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Abstract: Background: The aim of this study was to assess the performance of regional graders and
artificial intelligence algorithms across retinal cameras with different specifications in classifying an
image as gradable and ungradable. Methods: Study subjects were included from a community-based
nationwide diabetic retinopathy screening program in Thailand. Various non-mydriatic fundus
cameras were used for image acquisition, including Kowa Nonmyd, Kowa Nonmyd α-DIII, Kowa
Nonmyd 7, Kowa Nonmyd WX, Kowa VX 10 α, Kowa VX 20 and Nidek AFC 210. All retinal
photographs were graded by deep learning algorithms and human graders and compared with a
standard reference. Results: Images were divided into two categories as gradable and ungradable
images. Four thousand eight hundred fifty-two participants with 19,408 fundus images were included,
of which 15,351 (79.09%) were gradable images and the remaining 4057 (20.90%) were ungradable
images. Conclusions: The deep learning (DL) algorithm demonstrated better sensitivity, specificity
and kappa than the human graders for all eight types of non-mydriatic fundus cameras. The deep
learning system showed, more consistent diagnostic performance than the human graders across
images of varying quality and camera types.

Keywords: diabetic retinopathy; artificial intelligence; retinal camera; retinal images

1. Introduction

Diabetic Mellitus is one of the fastest-growing metabolic disorders in the world. The
International Diabetes Federation has estimated that the global prevalence of diabetes is
expected to reach 693 million by 2045 [1]. A serious microvascular complication associated
with diabetes is diabetic retinopathy (DR), a leading cause of blindness in adults. With a
rising incidence of diabetes, there is an associated increase in microvascular complications
like diabetic retinopathy (DR). In patients with diabetes, regular follow-up and timely
management are essential to preventing visual impairment due to sight-threatening DR.
Resnikoff et al. reported that 17% of the global population has access to less than 5% of the
worldwide ophthalmologist population [2]. A higher national income was associated with
a higher ophthalmologist density, ranging from 76.2 per million in high-income countries
to 3.7 per million in low-income countries [2]. People in low-to-middle-income countries
are at significant risk of developing DR as a result of resource constraints, i.e.,. In contrast,
sufficient shortage of eye specialists and limited infrastructure for disease detection and
management are unavailable. Retinal imaging is important in screening, monitoring and
managing DR.
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Artificial intelligence (AI), which can detect the presence of DR, has the potential to
enhance and automate aspects of DR screenings, and recent efforts have examined their
clinical applicability. In recent years several studies have validated the use of deep learning
for DR screening and have demonstrated robust performance [3–6]. However, the devel-
opment and validation of many of these algorithms have been done using retinal images
from a single specification of a retinal camera. Thus the generalizability of the algorithm’s
performance to other cameras may be questionable. To the best of our knowledge, the
influence of different types of retinal cameras on the performance of deep learning algo-
rithms has not been studied in the past. The algorithm’s performance is closely related
to the fundus camera on which it has been trained and eventually deployed. This could
be due to differences in colour reproduction, image clarity, different fields of view, and
penetration of opacity by a given fundus camera. For this reason, the regulatory authorities
tend to specify the camera to be used to get optimum performance of AI algorithms for DR
screening [7,8].

Thailand has a national DR screening program that was set up by the Ministry of Public
Health in 2013. The program enables non-physician healthcare personnel (mainly nurses)
to manually conduct eye screenings in primary care clinics and community hospitals. The
goal of the program is to aid in the early detection of diabetic eye disease and ensure
timely referral of diabetes patients to retinal specialists for management. The program has
different types of retinal cameras deployed for screening. The present study is a secondary
analysis of the original dataset from the Thai national screening program that compared
the performance of human graders with AI grading for DR [9].

The aim of this study was to assess the performance of regional graders and AI
algorithm across retinal camera’s with different specifications in classifying an image
as gradable Vs ungradable and classifying DR based on international Clinical Diabetic
Retinopathy (ICDR) severity scale.

2. Materials and Methods

Study subjects were included from a community—based nation wide DR screening
program organized by the Thai Ministry of Public Health. The screening was conducted
in 13 regions that include hospitals and health care centers in Thailand. For the current
study, patients with diabetes were randomly included from the national registry between
the years 2015 and 2017. Patients were included if they had fundus images of both the eyes
captured using retinal cameras from both years, 2015 and 2017. A variety of non-mydriatic
fundus cameras were used for image acquisition including Kowa Nonmyd, Kowa Nonmyd
α-DIII, Kowa Nonmyd 7, Kowa Nonmyd WX, Kowa VX 10 α, Kowa VX 20 and Nidek
AFC 210. The resolution of the fundus cameras ranges from 2 megapixel to 18 megapixels.
Specifications of the non-mydriatic fundus cameras are summarized in Table 1.

Images were retrieved from the digital archives of the retinal cameras. Images were
excluded if the patient had any other associated retinal disease except DR. All retinal
photographs were graded by two groups of retina specialists or ophthalmologists for
the standard reference. The retinal specialists that served as the standard reference were
from Thailand, India and the United States. There were two retinal specialists per group.
Each group graded the images independently. Images were divided into two categories
as gradable or ungradable image. Images were labelled as ungradable if the both eyes
were ungradable, or if either eye was ungradable. The same set of images were separately
graded by the deep learning algorithm and by human graders that included general
ophthalmologists, trained ophthalmic nurses or technicians. The development, evaluation
and validation of deep learning algorithm was described in detail elsewhere [10]. In
summary, if the retinal image didn’t show the key regions with good enough quality for a
confident grading and the macula is not visible or only partially visible (less than one disc
diameter from the centre of the fovea) either because it is not in the field of view or it is
occluded by artefacts, dark shadow etc. and what is seen is no enough to rule out DME
were labelled as ungradable. (Figure 1) A tutorial session was conducted for all the graders
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before the commencement of grading to ensure standardization of grading methodology.
The study design and research methodology has been described in detail in a previous
publication elsewhere [9]. The study was approved by the Ethical Review Committee for
research in human subjects by the Thai Ministry of Public Health, Thailand and by those
the Ethical Committees of hospitals and health care centers from which retinal images
of patients with diabetes were used. A written informed consent was obtained from the
subjects per the tenets of the Declaration of Helsinki.

Table 1. Specifications of the non-mydriatic fundus cameras.

Specifications Kowa Nonmyd
α-DIII Kowa Nonmyd 7 Kowa Nonmyd

WX Kowa VX 10 α Kowa VX 20 Nidek AFC 210

Field angle 45◦/30◦ 45◦/20◦
Normal: 45◦

Stereo: 34◦

(20◦ × 27◦)
SP:45◦

- - 45◦

Internal fixation
target

Normal:
3 positions

(central, disc,
macula); Mosaic:

9 positions

4 fixed dots
switching type

Central, Disc,
Macula, Mosaic: 8

positions

4 fixed dots right
or left eye
switching

(Non-mydriatic
mode)

Central, Disc,
Macula,

Peripheral
LED (70 points)

Minimum pupil
size 3.5 mm

4.0 mm (small
pupil mode:

3.7 mm)

Normal mode: 4.0
mm, SP mode: 3.5
mm, Stereo mode:

4.0 mm

Non-mydriatic
mode- 4.00 mm;
Mydriatic mode-

5.5 mm; Small
pupil- 4.00 mm

Non-mydriatic
mode- 4.00 mm;
Mydriatic mode-

5.5 mm; Small
pupil-

4.00/3.5 mm

4.0 mm (Small
pupil: 3.7 mm)

Focusing Split luminous
bars coincidence

Split luminous
bars coincidence

Split luminous
bars coincidence

Point matching
method

(ON/OFF switch)

Split luminous
bars coincidence

Infrared split
bright target
coincidence

Compensation
range of

examined eye

Without
compensation:
−15D to +13D;

With—
compensation:
−32D to −12D;

With +
compensation:
+10D to +40D

Without
compensation:
−15D to +13D;

With—
compensation:
−33D to −11D;

With +
compensation:
+10D to +40D

Without
compensation:
−12D to +13D;

With—
compensation:
−32D to −10D;

With +
compensation:
+10D to +35D

Without
compensation
−12D to +13D;

With—
compensation:
−10D to −32D;

With +
compensation:
+10D to +35D

Without
compensation
−12D to +13D;

With—
compensation:
−10D to −32D;

With +
compensation:
+10D to +35D

Total: −33D to
+35D; With minus

dioptric lens:
−33D to −7D;

With no dioptric
lens: −12D to

+15D; With plus
dioptric lens:

+11D to +35D
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3. Statistical Analysis

Statistical analysis was performed using statistical software package (SPSS for Win-
dows, version 21.0; IBM Corp., Armonk, NY, USA). The data were tested for normality
using the Kolmogorov-Smirnov (K-S) test. The results were expressed as number and
percentage for categorical data and continuous data were expressed as mean with standard
deviation. Independent samples t-tests were used to check for the existence of a significant
difference in normally distributed data, and Mann–Whitney U tests were used for non-
normally distributed data. The performances of different cameras in assessing gradable
and ungradable images were measured by the AUC of the receiver operating characteristic
curve generated by plotting sensitivity (the true-positive rate) versus 1-specificity (the
false-negative rate). The AUCs were compared using binary classification methods. Kappa
(κ) statistics were used to assess the inter-observer agreement (i.e., the agreement of the
human graders with a standard reference and deep learning algorithm with a standard ref-
erence). A well-known scale was used for interpretation of results (0–0.20, slight agreement;
0.21–0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, substantial agreement;
0.81–1.00, almost perfect agreement). For all the analysis a two-sided P value of less than
0.05 was considered statistically significant.

4. Results

In our study, 4852 participants with 19,408 fundus images were included. Demo-
graphic details are available for only 4588 subjects with a mean age of 59.19 ± 11.52 years;
1524 (33.2%) were men and 3063 (66.8%) were women. The demographic characteristics of
the participants are summarized in Table 2. Table 3 shows the patient distribution of DR
severity as graded by human graders, ophthalmologist and the algorithm.

Table 2. Demographic details of the study subjects.

Parameter All Gradable Images Ungradable Images p-Value

No of subjects 4588 3816 772 -
Age,

mean ± SD 59.19 ± 11.52 57.81 ± 11.17 66.01 ± 10.76 <0.001

Gender,
n (%)
Male 1524 (33.2) 1282 (33.6) 242 (31.3) <0.001

Female 3063 (66.8) 2533 (66.4) 530 (68.7) <0.001

HbA1c,
(%) 5.56 ± 3.70 5.51 ± 3.37 5.80 ± 3.55 <0.001

Serum FBS,
(mg/dL) 117.61 ± 77.17 117.21 ± 77.15 119.61 ± 77.27 0.431

Serum LDL,
(mg/dL) 79.93 ± 57.68 80.39 ± 58.43 77.62 ± 53.77 0.001

Visual acuity
(logMAR), median(IQR)

Right eye 0.17 (0.39) 0.17 (0.30) 0.30 (0.37) <0.001
Left eye 0.17 (0) 0.17 (0) 0.30 (0) <0.001

Both eyes 0.17 (0.30) 0.17 (0.35) 0.30 (0.34) <0.001

FBS = Fasting Blood Sugar, LDL = Low-Density Lipoprotein, HbA1c: Glycosylated hemoglobin.

Of the total 19,408 fundus images included in the study, 15,351 (79.09%) were gradable
images and the remaining 4057 (20.90%) were ungradable images. The number of gradable
and ungradable images from each retinal camera is shown in Table 4.

The diagnostic performance of the human graders and deep learning algorithm vs.
the standard reference in the different fundus cameras are shown in Table 5. In both grad-
able and ungradable images, the deep learning algorithm demonstrated better sensitivity,
specificity and kappa than the human graders for all eight types of non-mydriatic fundus
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cameras. Figures 2 and 3 show the receiver operating characteristic (ROC) curve of the
model for gradable and ungradable images by human graders (A) and deep learning algo-
rithm (B) vs. standard reference for non-mydriatic fundus cameras. For gradable images,
the deep learning algorithm shows high accuracy (ROC > 90) than human graders (ROC:
40–90) whereas in ungradable images both deep learning algorithm (ROC: 40–95) and
human graders (ROC: 25–90) demonstratee similar results. The best AUC’s in detecting
sight threatening DR (Moderate + grade of DR) in the gradable images was obtained by
Kowa Nonmyd 7 fundus camera with DL as compared to standard reference, AUC = 0.95
(0.92–0.97) p < 0.0001. Likewise, for detection of ungradable image the performance of
Nidek AFC 210 was the best; AUC: 0.98 (0.97–0.99) p < 0.0001.

Table 3. Distribution of DR severity by human graders, Ophthalmologists and algorithm.

Ophthalmologist
(N%)

Human Graders
(N%)

DL
(N%)

No DR 12,648 (82.39) 13,225 (86.15) 12,376 (80.62)
Mild NPDR 1172 (7.63) 811 (5.28) 647 (4.21)

Moderate NPDR 1239 (8.07) 1081 (7.04) 1456 (9.48)
Severe NPDR 94 (0.61) 78 (0.51) 402 (2.62)

PDR 198 (1.29) 156 (1.02) 170 (1.11)
DR: Diabetic Retinopathy, NPDR: Non proliferative DR, PDR: Proliferative DR.

Table 4. Gradable and ungradable images from different non-mydriatic retinal cameras.

Camera Name Camera Code Resolution
(Megapixel)

Gradable
Images

N = 15,351
n (%)

Ungradable
Images

N = 4057
n (%)

Kowa Nonmyd 1 2 1383 (9.0) 1039 (25.6)

Kowa Nonmyd
α-DIII 3 8 3241 (21.1) 775 (19.1)

Kowa Nonmyd 7 4A 10 1895 (12.3) 344 (8.5)

Kowa Nonmyd
WX 5 12 733 (4.8) 45 (1.1)

Kowa VX 10 α 6 12.3 728 (4.7) 118 (2.9)

Kowa VX 20 7 15 3133 (20.4) 409 (10.1)

Kowa Nonmyd 7 4B 16 1249 (8.1) 493 (12.2)

Nidek AFC 210 8 18 2989 (19.5) 834 (20.6)
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Table 5. Comparison of sensitivity, specificity and kappa for gradable and ungradable images by human graders and deep learning algorithm vs. standard reference
in different fundus cameras.

Fundus
Camera

Gradable Images Ungradable Images

Human Graders vs. Reference Standard Deep Learning Algorithm vs. Standard
Reference Human Graders vs. Reference Standard Deep Learning Algorithm vs. Standard

Reference

Sensitivity Specificity Kappa Sensitivity Specificity Kappa Sensitivity Specificity Kappa Sensitivity Specificity Kappa
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

Kowa
Nonmyd 85.6 94.6

0.72
93.5 97.2

0.85
53.2 98.7

0.37
71.5 99.7

0.97

(79.0–90.8) (93.2–95.9) (88.3–96.8) (96.1–98.1) (47.8–58.6) (97.8–1.0) (66.4–76.2) (99.8–1.0)

Kowa
Nonmyd
α-DIII

59.9 99.1
0.68

96.6 95.1
0.72

64.5 98.9
0.75

81.6 99.7
0.88

(53.3–66.3) (98.7–99.4) (93.3–98.5) (94.3–95.9) (61.0–67.9) (97.8–1.0) (78.6–84.2) (99.1–1.0)

Kowa
Nonmyd 7 81 96.7

0.8
97.9 93.7

0.86
52.5 99.5

0.66
91.5 99

0.81

(76.9–84.6) (95.6–97.5) (96.1–99.0) (92.3- 94.8) (43.2–61.8) (99.1–1.0) (85.0–95.9) (98.9–1.0)

Kowa
Nonmyd WX 43.6 96.4

0.39
89.7 97

0.72
60 99.7

0.74
84.4 98.7

0.91

(27.8–60.4) (94.7–97.7) (75.8–97.1) (95.4–98.1) (44.3–74.3) (99.5–1.0) (70.5–93.5) (98.4–1.0)

Kowa VX 10
α

57.4 96.7
0.61

98.7 93.3
0.84

88 99.3
0.66

54.3 99.7
0.95

(49.1–65.5) (94.9–98.0) (95.2–99.8) (90.9–95.2) (84.5–91.0) (99.1–1.0) (49.3–59.2) (99.1–1.0)

Kowa VX 20 62.6 99.5
0.72

91.9 96.9
0.75

22.7 99.9
0.93

95.1 99.1
0.67

(55.5–69.4) (99.2–99.7) (87.2–95.3) (96.2–97.5) (19.1–26.7) (99.7–1.0) (92.8–96.9) (97.4–1.0)

Kowa
Nonmyd 7 74.6 96.5

0.68
94.6 98.2

0.88
30.7 98.2

0.3
96.4 98.9

0.97

(65.4–82.4) (95.3–97.5) (88.5–98.0) (97.3–98.9) (65.4–36.6) (98.0–1.0) (95.1–97.5) (98.6–1.0)

Nidek AFC
210 77.4 99.2

0.82
98.4 95.4

0.8
84.8 99.4

0.91
39.6 99.7

0.51

(72.3–82.0) (98.8–99.5) (96.2–99.5) (94.6–96.2) (72.3–89.5) (99.2–1.0) (36.2–43.0) (99.2–1.0)

For all the four comparisons, p < 0.001.
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5. Discussion

Early detection and timely treatment are essential in order to avoid vision loss due
to DR. The recent advent of AI-based algorithms on fundus imaging has made it easier
to increase patient access to DR screening and timely referral of individuals with sight-
threatening DR to ophthalmologists. In this study we assessed the influence of non-
mydriatic fundus cameras of different specifications on the diagnostic performance of the
deep learning algorithm to diagnose referable DR in comparison with the regional graders.
The diagnostic performance and agreement was compared between the deep learning
algorithm and the standard reference in the assessment of grading fundus images. We
assessed the performance of human graders and deep learning algorithm in both gradable
and ungradable images.

We report here that the deep learning algorithm shows a high sensitivity, specificity
and kappa (both gradable and ungradable images) than human graders relative to the
standard reference for the detection of DR with images taken from fundus cameras of
different specifications. This is similar to the results of Gulshan et al., where the same
deep learning algorithm used images from a variety of cameras, including Centervue
DRS, Optovue iCam, Canon CR1/DGi/CR2, and Topcon NW. EYEPACS-1 shows 97.5%
sensitivity and 93.4% specificity whereas Messidor-2 shows 96.1% sensitivity and 93.9%
specificity [10].

Ting et al. validated a deep learning system from the Singapore national DR Screening
Program to detect referable DR, vision threatening DR, and related eye diseases (referable
possible glaucoma and referable AMD) [5]. Their analysis used a range of retinal cameras
with a resolution of 5–7 megapixels. The sensitivity and specificity for referable DR was
90.5% (95% CI 87.3–93.0%) and 91.6% (95% CI 91.0–92.2%) respectively, and for STDR the
sensitivity and specificity were 100% (95% CI 94.1–100.0%) and 91.1% (95% CI 90.7–91.4%)
respectively. The deep learning system showed consistent diagnostic performance across
images of varying quality and different camera types. The dataset included poorer quality
images, including ungradable ones, which resulted in a somewhat lower performance
of the deep learning system (AUC, 0.936). However, the diagnostic accuracy of the deep
learning system based on the different camera types was not done.

One of the main reasons for varying sensitivity in both gradable and ungradable
images might be due to the visibility of lesions from different types of fundus cameras. In
addition, the graders experience level, knowledge, differences in the room setup, lighting
conditions and the visibility of lesions may vary in the images taken from different types of
fundus cameras as a result of the different resolutions.
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To the best of our knowledge, this is the first study that has looked at the influence
of non-mydriatic retinal cameras with different specifications on the performance of DL
algorithm and human graders in both gradable and ungradable images. This study also has
a few limitations. The sample size is lower in the category of ungradable images and patient
demographics are not the same across the different cameras. Furthermore, the analysis
does not include images taken from mydriatic fundus cameras and smartphone-based
fundus cameras as the study was not designed to explore this possibility. It would also be
good to compare newer network models or other deep learning network models which
might show a better performance across the camera’s. The ideal data set to compare the
performance of AI algorithm across different camera would be the same patient images in
different camera’s. However, in real world setting, the results from the present study seem
to suggest a better performance of AI algorithm as compared to regional grades across
different cameras. Future prospective studies are required to address these limitations.

Our study demonstrated that the deep learning algorithm performs better than the
human graders, irrespective of images taken from fundus cameras of different specifications
with both gradable and ungradable images.
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