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Abstract: To explore the phylogenetic relationships of the subfamily Centrotinae from the mitochon-
drial genome data, four complete mitogenomes (Anchon lineatus, Anchon yunnanensis, Gargara genistae
and Tricentrus longivalvulatus) were sequenced and analyzed. All the newly sequenced mitogenomes
contain 37 genes. Among the 13 protein-coding genes (PCGs) of the Centrotinae mitogenomes, a
sliding window analysis and the ratio of Ka/Ks suggest that atp8 is a relatively fast evolving gene,
while cox1 is the slowest. All PCGs start with ATN, except for nad5 (start with TTG), and stop with
TAA or the incomplete stop codon T, except for nad2 and cytb (terminate with TAG). All tRNAs can
fold into the typical cloverleaf secondary structure, except for trnS1, which lacks the dihydrouridine
(DHU) arm. The BI and ML phylogenetic analyses of concatenated alignments of 13 mitochondrial
PCGs among the major lineages produce a well-resolved framework. Phylogenetic analyses show
that Membracoidea, Smiliinae and Centrotinae, together with tribes Centrotypini and Leptobelini are
recovered as well-supported monophyletic groups. The tribe Gargarini (sensu Wallace et al.) and its
monophyly are supported.

Keywords: treehopper; Gargarini; new synonymy; mitochondrial DNA; phylogenetic analysis

1. Introduction

Membracidae (Hemiptera: Cicadomorpha: Membracoidea) is a relatively large and
widespread family within the superfamily Membracoidea, currently comprising approxi-
mately 3450 species, 428 genera and 9 subfamilies worldwide. Centrotinae, the largest and
the only cosmopolitan subfamily, comprises nearly 1350 species and 216 genera. These
taxa above are mainly distributed in the New World, while a buffalo treehopper species,
Stictocephala bisonia (Kopp & Yonke, 1977), is currently widespread in Europe and Asia after
being introduced by accident [1–3]. Some species are well-documented agricultural pests.
For example, S. bisonia causes apple and other fruit trees to wilt by laying eggs in the twigs
of those trees, Spissistilus festinus (Say) may infest soybeans with such large populations
that ovipositional scars can impact yields, and Metcalfiella monogramma (Germar) may cause
similar damage in avocados [4,5].

Though many phylogenetic studies of higher taxa of Membracoidea (leafhoppers and
treehoppers) have been conducted [6–11], most have focused on the relationships between
subfamilies or tribes within Cicadellidae, while the relationships among tribes and genera
of the family Membracidae remain very poorly understood. Although the monophyly of
Membracoidea (sensu lato, including Cicadellidae) has been well supported by previous
analyses that sampled broadly across Membracoidea or Auchenorrhyncha [12,13], Mem-
bracidae (sensu Deitz & Dietrich, 1993) has not been consistently recovered as monophyletic
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in some recent analyses [9,10,14,15]. Some analyses have also suggested that the largest
membracid subfamily, Centrotinae, is paraphyletic [9,10,14,16]. The only detailed phyloge-
netic analysis of relationships within Centrotinae was based on morphology [3] and their
hypothesis has not yet been tested by incorporating molecular data. The recent anchored
hybrid-based phylogenomic analysis of Membracoidea [12] recovered Centrotinae as a
monophyletic group with strong support and suggested that Centrotinae arose in the New
World and later colonized the Old World. Further analyses incorporating more taxa are
needed to provide a more robust estimate of relationships among tribes within Centrotinae.

Due to the innovation of next-generation sequencing (NGS), the mitogenome has
become an important molecular indicator in the study of insect systematics and has been
widely used in phylogenetic studies of different taxa levels with various insects because of
its maternal inheritance, compositional stability and genetic conservation [17–19]. Although
some studies have indicated that the mitogenome itself is insufficient to resolve the higher-
level phylogeny of Auchenorrhyncha [20–22], analyses based on the complete sequence of
mitochondrial DNA may still help to resolve the ongoing controversies in the classification
and the phylogenetic relationships of the Centrotinae.

2. Materials and Methods
2.1. Specimen Acquisition

The detailed species list of the adult Centrotinae used in the study is shown in Table 1.
All the treehoppers were immersed in 100% ethyl ethanol after capture and stored at a
−20 degrees Celsius freezer to preserve the DNA, and the specimens were identified based
on morphological taxonomic characters [23]. All experimental insects were preserved at
the Entomological Museum of Northwest A&F University.

Table 1. Collection information of the Centrotinae species sequenced this study.

Organism Locality Time Collector

Anchon lineatus Jinghong, Yunnan 8 July 2017 Hu-Kai
Anchon yunnanensis Jinghong, Yunnan 9 July 2017 Hu-Kai

Gargara genistae Northwest A&F University,
Yangling, Shaanxi 13 June 2018 Hu-Kai

Tricentrus longivalvulatus Ruyuan, Guangdong 24 July 2020 Yu-Ruitao

2.2. DNA Extraction, Mitogenome Sequencing, Assembly and Annotation

For sequencing mitogenomes, we used DNeasy DNA Extraction Kit (Qiagen) to ex-
tract the total genomic DNA from thoracic muscle tissues. The NGS (Illumina HiSeq X;
Biomarker Tech, Beijing, China) was employed to determine the four mitogenomes of Cen-
trotinae. A total of 16,902,362/13,815,488/20,016,944/13,564,230 clean paired reads, then
assembled using Geneious 9.0.2 [24] with the mitogenomes of Leptobelus gazella (JF801955)
and Tricentrus brunneus (MK746138) were employed as references. The annotation of the
mitogenomes was performed using Geneious 9.0.2. Furthermore, the MITOS Web Server
(Leipzig, Germany) [25], with the invertebrate mitochondrial genetic code (transl_table = 5),
was made a forecast for the position and secondary structure of the tRNA, and Adobe
Illustrator 2021 was employed to draw manually as the predicted results show. The PCGs
boundaries were recognized by the open reading frames (ORFs) employing translation
table 5 and alignment with homologous reference sequences was performed in Geneious
9.0.2. In addition, CGView Server (http://cgview.ca/ (accessed on 26 June 2021)) [26] was
used to generate the mitogenome maps online.

2.3. Bioinformatic Analysis

The base composition and relative synonymous codon usage (RSCU) values were
computed using RStudio Desktop 1.4.1106 [27] and PhyloSuite v1.2.2 [28]. DnaSP v6 [29]
was utilized to conduct the sliding window analysis (a sliding window of 200 bp and

http://cgview.ca/


Life 2022, 12, 61 3 of 15

step size of 20 bp) and calculate the nucleotide diversity (Pi value) and the ratio of non-
synonymous substitution rate (Ka) to synonymous substitution rate (Ks) of aligned PCGs.
Genetic distances based on the PCGs were estimated employing MEGA X [30] with Kimura
2-parameter. Prism 9.0.0 was used to plot graphically the genetic distances and Ka/Ks
ratios. The Centrotinae species (A. lineatus, A. yunnanensis, G. genistae and T. longivalvulatus)
mitogenome sequences were uploaded on GenBank with accession numbers MZ504904,
MZ504905, MZ504906, and MZ504907, respectively (Table 2).

2.4. Phylogenetic Analysis

For phylogenetic analysis, 55 species of Membracoidea (42 leafhoppers and 13 tree-
hoppers) representing 12 subfamilies in 3 families were considered as ingroups. Outgroups
are four representative species from four families in two different superfamilies: Phi-
laenus spumarius (Cercopoidea: Aphrophoridae: Aphrophorinae), Callitettix braconoides
(Cercopoidea: Cercopidae: Callitettixinae), Magicicada tredecula (Cicadoidea: Cicadidae:
Cicadettinae) and Tettigarcta crinita (Cicadoidea: Tettigarctidae: Tettigarctinae). All species
sequences are available on GenBank (Table 2).

PhyloSuite v1.2.2 was employed to extract the genes. Alignments of all 13 PCGs and
2 rRNA genes were based on Q-INS-i strategy and G-INS-i strategy, respectively, using the
MAFFT v7.313 plugin [31] in PhyloSuite. Gblocks 0.91b [32] was used to remove poorly
aligned regions. Moreover, MEGA X was used to check and correct all alignments manually.
Then, all correctly aligned gene sequences of each species were concatenated.

Based on the PCG123 dataset (all codon positions of the 13 PCGs), phylogenetic
reconstruction was performed. The best-fit partitioning strategies were determined by
PartitionFinder 2 plugin integrated into PhyloSuite [33] employing the “greedy” algorithm
and Bayesian information criterion (BIC) (shown in Tables S1 and S2). IQ-TREE v.1.6.8
was employed to perform a maximum likelihood (ML) analysis [34]. Bootstrap support
(BS) was assessed under 1000 ultrafast bootstraps (UFB) replicates [35]. Bayesian inference
(BI) analysis was performed using MrBayes v3.2.6 [36] with default settings and Markov
chain Monte Carlo (MCMC) runs were performed for 5 × 106 generations sampling every
1000 generations, with the first 25% discarded as burn-in, as implemented in the CIPRES
Science Gateway [37].

Table 2. The mitogenomic sequences used in this study.

Superfamily Family/Subfamily Species Accession Number Reference

Outgroup
Cercopoidea Aphrophoridae/Aphrophorinae Philaenus spumarius NC_005944 [38]

Cercopidae/Callitettixinae Callitettix braconoides NC_025497 [39]

Cicadoidea
Cicadidae/Cicadettinae Magicicada tredecula MH937705 [40]

Tettigarctidae/Tettigarctinae Tettigarcta crinita MG737758 [41]
Ingroup

Membracoidea Cicadellidae/Cicadellinae Bothrogonia ferruginea KU167550 Unpublished
Cicadella viridis KY752061 Unpublished

Homalodisca vitripennis NC_006899 Unpublished
Olidiana ritcheriina MK738125 Unpublished
Taharana fasciana NC_036015 [42]

Cicadellidae/Deltocephalinae Drabescoides nuchalis NC_028154 [43]
Japananus hyalinus NC_036298 [44]

Macrosteles quadrilineatus NC_034781 [45]
Macrosteles quadrimaculatus NC_039560 [46]

Maiestas dorsalis NC_036296 [44]
Nephotettix cincticeps NC_026977 Unpublished

Scaphoideus maai KY817243 [47]
Scaphoideus nigrivalveus KY817244 [47]
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Table 2. Cont.

Superfamily Family/Subfamily Species Accession Number Reference

Scaphoideus varius KY817245 [47]
Tambocerus sp. KT827824 [48]

Yanocephalus yanonis NC_036131 [47]
Cicadellidae/Evacanthinae Evacanthus acuminatus MK948205 [49]

Evacanthus heimianus MG813486 [50]
Cicadellidae/Iassinae Batracomorphus lateprocessus MG813489 [51]

Gessius rufidorsus MN577633 [51]
Krisna concava MN577635 [51]

Krisna rufimarginata NC_046068 [51]
Trocnadella arisana NC_036480 [51]

Cicadellidae/Idiocerinae Idiocerus laurifoliae NC_039741 [52]
Idioscopus clypealis NC_039642 [53]
Idioscopus myrica MH492317 [52]

Idioscopus nitidulus NC_029203 [54]
Populicerus populi NC_039427 [52]

Cicadellidae/Ledrinae Ledra auditura MK387845 [55]
Petalocephala chlorophana MT610899 [56]

Tituria pyramidata MN920440 Unpublished
Tituria sagittata MT610900 [56]

Cicadellidae/Megophthalminae Durgades nigropicta NC_035684 [57]
Japanagallia spinosa NC_035685 [57]

Cicadellidae/Typhlocybinae Bolanusoides shaanxiensis MN661136 Unpublished
Empoascanara dwalata MT350235 Unpublished

Empoasca onukii NC_037210 [58]
Empoascanara sipra MN604278 [59]
Ghauriana sinensis MN699874 [60]

Limassolla lingchuanensis NC_046037 [61]
Mitjaevia protuberanta NC_047465 [62]

Paraahimia luodianensis NC_047464 [63]
Aetalionidae/Aetalioninae Darthula hardwickii NC_026699 [64]

Membracidae/Smiliinae Entylia carinata NC_033539 [65]
Stictophala bisonia MW342606 [66]

Membracidae/Centrotinae Anchon lineatus MZ504904 This study
Anchon yunnanensis MZ504905 This study

Gargara genistae MZ504906 This study
Hypsauchenia hardwichii MK746135 [2]

Leptobelus gazella JF801955 [67]
Leptobelus sp. JQ910984 [68]

Leptocentrus albolineatus MK746137 [2]
Maurya qinlingensis MK746136 [2]

Tricentrus longivalvulatus MZ504907 This study
Tricentrus brunneus MK746138 [2]

3. Results
3.1. Genome Organization and Base Composition

The newly sequenced mitogenomes of A. lineatus, A. yunnanensis, G. genistae and
T. longivalvulatus were all double-stranded, circular molecules, with the total lengths of
16,218 bp, 14,775 bp, 15,829 bp and 15,325 bp, respectively (Figure 1). Among the 4 complete
mitogenomes of Centrotinae, A. yunnanensis had the smallest mitogenome at 14,775 bp,
while A. lineatus had the largest at 16,218 bp. Variation in the length of mitogenomes
is primarily caused by the variable non-coding region. All mitogenomes included the
37 typical invertebrate mitochondrial genes (13 PCGs, 22 tRNA genes and 2 rRNA genes)
and all the genes were identified (Figure 1). There were 23 genes on the majority strand
(J-strand), whereas 14 genes were located on the minority strand (N-strand) (Tables S4–S7).
The gene order and organization of the four newly determined Centrotinae have high
consistency compared with the typical previously reported membracid species. The base
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composition of total genome of A. lineatus is A (45.3%), T (31.1%), C (14.4%) and G (9.2%);
A. yunnanensis is A (45.3%), T (31.0%), C (14.5%) and G (9.2%); G. genistae is A (43.0%),
T (34.0%), C (12.0%) and G (10.9%); and A (44.2%), T (32.7%), C (13.6%) and G (9.6%)
in T. longivalvulatus (see Table S3). Similar to other Membracidae mitogenomes, the four
mitogenomes are highly AT biased, with 76.4% in A. lineatus, 76.3% in A. yunnanensis, 77.0%
in G. genistae, and 76.9% in T. longivalvulatus. All mitogenomes show a strong AT bias and a
positive AT-skew and CG-skew (Table S3).

Figure 1. Circular maps of the mitogenomes of A. lineatus, A. yunnanensis, G. genistae and T.
longivalvulatus.

3.2. Protein-Coding Genes and Codon Usage

The total lengths of the 13 PCGs of A. lineatus, A. yunnanensis, G. genistae and T. longi-
valvulatus are 10,908 bp, 10,902 bp, 10,920 bp and 10,911 bp, respectively (Table S3). In the 4
newly sequenced mitogenomes, 9 of the 13 PCGs are located on the J-strand and others
are on the N-strand. The AT-skews are −0.12, −0.117, −0.14, and −0.148, respectively
(Table S3). Except for nad5 in A. yunnanensis and T. longivalvulatus (using TTG as start
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codon), most PCGs start with ATN as in the previously reported Centrotinae Hypsauchenia
hardwickii, Maurya qinlingensis (MK746136), Tricentrus brunneus (MK746138), Leptocentrus
albolineatus (MK746137) and Leptobelus sp. HL-2012 (JQ910984). The typical codon TAA
and incomplete single T (mostly occurring on cox1, cox2, nad5) were used as the stop codon.
It is worth mentioning that nad2 and cytb in A. lineatus, A. yunnanensis and G. genistae
use TAG as a termination. The stop codon TAA is used more frequently than TAG, and
three single Ts are present at least in all four Centrotinae mitogenomes (Tables S4–S7).
Such incomplete termination codons occur universally in insect mitogenomes; they are
thought to be completed by post-transcriptional polyadenylation modification during
mRNA maturation.

The RSCU values and the amino acid compositions are shown in Figure 2. AUU (Ile),
UUA (Leu2), UUU (Phe) and AUA (Met) are the most frequently used codons with only
component A or U. The third codon is biased toward A or T (Figure 2), which shows the A
+ T bias of the protein-coding genes in mitogenomes among Centrotinae.
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3.3. Transfer and Ribosomal RNA Genes

The 22 transfer RNA genes (tRNAs) of each species discontinuously appeared over the
whole mitogenome (Tables S4–S7). The lengths of the tRNA regions of these mitogenomes
are similar with 1413 bp in A. lineatus, 1415 bp in A. yunnanensis, 1402 bp in G. genistae
and 1393 bp in T. longivalvulatus. The AT content (ranging from 78.6% to 79.8%) of the
tRNA is moderately higher than that (ranging from 74.8% to 77.0%) of the PCGs (Table S3).
The positions of the 22 tRNAs are identified in the same relative genomic positions as
previously determined Membracidae. The lengths of these 22 tRNA genes range from 60 bp
(trnG) to 70 bp (trnK) in A. lineatus, from 61 bp (trnG, trnH, and trnT) to 70 bp (trnK) in A.
yunnanensis, from 59 bp (trnT) to 71 bp (trnK) in G. genistae, and from 60 bp (trnC and trnR)
to 71 bp (trnK) in T. longivalvulatus. As presented in Figures S1–S4, all tRNAs exhibit typical
clover-leaf secondary structure, but trnS1 (AGN) lacks the dihydrouridine (DHU) arm,
as identified in other membracoid species. The phenomenon of lacking is also generally
found in metazoan mitochondrial genomes [69]. There are eight mismatched types (G–U,
U–U, A–A, A–C, A–G, G–G, single U and single A) of incorrectly paired bases in these four
mitogenomes. A total of 25 weak-bonded G–U, 7 mismatched U–U, 5 mismatched A–A,
2 mismatched A–C, 1 mismatched A–G and 1 mismatched G–G are found in A. lineatus.
A total of 25 weak-bonded G–U, 11 mismatched U–U, 5 mismatched A–A, 1 mismatched
A–C, and 1 mismatched A–G are found in A. yunnanensis. Furthermore, 31 weak-bonded
G–U, 11 mismatched U–U, 2 mismatched A–A, 1 mismatched A–G, 1 single A and U are
found in G. genistae, and 25 weak-bonded G–U, 12 mismatched U–U, 3 mismatched A–C,
1 mismatched A–G, and 1 mismatched A–A are discovered in T. longivalvulatus.

In the four newly sequenced mitogenomes, two rRNA genes (rrnL and rrnS) were
found to be encoded on the N-strand. The rrnLs are 1162/1162/1171/1154 bp (A. lineatus/A.
yunnanensis/G. genistae/T. longivalvulatus, respectively) in size, located between trnL1
(CUN) and trnV, while the rrnSs are 824/736/739/736 bp (A. lineatus/A. yunnanensis/G.
genistae/T. longivalvulatus, respectively) in size and reside between trnV and control region
(Tables S4–S7). The two genes have a negative AT skew (ranging from −0.220 to −0.189)
and positive GC skew (ranging from 0.240 to 0.276) in these four mitogenomes (Table S3).

3.4. Gene Overlaps

A total of 17/16/16/11 gene overlaps occur in the A. lineatus/A. yunnanensis/G.
genistae/T. longivalvulatus mitogenomes, respectively, with sizes from 1 bp to 14 bp. The
largest overlap found of the four mitogenomes is 14 bp, between nad6 and cytb, occurring
in G. genistae (Tables S4–S7). One identical overlap in nad6-cytb (ATGAATAA) is found in
all four Centrotinae species. There are 6/4/8/9 intergenic spacers in the four mitogenomes,
respectively, ranging from 1 bp to 27 bp and the longest intergenic spacer is between trnQ
and trnM in T. longivalvulatus (Tables S4–S7). None of the newly sequenced mitogenomes
share an identical intergenic spacer.

3.5. Non-Coding Regions

The control region is considered as the longest non-coding region in the sequenced
mitogenomes. The lengths are 1940 bp in A. lineatus, 570 bp in A. yunnanensis, 1633 bp in
G. genistae, and 1099 bp in T. longivalvulatus (Table S3). The A + T contents are 79.8% in A.
lineatus, 90.7% in A. yunnanensis, 71.7% in G. genistae and 83.8% in T. longivalvulatus.

3.6. Nucleotide Diversity and Evolutionary Rate Analysis

Nucleotide diversity of the 13 PCGs by sliding window analysis is shown in Figure 3A.
Genes atp8, nad2, atp6, and nad6 have relatively high nucleotide diversities of 0.335, 0.290,
0.270, and 0.246, respectively, while genes cox1, nad1, cox2, and nad3 have comparatively
low nucleotide diversities of 0.178, 0.193, 0.196, and 0.196, respectively. Pairwise genetic
distance analysis also presents similar results with high distances of 0.46, 0.39, 0.34, and
0.32 for atp8, nad2, atp6, and nad6, respectively, and low distances of 0.21, 0.24, 0.24, and
0.27 for cox1, nad1, cox2, and nad3, separately (Figure 3B).
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The ratio of Ka/Ks (ω) was calculated to further analyze the evolutionary rate of 13
protein coding genes. The Ka/Ks values range from 0.11 to 0.66, implying that PCGs are
evolving under a purifying selection. Genes, such as atp8, nad6, nad4 and nad4L, show
relatively high Ka/Ks ratios of 0.66, 0.63, 0.62 and 0.6, respectively, suggesting that they
have undergone comparatively weak purifying pressure, while cox1, cytb, cox3 and cox2
demonstrate fairly low values of 0.11, 0.19, 0.21 and 0.27, separately, which shows these
genes are likely to be under the strongest purifying selection (Figure 3B).

3.7. Phylogenetic Relationships

The phylogenetic analyses of 59 species of Cercopoidea, Cicadoidea, and Membra-
coidea inferred based on ML and BI analyses of the PCG123 dataset yielded highly con-
gruent topologies, with most branches receiving strong support (Figures 4 and 5). The
monophyly of Membracoidea was recovered (BS = 100, PP = 1). Membracoidea was di-
vided into two major clades. One clade composed of the eleven Deltocephalinae species
formed a sister group to a second group comprised of the remaining leafhoppers and all of
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Membracidae with strong support (BS = 100; PP = 1) received both in the ML tree and BI
tree. Within Membracoidea, as in other recent phylogenetic studies, some early divergences
within Cicadellidae, pertaining to relationships among subfamilies and tribes, are not well
resolved. Specifically, the relationships among tribes in Deltocephalinae, especially Opsiini,
Paralimnini, Deltocephalini, Chiasmini, and Drabescini, remain unstable. Relationships
among Typhlocybinae, Cicadellinae, Evacanthinae, Ledrinae, Idiocerinae, Coelidiinae, Iassi-
nae, Megophthalminae, Smiliinae, Aetalioninae and Centrotinae are congruent in both the
ML tree and the BI tree (Figures 4 and 5). Treehoppers (Membracidae and Aetalionidae) are
a monophyletic group sister to Megophthalminae and derived from a paraphyletic lineage
of leafhoppers (Cicadellidae).
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4. Discussion

In this study, the sequenced-mitogenome genes of these Centrotinae species are found
to be highly conserved, similar to other Membracidae. Phylogenetic analyses indicate
that Membracoidea was divided into two major clades is consistent with several previous
studies [9,38,40,41]. The relationships among tribes in Deltocephalinae, especially Opsiini,
Paralimnini, Deltocephalini, Chiasmini, and Drabescini, remain unstable. Previous analyses
have also yielded inconsistent results for this group [70,71]. The Membracidae subfamilies
Smiliinae and Centrotinae are both recovered as monophyletic groups, which is generally
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consistent with previous studies [8–10,40,65,66], but Membracidae itself is paraphyletic
with respect to Aetalionidae. To better understand the relationships within the treehopper
lineage, data for representatives of additional subfamilies are needed because only two
subfamilies are represented in the current dataset. A relationship Smiliinae + (Aetalionidae
+ Centrotinae) within treehoppers in both phylogenetic topologies has been recovered,
which is congruent with some previous research [2,40], but, given the lack of data for other
New World subfamilies (i.e., Centronodinae, Darninae, Heteronotinae, Membracinae and
Nicomiinae), our results should be interpreted with caution. Within Centrotinae, the largest
membracid subfamily, our results (Figures 4 and 5) support the monophyly of Centrotini
and Leptobelini, but the monophyly of Tricentrini is rejected according to the classification
system of Membracoidea from China proposed by Yuan and Chou [23]. However, the
tribes Tricentrini, Gargarini, and Antialcidini share many morphological characters, for
example, they possess posterior process on pronotum and no dentatus on either side of the
mesonotum; three apical cells on hindwings; and the scutellum is covered by a posterior
process, and only two sides are exposed [23]. Moreover, according to the revised classifica-
tion proposed by Wallace et al. [3], Tricentrini Ahmad et Yasmeen, 1974 (new Synonym),
Gargarini Distant, 1907 sensu stricto, and Antialcidini Yuan et Zhang, 2002 (new Synonym
nova) are all included in Gargarini sensu lato. In consideration of these, our analyses
recover Gargarini (sensu Wallace et al.) as a monophyletic group. Relationships among
the included tribes within Centrotinae can be inferred as (Hypsaucheniini + ((Centrotini +
Leptobelini) + (Leptocentrini + Gargarini))).

5. Conclusions

The complete mitogenomes of A. lineatus, A. yunnanensis, G. genistae and T. longivalvu-
latus are newly sequenced in this study, and the structural characteristics and nucleotide
compositions are found to be similar to those of other Membracoidea species as well as
to the hypothetical ancestral insect mitogenome. The BI and ML phylogenetic analyses
of concatenated alignments of 13 mitochondrial PCGs among the major lineages yield
well-resolved topologies, with most branches receiving moderate to strong support. Mem-
bracoidea, membracid subfamilies Smiliinae, Centrotinae, and tribes within Centrotinae,
Centrotini and Leptobelini are recovered as well-supported monophyletic groups, while
Tricentrini, in the traditional sense, is paraphyletic. The tribe Gargarini (sensu Wallace et al.)
is supported and recovered as a monophyletic group. At a tribe level, the relationship
[Hypsaucheniini + ((Centrotini + Leptobelini) + (Leptocentrini + Gargarini))] is recovered
based on ML and BI analyses.

Taken together, mitogenomic data are helpful in reconstructing the phylogenetic
relationships of Membracoidea, at least at the subfamily and tribe levels, consistent with
previous analyses of other kinds of data. However, knowledge of phylogenetic relationships
within this group continues to be hindered by the extremely limited number of taxa that
have, so far, been included in molecular datasets, including those based on complete
mitogenomes. Based on our results, further sequencing of mitogenomes is expected to yield
increasingly robust estimates of relationships among major lineages of Membracoidea.
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