viability Assays

To evaluate the cell viability after the different treatments (48 h), MTT assay and
neutral red (NR) assay were carried out as previously described [21]. Briefly, for the MTT
assay, MTT (0.5 mg/mL in PBS) was added to the cells (100 µL) and the plate was incubated
for 3 h (37 ◦C). Then, this reagent was removed and DMSO was added to the cells (100 µL).
The 570 nm absorbance values were obtained from the automated microplate reader (Tecan
Infinite M200, Zurich, Switzerland). For the NR assay, NR medium (1:100 in DMEM) was
added to each well (100 µL) and the plate was incubated for 3 h (37 ◦C). After that, the cells
were washed in PBS and NR destain solution (50% of 96% ethanol, 49% deionized water,
and 1% glacial acetic acid) was added to the cells (150 µL). The 540 nm absorbance values
were obtained in the automated microplate reader.

4.6. Cell Morphology Assessment

The cellular morphology of SH-SY5Y and HT-22 cell lines was assessed by using Leica
DMI6000 B Automated Microscope (Wetzlar, Germany) after all the treatment conditions
before the cell viability assays.

4.7. HPLC Analysis

HPLC analysis was carried out as previously described [50]. Briefly, after being
filtrated and centrifugated, the analysis of 5-HT content in the samples was performed
using the 3030 Reagent kit for HPLC analysis of 5-HT in the urine. The calibration curve
was generated with concentrations between 1–1000 nM of 5-HT. This curve was used to
calculate the concentration of 5-HT in each sample, as previously described [50]. All the
samples were collected after 48 h of the cell treatments.

4.8. Statistical and Data Analysis

Statistical and data analysis was performed using the software GraphPad Prism 8
(San Diego, CA, USA). Statistical comparisons between vehicle and treatment groups were
performed with one-way ANOVA and Dunnett’s multiple comparisons test. Statistical
significance was obtained when p < 0.05. All the cell viability studies results represent the
mean ± SEM of 3–6 independent assays.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12101645/s1, Figure S1: Concentration-response curves of
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H2O2 and corticosterone for SH-SY5Y cells, obtained by MTT (left) and NR (right) assays, for 48 h.
The results represent the mean ± SEM of 3–6 independent experiments; Figure S2: Concentration-
response curves of H2O2 and corticosterone for HT-22 cells, obtained by MTT (left) and NR (right)
assays, for 48 h. The results represent the mean ± SEM of 3–6 independent experiments.
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