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Abstract: We studied how brain volume loss in old age is affected by age, the APOE gene, sex, and
the level of education completed. The quantitative characterization of brain volume loss at an old age
relative to a young age requires—at least in principle—two MRI scans, one performed at a young age
and one at an old age. There is, however, a way to address this problem when having only one MRI
scan obtained at an old age. We computed the total brain losses of elderly subjects as a ratio between
the estimated brain volume and the estimated total intracranial volume. Magnetic resonance imaging
(MRI) scans of 890 healthy subjects aged 70 to 85 years were assessed. A causal analysis of factors
affecting brain atrophy was performed using probabilistic Bayesian modelling and the mathematics
of causal inference. We found that both age and sex were causally related to brain atrophy, with
women reaching an elderly age with a 1% larger brain volume relative to their intracranial volume
than men. How the brain ages and the rationale for sex differences in brain volume losses during the
adult lifespan are questions that need to be addressed with causal inference and empirical data. The
graphical causal modelling presented here can be instrumental in understanding a puzzling scientific
area of study—the biological aging of the brain.

Keywords: MRI; Causal inference; brain atrophy; MCMC sex differences; probabilistic Bayesian
modelling

1. Introduction

Historically, the investigation of brain volume variations with age can be classified
into at least three well-defined periods: the era of autopsies, followed by the utilization of
magnetic resonance imaging (MRI), up to the present time, which is dominated by a com-
putational anatomy approach, making use of MRI leveraged with data-analytical methods.

Early evidence of the effect of ageing on the brain size and structure comes from
autopsy studies conducted in the 19th century that indicated that brain weight decreased
slowly but surely with age [1,2]. Autopsies helped to solidify the commonly held belief that
brain weight is stable between 20 and 50 and progressively decays thereafter. Large-sample
autopsy-based studies, still prior to the MRI era, suggested that brain weight reached its
maximum in the late teens and declined very slowly (0.1–0.2% a year) up to the 60 s and
70 s, after which the decline became faster [3,4]. In a 1980 study [5], the weights of fresh
brains from autopsies of 1261 subjects aged from 25 to 80 showed that the brain mass
decreased rapidly after the age of 80. It also indicated different atrophy patterns based
on ethnicity and sex. Around the same time, brain autopsies showed that a progressive
decline in brain weight begins at approximately 45 to 50 years of age and reaches its lowest
values after 86 [6]. The authors of the study postulated that the maximum brain weight
attained in young adults is reached at 19 years of age, estimating an accumulated loss of
brain weight of 11% between the ages 19 and 86 and detecting differential rates of change
in brain weight depending on age and less so on sex. However, studies based on autopsies
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present problems of reliability and selection bias, and, most importantly, they cannot tell us
anything about cerebral atrophy in living individuals. The advent of noninvasive imaging
changed this.

Magnetic resonance imaging—and, before that, computed tomography—created the
possibility of noninvasively and repeatedly measuring the cerebral volume in vivo [7].
Imaging studies revealed global volume losses and regional variations as major effects
of ageing on the brain. Nevertheless, the estimates of volume and tissue losses required
manual outlining and the a priori selection of brain areas [8,9].

The advent of new computerized methods that are sensitive to variations in the size,
shape, and tissue characteristics of brain structures represent the most recent stage in
the study of brain anatomy in ageing, offering a new set of tools that were unknown to
previous researchers who needed to rely upon autopsies and the manual outlining of MRI
and tomographies [10]. Specifically, the game-changer event was the development of voxel-
based morphometry (VBM), a whole-brain technique for characterizing regional cerebral
volume and tissue concentration differences in structural magnetic resonance images. MRI
studies with automatic segmentation of ageing brains in vivo have proliferated since then.

There is growing evidence that age has a stronger influence on brain structure in older
patients than it does in younger adults, but the onset and the type of decline (linear or
nonlinear) depend on the tissue and brain region [11,12]. The common understanding
of tissue atrophy indicates that the onset of grey matter atrophy may occur in young
adulthood, at approximately 18. White matter, on the other hand, remains relatively stable
until old age. Although there is no theory of human brain ageing available that is capable
of making robust predictions about brain growth and atrophy, we know that rapid growth
occurs during childhood/adolescence, with a particularly dramatic growth rate during
the first 3 months, at approximately 1% per day, reaching half of the adult brain volume
by the end of the first 3 months [13]. Between 18 and 35 years old, the brain experiences
a period of consolidation with no significant brain tissue loss. After 35 years, Hedman
and colleagues [14] suggested that a steady volume loss of 0.2% per year occurs, which
accelerates gradually to an annual brain volume loss of 0.5% by age 60. After 60, the same
study indicated a steady volume loss of more than 0.5% per year.

Fjell et al. [15] observed a nonlinear decline across chronological age in the hippocam-
pus and caudate, but they observed linear decline slopes for the thalamus and accum-
bens. In [16], cortical thinning was found to be significantly altered by hypertension and
apolipoprotein-Ee4 (APOEe4), with frontal and cingulate cortices thinning more rapidly
in APOEe4 carriers. Additional longitudinal studies have found different brain atrophy
patterns according to clinical conditions, including cognitive decline and Alzheimer’s dis-
ease [17–19] and multiple sclerosis [20]. Nonetheless, the small sample size and the lower
reliability of the segmentation of small structures are recognized caveats in longitudinal
studies [21].

A number of studies have used a ratio of brain volume to estimate the total intracranial
volume in the context of studying ageing and sex diphormism [22,23]. The total intracranial
volume has been used as a correction factor for head size variability when assessing total
brain volume [24] and as a covariate in regression analysis to investigate the role played by
sex in neuroanatomical volume differences [25]. There is contradictory evidence regarding
sexual dimorphism in neuroanatomical structures [26,27], and the differences in the volume
found could be attributed to the intracranial volume normalization method used [28].

In the machine-learning literature, brain age is understood as the model estimate to
be compared with the given or chronological age [29]. However, this approach depends
on the model’s capacity to accurately predict the brain’s biological age. New cellular and
molecular approaches to brain senescence and decline, such as transcriptome profiling [30],
DNA methylation [31], and immune metrics such as the inflammatory clock of ageing
(iAge) [32], represent opportunities to understand the divergence between biological age
and chronological age.
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In this work, we depart from the usual correlational and linear regression approach to
assessing sex- and age-related differences in brain volume. Here, we used directed acyclic
graphs [33] to investigate whether there is a direct causal relationship between sex and
brain atrophy in normal elderly subjects. We approximated brain atrophy as the ratio
between the brain volume and a proxy of the brain’s maximum size reached at some point
at a young age.

By quantifying, albeit approximately, the brain volume loss at an older age relative to
its upper bound at a young age, we can make educated guesses about the effect of brain
ageing in a person. The mismatch between the actual brain volume and the expected brain
volume according to the person’s age may contain valuable information, enabling us to
better understand brain ageing dynamics.

2. Methods
2.1. Study Participants

The dataset used here came from a single-centre, observational cohort study of
1213 subjects [29,34,35]. The participants were home-dwelling elderly volunteers, aged
69 to 85, without relevant psychiatric, neurological, or systemic disorders. Of the initial
1213 subjects, those who were diagnosed with MCI or dementia, plus those who lacked
a brain MRI, were excluded from our analysis, resulting in a cohort of 890 healthy el-
derly subjects. After signing informed consent forms, the participants underwent a yearly
systematic clinical assessment, including medical history evaluations, neurological and
neuropsychological exams, blood collection, and brain MRI.

Ethical approval was granted by the Research Ethics Committee of the Instituto de
Salud Carlos III (CEI PEI 46 2011-v2014), and written informed consent was obtained
from all of the participants. The authors assert that all procedures contributing to this
work comply with the ethical standards of the relevant national and institutional com-
mittees on human experimentation and with the Helsinki Declaration of 1975 and its
later amendments.

The ordinal encoding system of educational attainment was as follows: 0—no formal
education, 1—primary education, 2—middle or high school degree, and 3—university
degree. Cognitive status was determined with the Mini-Mental State Examination (MMSE),
the Free and Cued Selective Reminding Test (FCSRT), semantic fluency testing, the Digit-
Symbol Test, and the Functional Activities Questionnaire (FAQ). Memory loss is among the
first and most important symptoms of patients suffering from Alzheimer’s disease (AD)
and mild cognitive impairment (MCI), and although it is not uncommon to refer to the
type of neuropsychological assessment performed in this study as a memory test, cognitive
status is a more suitable term. For a more detailed description of the neuropsychological
protocols used to assess the cognitive function of the participants in this study, see [36].

The APOE genotype was studied using total DNA isolated from peripheral blood
following standard procedures. The APOE variable was coded 1 for the presence of at least
one e4 carrier and 0 for noncarriers. A family history of AD was coded as 0 for subjects with
no parents or siblings diagnosed with dementia and 1 for those with at least one parent or
sibling diagnosed with dementia.

2.2. MRI Data Acquisition and Preprocessing

The imaging data were acquired in the sagittal plane on a 3T General Electric scanner
(GE Milwaukee, Milwaukee, WI, USA), utilizing T1-weighted inversion recovery, a supine
position, a flip angle of 12◦, a 3-D pulse sequence: echo time Min. full, a time inversion of
600 ms, a receiver bandwidth of 19.23 kHz, a field of view of 24.0 cm, a slice thickness of
1 mm, and freq phase 288. The brain volume loss at the moment of MRI compared to the
maximum brain volume was computed as the brain segmentation volume compared to the
estimated total intracranial volume (eTIV) [37] as a ratio (ICV and eTIV, the FreeSurfer term
for intracranial volume, are used equivalently). ICV and eTIV are used interchangeably.
The postprocessing was performed with FreeSurfer [38,39], version freesurfer-darwin-OSX-
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ElCapitan-dev-20190328-6241d26, running on a Mac OS X, product version 10.14.5. For the
sake of illustration, Figure 1 shows the results produced regarding the intracranial volume
segmentation for two subjects in the study.
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Figure 1. Axial views of the brain and their membranous envelopes obtained from two subjects in
this study. The Brain2ICV or brain-volume-to-intracranial-volume ratio was Brain2ICV = TBV/
eTIV = 929,035/1,460,465 = 0.7196 for the left figure, and Brain2ICV = TBV/eTIV = 929,035/
132,7593 = 0.6997 for the right figure. (a) Male subject, 74 years old, Brain2ICV = 71.96%; (b) Female
subject, 76 years old, Brain2ICV = 69.97%.

The total intracranial volume acts as a scaffolding of the brain and sets an upper bound
for the brain’s volume. Accordingly, it is possible to build a proxy of the brain atrophy that
an elderly person went through in their adult life by calculating the ratio between the brain
volume (TBV) and the total intracranial volume (eTIV), which represents the upper limit of
the brain volume. Thus, the ratio of the brain volume to the intracranial volume is defined
as Brain2ICV = TBV/eTIV.

The estimated intracranial volume (eTIV) obtained from FreeSurfer is not based on
the direct segmentation of all structures within the skull demarcation; rather, its estimation
depends on the alignment between the T1 skull boundaries and the average brain based
on 305 T1-weighted MRI scans [40,41]. Measurements of total brain volume (TBV) with
FreeSurfer are robust across field strengths [42], and variations in individual head size
are corrected in the assessment of brain volume losses at an older age relative to their
upper bound at a young age (Brain2ICV) by normalizing them against the total intracranial
volume [43].

2.3. Statistical Data Analysis

Table 1 includes a description of the variables considered in this study, providing the
mean and the standard deviation for the continuous variables—age, cognitive test score,
and the brain volume to intracranial volume ratio (Brain2ICV)—and the classes, together
with the number of elements for each class, for the categorical variables—sex, APOE, family
history of AD, and school level. To assess the strength of the linear association between
Brain2ICV and the predictor variables, we performed Pearson’s correlation, point biserial
correlation, and an analysis of variance, depending on whether the variable was continuous,
dichotomous (as in the case of sex, family history of AD, and APOE), or discrete with more
than two values (as in the case of school level). A hypothesis test was performed to study
the significance of the Pearson’s correlation coefficient.
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Table 1. Summary of the variables used in the study: age, sex, APOE, school level, family history
of AD, cognitive test score, and the estimated ratio between the brain and intracranial volumes
(Brain2ICV). The mean and the standard deviation are displayed for the continuous variables, and the
size of each class is displayed for categorical variables. The cognitive score is an aggregate measure
of the results of the Mini-Mental State Examination (MMSE), Free and Cued Selective Reminding
Test (FCSRT), Semantic Fluency, Digit-Symbol Test and Functional Activities Questionnaire (FAQ).

Variables Mean SD

Age 74.72 3.86
Cognitive Score 9.41 2.66

Brain2ICV 0.70 0.03

Total %

Sex
Male 303 34.04

Female 587 65.96
APOE

Noncarriers 726 81.57
Heterozygous e4 157 17.64
Homozygous e4 7 0.79

Level of education
No formal education 170 19.10
Primary education 265 29.76

High school 224 25.17
University 231 25.96

Family history of AD
No 670 75.28
Yes 220 24.72

2.4. Causal Data Analysis

Correlation is the degree to which two variables show a tendency to vary together.
Causality, on the other hand, is the relationship between an observed effect and what
caused it.

For variable C to cause another variable E, (C→E), there must be a flow of information
from cause C to effect E. Here, we intended to identify the causal paths built on top of the
correlation paths that link one or more causes with an effect, specifically, the variables that
causally affect Brain2ICV. Thus, we aimed to study the causal connections between the
correlated variables using probabilistic Bayesian modelling [44] and the mathematics of
causal inference proposed by Pearl [45].

Bayesian model selection aims to compute the posterior distribution, which contains all
of the information needed regarding the model parameters. The posterior distribution also
allows us to generate predictions based on the actual data and the estimated parameters.
Once we have the posterior distribution, we can make predictions, yˆ, based on data, y, and
the estimated parameters, θ.

In Bayesian inference, the highest density interval (HDI) is the summary credible
interval for the posterior distribution. Thus, all θ values inside the HDI have a higher
probability density, i.e., credibility, than any value outside the HDI. For example, 95% HDI
defines an interval spanning 95% of the distribution so that every point inside the interval
has higher credibility than any point outside the interval and the total probability of all
such θ values is 95%. The posterior predictive distribution is an average of the conditional
predictions over the posterior distribution of θ (Equation (1)):

p(ŷ|y) = p(ŷ|θ)p(θ|y)dθ (1)

Bayesian networks are probabilistic graphical models that represent the dependencies
of a set of variables and their joint distribution [46]. Specifically, a Bayesian network is
a graph with directed edges (associations) and with an acyclic structure, that is, a node
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cannot be its own ancestor or descendant. The underlying causal graph structure provides
qualitative information about the conditional independencies of the variables of interest.

Directed acyclic graphs, or DAGs for short, are used to model a priori causal assump-
tions [47]. Each node represents a random variable, and the arrows represent directed
causal paths, i.e., the potential flows of causation among the nodes. DAGs provide a
graphical representation of the causal relationships between variables as postulated by
the modeller. Accordingly, causal analysis requires one to postulate up front, before the
process that generates the data, that is, it requires the modeller’s input, which must always
be informed by empirical evidence. The identification of causal associations will conse-
quently depend on the model’s complexity. Causal graphs are incrementally being used,
for example, in modern epidemiology to assess causal effects, allowing for the intuitive
interpretation of the underlying data-generating process [48,49].

Figure 2 shows the DAG used to model the causal relationships between the variables
in this study. The DAG expresses the recognition that a large part of the structure of causal
inference is derived from multivariate relationships. A causal model of two variables—for
example, age and brain atrophy—needs to be complemented with additional factors of
interest, notably sex. Furthermore, the notion that age causes changes in the brain volume,
vasculature, and cognition is uncontested [50,51].
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Figure 2. Directed acyclic graph (DAG) that postulates causal relationships between the variables in
the study. Variable C in a causal diagram can only causally affect variable E when there is a direct
path from C to E. Based on the DAG, sex directly influenced Brain2ICV, school level and age directly
influenced Brain2ICV, and memory and school level directly influenced memory. The term “memory
test” needs to be understood as an abridged version of the neuropsychological cognitive assessments
defined in Section 2.1.

The causal graph structure shown in Figure 2 provides qualitative information about
the conditional independencies of the variables of interest. We are interested in clarifying
the causal structure in the coloured nodes depicted in Figure 2, that is, how sex and age
affect Brain2ICV. Sex and age were, according to the DAG, the only two relevant variables
that directly influenced Brain2ICV. It is worth remarking that a DAG cannot be directly
generated from observational data alone; the structure of the DAG makes use of expert
knowledge. Once the DAG is in place, it can be used to guide interventions that substantiate
the causal reasoning that emanates from the DAG.

Although the association between age and brain atrophy is indisputable, the question
of how sex mediates brain atrophy is unclear, with studies suggesting that the ratio of the
total brain volume to intracranial brain volume is higher either in men [27] or in women [25].
The question we aimed to answer can be expressed as follows: Is there a direct causal
relationship between sex and Brain2ICV?

As previously stated, causality cannot be answered through the use of data alone,
and a model of the process that generated the data is required. To investigate the relation-
ship between sex and Brain2ICV, we built the probabilistic Bayesian model expressed in
Equations (2a)–(2d):

Bi∼ N(µi, σ) (2a)
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µi = γX[i] (2b)

γj ∼ N(0, 1), for j = 1, 2 (2c)

σ ∼ Hal f Normal(1) (2d)

where Bi denotes the variable Brain2ICV or the ratio between the brain volume at an old
age and the maximum brain volume at a young age for Subject i, and this is normally
distributed with a mean µi and a standard deviation σ. The index variable for sex γj, with
the index j = 1, 2, represents the average of Brain2ICV for male (j = 1) and female (j = 2)
subjects (no order implied), which are normally distributed using the same prior, N(0, 1),
for both male and female subjects [52]. The prior σ is assumed to be normally distributed,
half-normally to be exact, with a standard deviation equal to 1 (a half-normal distribution
can be directly sampled from a normal distribution by taking the absolute value of each
sampled value).

3. Results

We first present the results of the statistical and correlation analysis in Section 3.1. Then,
in Section 3.2, we describe the causal inference results using probabilistic programming
and causal diagrams.

3.1. Statistical and Correlation Analysis

Figure 3 shows violin plots of age grouped by sex (Figure 3a) and Brain2ICV grouped
by sex (Figure 3b). Hypothesis testing of the ages of men and women showed no difference
between the two groups, with p = 0.572 (Figure 3a). However, the test for the means of
the Brain2ICV values for men and women (Figure 3b) yielded p = 2.583−8, which is less
than the threshold of 1%, thus disproving the null hypothesis. According to Figure 3b,
women, on average, entered old age (70 or older) with slightly less brain atrophy than men,
as explained by the brain-to-intracranial-volume ratio variable (Brain2ICV).
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Figure 3. Violin plots of sex distribution (left) and Brain2ICV grouped by sex (right). The t-test for the
means of the two independent samples of scores composed of the ages of men and women showed
no difference between the groups (p = 0.572). (a). The t-test for the means of the Brain2ICV of men
and women showed a p value of 2.583−8 < 0.01 (b). (a) Plot of the ages of the participants grouped
by sex. The distribution of age was µM ± σM = 74.64 ± 3.83 for men and µF ± σF = 74.79 ± 3.91
for women. (b) Plot of Brain2ICV grouped by sex. The Brain2ICV distribution for men was
µM ± σM = 0.697 ± 0.026, and for women, it was µF ± σF = 0.708 ± 0.028.
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Figure 4 shows the statistical dependence between every pair of variables in the study.
The variables with the largest Pearson’s correlation coefficients with Brain2ICV were age
(ρ = −0.33), sex (ρ = 0.19), and memory score test results (ρ = 0.14).
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Figure 4. Correlation matrix of the variables used in this study. The variable of interest, brain volume
to intracranial volume (Brain2ICV), is depicted in the last row. Age showed the strongest linear
correlation with Brain2ICV (ρ = −0.33), followed by sex (ρ = 0.19) and memory test score (ρ = 0.14).
School level, APOE, and family history of AD showed no correlation with Brain2ICV.

Table 2 shows the analysis of variance (ANOVA) conducted with a linear ordinary
least squares (OLS) model [53]. We were interested in the variables that may have an effect
on Brain2ICV, which, according to the DAG depicted in Figure 2, were age, APOE, family
history of AD, sex, and school level. According to Table 2, both age and sex had p values
less than the significance level of 1%; therefore, the null hypothesis—that age and sex have
no effect on the brain-to-ICV ratio—can be rejected. The variable cognitive test was not
included since we were interested in variables that potentially caused Brain2ICV, that is to
say, the directionality of the arrow must be directed towards Brain2ICV.

Table 2. Summary of the results of the analysis of variance with a linear OLS model performed for
each predictor. Both age and sex scores showed p values for F statistics less than the significance
level of 0.01, enabling us to reject the null hypothesis (i.e., age/sex has no effect on the brain-to-ICV
ratio). The APOE gene, familial AD, and the level of education completed, on the other hand, did not
exhibit statistically significant effects on brain atrophy. A complete summary table of the OLS model
is provided in the Supplementary Materials, Table S1 (** p ≤ 0.01).

F PR(>F)

Age 119.694 ** 3.242 × 10−26

Sex 32.746 ** 1.438 × 10−8

APOE 1.099 2.948 × 10−1

Family history of AD 1.022 3.124 × 10−1

Level of education 3.530 6.058 × 10−2
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3.2. Causal Analysis

To answer the question, Is there a direct causal relationship between sex and
Brain2ICV? we proceeded by studying the difference in Brain2ICV values between the
male and female groups. We are thus interested in the difference between the two groups,
rather than in the expected brain atrophy for each sex group, which was already shown in
Figure 3b. To compute this contrast, we used samples from the posterior distribution; that
is, we fit the model shown in Equations (2a)–(2d) to the data to have access to the posterior
distribution of the difference or the contrast between the male and female groups.

Table 3 shows the posterior distribution of the three parameters declared in
Equations (2a)–(2d) (µ1, µ2, σ) and the posterior of the difference between the mean brain
atrophy values between the male group and the female group, or µ1 − µ2.

Table 3. The posterior distribution (µ, σ and high posterior density interval (HDI)—the shortest
interval containing a given portion, e.g., 97%, of the probability density) of the model’s parameters
in Equations (2a)–(2d). The first two rows present the expected Brain2ICV (the ratio between the
brain volume and the intracranial volume) in each sex group (1 for men, 2 for women), the third row
shows the standard deviation, and the last row denotes the expected difference in Brain2ICV between
(1) men and (2) women. The contrast, µ1 − µ2, of the average Brain2ICV between men and women
was always negative, which indicates that women’s brains showed less atrophy than men’s brains
(µ2> µ1).

Mean sd HDI 3% HDI 97%

µ1 0.697 0.002 0.694 0.70
µ2 0.708 0.001 0.706 0.71
σ 0.027 0.001 0.026 0.028

µ1 − µ2 −0.011 0.002 −0.014 −0.007

The interpretation of the parameters in Table 3 is straightforward; the mean and
standard deviation of the posterior distribution of Brain2ICV in men were 0.697 ± 0.002,
whereas for women, these were 0.708± 0.001. More importantly, the difference between the
posterior distribution of the means showed that women entered old age with approximately
1% less atrophy than men, 0.011 ± 0.002. The high posterior density interval (HDI) was
always negative; that is, when comparing the distribution of men and women, the area
of the distribution of the Brain2ICV results for women was larger than that of men. Note
that the HDI is not the same as a confidence interval. HDI is the probability of a variable
having some value, whereas a frequentist confidence interval contains or does not contain
the true value of a parameter since, in the frequentist philosophy, parameters are treated as
nonrandom objects [54]. The kernel density estimates (KDE) of the Bayesian posterior of
parameters µ1, µ2, and σ, as well as the model evaluation, are provided in the Supplementary
Materials (Figures S1–S4).

Previous correlational brain volumetric studies have suggested sex differences [28],
with women having generally larger volumes after adjusting for total intracranial vol-
ume [25]. Our results, for the first time, show brain volumetric diphormism in the ageing
brain using Bayesian statistical inference and posterior analysis, rather than point esti-
mates [55,56].

Now we are in a position to affirmatively answer the question posed above. Sex
has a direct effect on Brain2ICV. The expected difference or contrast between the sample
means of female and male brains in relation to intracranial volume (Brain2ICV) shows that
Brain2ICV was larger for women.

4. Discussion

Methodologically speaking, this work departs from comparing differences between
groups via point estimates and statistical testing. The pitfalls and difficulties associated with
the statistical testing approach have been abundantly and convincingly described [57–59],
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and we will therefore not linger further on this point. We followed a Bayesian approach to
estimate posterior probability distributions rather than point estimates. It is worth noting
that under the Bayesian outlook, probabilities are tools to quantify uncertainty [60,61]. Thus,
we used probability distributions to summarize the entire plausibilities of each possible
value of the parameter defined in the model. For example, the posterior distribution of the
mean Brain2ICV in the female group entirely lay on the positive side, so we are confident
that female sex and Brain2ICV were positively associated. The opposite occurred for men,
with the posterior lying entirely on the negative side, which indicates that male sex and
Brain2ICV were negatively associated (Figure 5). Both observations indicate that elderly
women have, on average, less brain atrophy than elderly men (Table 3).
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Figure 5. Forest plot comparing the effect of age and sex on Brain2ICV, separately and together, in
multiple regression. From top to bottom, the first two bars (in blue) represent the contrast in the
multiple regression model, Age + Sex→ Brain2ICV. The two middle bars (in orange) represent the
posterior of sex in the simple linear regression model Sex→ Brain2ICV. The blue bottom bar depicts
the posterior of age in the multiple regression model, Age + Sex→ Brain2ICV, and the green bar
depicts the posterior of age but this time for the simple regression model, Age→ Brain2ICV. Once we
know age (green bar at the bottom), there is no additional information derived from also knowing sex
(blue bar at the bottom) because the mean and the uncertainty remain mostly unchanged. Likewise,
if we know sex (orange bars), there is no significant information gain in also knowing age (blue bars
at the top).
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The final goal of our methodological undertaking was to achieve a causal understand-
ing of the factors at play in the variability of brain volume loss in ageing. To state that
age causes ageing is a platitude. However, behind this innocuous statement hides one
of the defining scientific challenges of our time. Is ageing inevitable, and can we devise
interventions aimed at modifying the ageing process? Since we lack a theory of ageing, the
question of what causes ageing and how it progresses is shrouded in uncertainty.

There are at least two main reasons for the lack of attention that causal reasoning
has received in the scientific literature. One is historical and obeys reasons related to the
personal preferences of leading scientists. As magisterially recounted by Judea Pearl in [45],
causality was deliberately removed from statistics by Karl Pearson, who considered cause
and effect animistic and unscientific concepts to be replaced by contingency tables which,
in Pearson’s mind, were “the ultimate statement of the scientific description between two
things” [62]. The second and most important reason for the neglect of causality is that
correlations, contrary to causal conclusions, do not require a controlled experiment and are
therefore easy to compute.

Although correlations have proven to be an extraordinarily successful tool to quantify
pairwise relationships, correlations are lacking in situations where variables cannot be
isolated. In such a scenario, we need to understand how the different variables interact
with each other, which entails incorporating the direction in the association between two
variables. A variable may cause another, and this cannot be accounted for with correlations,
which are by definition symmetric.

The causal link between age and brain atrophy is well known, and the notion that age
causes changes in brain volume, vasculature, and cognition is uncontested [50,51]. We are,
however, interested in understanding whether there is an additional predictive power for
Brain2ICV contained in knowing the sex if we already know the age.

Formally, in the language of causal inference, Brain2ICV is a collider, X→Z←Y (X-
sex, Yage, and Z Brain2ICV). In a collider, conditioning on Z could induce a statistical
association between X and Y, misleading us into thinking that age changes with sex, which is
not the case. This is addressed in the multiple regression model (Supplementary Materials
Equations (S1a)–(S1b)), where we quantify each effect—age on Brain2ICV and sex on
Brain2ICV. We find that sex and age are conditionally independent Y
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Z|X (Y is not associated with Z, after
conditioning on X). Therefore, we can conclude that once we know the age of a subject, also
knowing the subject’s age conveys little information in predicting their Brain2ICV.

This study is not without limitations. First, we used whole-brain segmentation data
without differentiating between brain tissues or anatomical brain structures. Second,
the total intracranial volume is not static throughout life, as a recent longitudinal study
suggests [11]. Earlier studies also suggested that skull thickening may influence the
measurement of intracranial volume [63,64]. However, Brain2ICV was herein used as a
proxy for brain atrophy and not as an actual measure of brain atrophy. Brain volume
loss at old age relative to young age requires the availability of MRI scans performed in
both young and old age. We overcame this limitation by computing the ratio between
the estimated total brain and total intracranial volumes. Thus, having only one MRI, it
is possible to ascertain the diminution in brain volume within the cranium relative to the
brain volume at a young age with the caveats mentioned.

5. Conclusions

The goal of this work was to study how brain atrophy is affected by factors such as
age, the APOE gene, sex, and the level of education completed. We conceptualized the
brain as a dynamic system inside a fossil container, setting the upper limit of brain volume.
Accordingly, the ratio of the total brain volume to the total intracranial volume represents
the percentage of the volume occupied by the brain inside the cranium. Here, this was
used as a proxy of the maximum brain volume at a young age.
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We found that among the variables considered in this study—age, APOE, family
history of AD, sex, and school level—only age and sex affected Brain2ICV. Age was, as
expected, negatively associated with Brain2ICV. The older the brain is, the smaller the ratio
between the brain volume and the intracranial volume. More interestingly, we found that
sex played a role in brain atrophy, with women having on average 1% larger Brain2ICV
values than men. This finding is in agreement with previous works that identified sex
differences in the brain during ageing and in neurodegenerative diseases. In particular, the
thesis that women may have more youthful brains than men is supported by forensic and
postmortem studies [5,6]. This hypothesis has been tested very recently in vivo with PET
imaging, showing more persistent metabolic youth in the ageing female brain than in the
male brain [65].

Part of the novelty and interest of this study relies upon its methodological underpin-
nings, which depart from point estimates and linear associations between variables. We
used Bayesian probabilistic programming to study, in a principled way, causal inference,
combining the flexibility of Bayesian probability and the applicability of sampling theory
in a coherent decision-theoretical framework.

Supplementary Materials: The supporting information can be downloaded from: https://www.
mdpi.com/xxx/s1. Table S1: Summary table of OLS model brain2icv age + sex + apoe + school level
+ familial AD [53]. Figure S1: On the left, the KDE of the age of the participants in the study and
on the right, the volumetric estimate of the brain to ICV ratio. The skewness of the former is due
to the study design which starts with 69 years old and the brain volumetric estimates follows as
expected a Gaussian curve. Figure S2: Posterior distribution (left-hand) and sampling (right-hand)
for parameters µ1, µ2, σ (from top to bottom, Brain2ICV mean for men, Brain2ICV mean for women
and Brain2ICV standard deviation) using PyMC3 [66]. On the left, kernel density estimation (KDE) of
the three parameters µ1, µ2, σ is plot for 4 parallel chains(X-axis represents the value of the parameter
and the Y-axis the Frequency). On the right, the individual sampled values at each step during the
sampling for the 4 chains for each parameter(X-axis represents the sample number and the Y-axis
the sample value). Figure S3: The black line is a KDE of the observed data, and cyan lines are KDEs
computed from each one of the 100 posterior predictive samples. The cyan lines reflect the uncertainty
about the inferred distribution of the predicted data. The mean and the variance of the simulated data
properly match the actual data. Figure S4: Posterior distribution (left-hand) and sampling (right-hand)
for parameters α, βA, σ using PyMC3 [66]. On the left, kernel density estimation (KDE) plot for each
of the 4 parallel chains plotted in different color run for each parameter µ1, µ2, σ (X-axis represents
the value of the parameter and the Y-axis the Frequency). On the right, the individual sampled values
at each step during the sampling for the four chains for each parameter(X-axis represents the sample
number and the Y-axis the sample value). The slope (βA) is −0.33 (one standard deviation in age
induces one third of change in the opposite direction in Brain2ICV) and a is as expected 0, since the
data are normalized. Equations (S1a)–(S1b): that generates the data, that is to say, it requires the
modeler’s input. The identification of causal associations will be consequently dependent on the
model’s complexity. For example, in our case, since we are interested in the effect of Sex and Age on
Brain2ICV and both predictors are conditional independent, the causal analysis is fairly simple.
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