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Abstract: In China, promoting harmless blackwater treatment and resource utilization in rural areas
is a priority of the “toilet revolution”. Exploring the effects of blackwater application in arid areas on
soil nitrogen losses can provide a basis for more effective water and fertilizer management. This study
analyzed nitrogen leaching and maize yield under blackwater application in the summer maize season
of 2020. A total of 5 treatments were used: no fertilizer, single chemical fertilizer application (CF),
single blackwater application (HH), and combined chemical fertilizer and blackwater application
ratios of 1:1 (CH1) and 2:1 (CH2). The total nitrogen leached from the fertilization treatments was
53.14–60.95 kg·ha−1 and the leached nitrate nitrogen was 34.10–40.62 kg·ha−1. Nitrate nitrogen
accounted for 50–62% of the total leached nitrogen. Compared with blackwater treatments, nitrate
nitrogen moved into deeper soil layers (80–100 cm depth) during the CF treatment. Compared with
CF, HH significantly reduced the maize yield by 24.39%. The nitrogen surplus of HH was higher than
that of other fertilizer treatments. Considering nitrogen leaching, maize yield, and economic benefits,
the CH2 treatment presented the optimal results. These findings address knowledge gaps and assist
in guiding policy-makers to effectively promote China’s “toilet revolution”.

Keywords: nitrogen leaching; blackwater; wastewater reuse; maize fertilization; N surplus

1. Introduction

Farmers worldwide have long used human excrement as a quick-acting fertilizer,
owing to its high nitrogen content [1]; this is a traditional practice which has been followed
over generations [2]. In China, the “toilet + septic tank + blackwater utilization” model
is widely used to prevent pollution and promote recycling of human excrement [3]. In
this model, after toilet sewage enters the septic tank, the decomposed manure liquid (i.e.,
blackwater) is used as a fertilizer for crops [4]. A previous study showed that blackwater
use can improve soil structure and porosity while increasing soil organic carbon, and
that reusing blackwater as a fertilizer for agriculture can help address soil productivity
issues [5]. However, toilet flushing water dilutes the nutrient content of blackwater;
therefore, considerably more blackwater is required to ensure normal crop growth, which
increases the risk of nutrient loss.

After nitrogen fertilizers are applied to farmland soils, their fate can be roughly divided
into three parts: some nitrogen is transformed into effective nutrients and is absorbed and
utilized by the crops [6]; some is fixed in the crystal lattice of soil minerals, and thus remains
in the soil [7]; the remainder is lost through leaching, nitrification, and denitrification [8,9].
In China, the overall utilization efficiency of nitrogen fertilizers in agriculture is only
30–40% [10], and the data of the first national pollution census showed that total nitrogen
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loss from agricultural sources accounted for 57.2% of total emissions in China [11]; therefore,
significant economic losses are caused by this inefficiency.

Gradual nitrogen leaching below the root zone (i.e., nitrogen mineralization is not
synchronized with nitrogen absorption by plants) is an important N-loss pathway which
easily occurs in the presence of rainfall and irrigation events [12]. Soil is mostly composed
of negatively charged colloids; therefore, it easily adsorbs a large amount NH4

+-N, whereas
the adsorption of NO3

−-N is weak [13]. Therefore, the nitrogen element in the soil easily
moves vertically downward with water in the form of NO3

−-N, which characterizes the
nitrogen leaching and represents approximately 60% of total dissolved nitrogen loss [14].
Nutrients that leach out of the active layer of plant roots are not easily absorbed by plants,
which greatly reduces the nutrient use efficiency of the soil. If the leached nitrogen flows
into groundwater, it can lead to exceedingly high levels of nitrate, which can endanger
human health.

It has been previously reported that nitrification is stronger in alkaline than acid
and neutral soils [15]; therefore, higher concentrations of NO3

−-N increase the risk of
nitrogen migration in soil. Moreover, nitrogen movement in soil is not only controlled
by the soil environment and hydrological processes, but also by crops and management
measures [16–18]. The North China Plain is China’s main dryland food production area,
with alkaline soil, low water-holding capacity, low organic-matter content, and weak
fertilizer-retention capacity [19]. Large amounts of fertilizer and irrigation water are needed
to achieve a relatively high yield in these areas [20,21]. However, the use of blackwater as
fertilizer may lead to a lower nitrogen utilization rate and higher nitrogen leaching due to
the high moisture content [4]. In Beijing-Tianjin-Hebei and other intensive cultivation areas,
>40% of the groundwater has a nitrogen content higher than the country’s standards for
drinking water (the Standards for Drinking Water Quality of China for NO3

−-N (GB5749-
2006) is 20 mg·L−1) [22]. However, to the best of our knowledge, there has been no research
on nitrogen leaching from blackwater that is returned to fields in these areas.

In this study, we aimed to identify the potential environmental risk of blackwater for
agriculture utilization and offer an available strategy to recover the energy and nutrients
provided by blackwater. The main objectives of this experiment were to: (i) evaluate the
effects of blackwater application levels on nutrient loss and crop yield in the alkaline soils
of North China and (ii) explore the threshold of blackwater input under natural rainfall
conditions in North China. The findings provide a reference to guide the “toilet revolution”,
reduce nitrogen loss, and decrease non-point source pollution from farmland.

2. Materials and Methods
2.1. Research Area Overview

The study area was located in a maize field (39◦33′ N, 117◦82′ E) in Dongjiituo Town-
ship, Ninghe County, Tianjin. The area has a continental monsoon climate and is in a warm
temperate climatic and semi-arid, semi-humid wind zone, with relatively high summer
temperatures and concentrated precipitation, as well as relatively cold and dry winters. The
annual mean temperature is 11.2 ◦C; the minimum and maximum temperatures occur in
January and July, respectively; the annual frost-free period is 240 d. Annual mean precipita-
tion is approximately 642 mm, which mainly occurs between June and August, accounting
for 70% of the annual precipitation. The cultivated soil in the study site was fluvo-aquic.
The basic physical and chemical properties of the soil were as follows: pH = 8.38; organic
matter = 9.70 g·kg−1; total nitrogen (TN) = 1.19 g·kg−1; total phosphorus (TP) = 0.64 g·kg−1;
alkali hydrolyzable nitrogen = 81.30 mg·kg−1; available phosphorus = 23.05 mg·kg−1;
cation exchange capacity = 16.3 cmol·L−1.
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2.2. Experimental Setup

A randomized block design was used in the experiments. The chemical fertilizers used
were urea (N = 46%), superphosphate (P2O5 = 16%), and potassium oxide (K2O = 60%). The
blackwater utilized was the effluent from a 3-grid septic tank (N: 5.1 g·kg−1; P: 3.1 g·kg−1;
K: 3.7 g·kg−1). A total of 5 fertilizer treatments were explored: no fertilizer (CK); single
application of chemical fertilizer (CF); single application of blackwater (HH); combined
application of chemical fertilizer and blackwater at ratios of 1:1 (CH1) and 2:1 (CH2). The
experiments for each treatment were repeated four times. The area of a single test plot was
approximately 24 m2 (4 m × 6 m), and a completely randomized block arrangement design
was used.

The amount of fertilizer applied to the crops grown in the test site was determined
based on the local fertilizing habits. In the summer maize season, the nitrogen applica-
tion rate was 200 kg·ha−1, the phosphorus application rate was 150 kg·P·ha−1, and the
potassium application rate was 150 kg·K·ha−1. The chemical fertilizers P2O5 and K2O were
used to remediate insufficient blackwater phosphorus and potassium contents, and were
applied as a base fertilizer on a single occasion (Table 1). Blackwater and chemical nitrogen
fertilizers were both applied to the surface at a ratio of 4:6.

Table 1. Fertilizer application rates of experimental treatments at different growth stages of maize
(kg·ha−1).

Treatments Applied Fertilizers Rate
(kg·ha−1) Fertilizer Form Application Date

N P K

CK - - - - -
- - - -

CF 80 150 150 urea + superphosphate + potassium oxide

21 June 2020
120 - - urea

HH 80 29 + 48 5 + 58 blackwater + superphosphate + potassium oxide
120 73 87 blackwater

CH1 40 + 40 40 + 24 77 + 29 urea + blackwater + superphosphate + potassium oxide

3 August 202060 + 60 36 44 urea + blackwater
CH2 53 + 27 110 + 16 101 + 20 urea + blackwater + superphosphate + potassium oxide

80 + 40 24 29 urea + blackwater

CK: no fertilizer, CF: chemical fertilizer, HH: blackwater, CH1: combined application of chemical fertilizer and
blackwater at 1:1, CH2: combined application of chemical fertilizer and blackwater at 2:1.

2.3. Sample Collection
2.3.1. Leachate Samples

In this experiment, infiltration tanks were used for in-situ monitoring of soil leachate
(Figure 1). The leachate collection device was buried in each treatment plot in October 2019,
and the leaching tube was planted and domesticated after a crop of winter wheat. The
upper part of the collection device was composed of a sampling bottle, a buffer bottle, a
vacuum pump, and a connecting pipe, and the underground part was composed of a filter
sand layer, a liquid-collecting film, and a leachate collection barrel. The filter sand layer
was composed of quartz sand with particle size of 2–3 mm, which was repeatedly cleaned
with diluted acid and water. The liquid-collecting film included 2 pieces of polyethylene
film with a 0.1-mm thickness. The leachate collection barrel was a cylindrical water barrel
composed of a polyethylene material, with a volume of approximately 69 L (50 cm in
diameter, 35 cm in height), and was buried at a depth of 80 cm.
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Figure 1. Leaching sample collection device and sampling scene.

We used a vacuum pump to generate negative pressure and extract all of the leachate
for analysis. After evenly mixing the leachate samples, 500 mL of the sample was placed in
a washed and dried polyethylene bottle and stored at 4 ◦C. A continuous flow injection
analyzer (AA3 HR Auto Analyzer, SEAL Analytical, Germany) was used to determine the
TN, NH4

+, and NO3
− contents in the eluent within 24 h of the collection. The sampling time

was determined according to rainfall events, and the leachate samples of all sampling points
were collected within 1 d. A total of 7 sampling campaigns were conducted throughout the
experiment, on the day of 15 July, 30 July, 4 August, 15 August, 24 August, 19 September,
and 19 October in 2020. Temperature and rainfall information were obtained from a small
weather station.

2.3.2. Plant Sampling

The test crop was a summer maize variety, Jingdan 58, the main local variety. The crop
was sown on 27 June 2020, with row spacing of 60 cm and plant spacing of 25 cm. The crop
was harvested on 15 October 2020 after a 110-d growth period. The maize yield of each
plot was determined. In addition, 3 representative plants were randomly selected from
each plot. The dried samples were ground into powder and passed through a 100-mesh
sieve. After digestion with concentrated H2SO4-H2O2, the TN content was determined by
the semi-micro Kjeldahl method according to the maize yield. Subsequently, the nutrient
absorption of the maize was calculated based on its nutrient content.

2.4. Data Analysis

The cumulative nitrogen (TN, NH4
+, and NO3

−) leaching amount was calculated
according to Equation (1) [23].

NL = ∑n
i=1

(
Ci ×Vi × 10−3)

1× 10−2 × 10−4 (1)

where NL represents the N loss loadings via surface runoff or leaching (kg·ha−1), Ci
represents the N concentration of the water sample of each leaching sampling (mg·L−1), Vi
represents the water volume of each leaching sampling (L), and 1 × 10−2 is the monitoring
area (m2).
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The nitrogen surplus was estimated from total harvested nitrogen and all of the
nitrogen inputs based on nitrogen balance in the summer maize cropping system [24]. The
nitrogen surplus was calculated according to Equation (2):

N surplus = input N − output N (2)

where the main external nitrogen inputs in our experiment were nitrogen brought by
chemical fertilizer and blackwater. Other inputs, such as nitrogen from atmospheric
deposition and irrigation water, were ignored. Nitrogen output included the nitrogen
harvested in aboveground biomass (shoots and grains).

All of the statistical analyses were carried out in JMP version 9.0 (SAS Institute Inc.,
Cary, NC, USA, 2010). All of the data were checked for homogeneity of variances (Levene’s
test) and normality (Shapiro–Wilk test), and were normally distributed and had homoge-
neous variances. Differences among treatments in crop yields, nitrogen uptake, nitrogen
surplus, nitrate distribute and cumulate nitrogen leaching were further examined with
Student’s multiple range tests. The effects of soil profiles and fertilization treatments on
nitrate content distribution were examined by two-way analysis of variance (ANOVA).
Origin 2019 was used to draw the soil nitrate distribution in the soil profile.

3. Results
3.1. Rainfall Characteristics

The maize growing season is the wet season in the basin, with a total rainfall of
350.4 mm; this accounts for 72.3% of the annual rainfall. There were 5 rainfall events with
precipitation of >20 mm (Figure 2). The largest rainfall event during the study period
occurred on 29 July 2020 and reached 48.7 mm, accounting for 10.1% of the annual rainfall.
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3.2. Maize Production and Nitrogen Surplus

The results of the experiments showed that the yield of maize kernels under different
treatments was 5.2–8.2 t·ha−1, with an average yield of 7.1 t·ha−1 (Figure 3a). Compared
with the CF treatment, the combined treatments presented no significant effects on the
maize yield, whereas the HH treatment significantly reduced the maize yield by 24.4%
(p < 0.05). For the treatments using blackwater, a higher proportion of chemical fertilizer
led to a higher maize yield; therefore, the maize yield under HF2 was significantly higher
than that under HH, with an increase of 23.5% (p < 0.05), although there was no significant
difference between the 2 combined treatments.
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Figure 3. (a) Grain yield, (b) nitrogen uptake, and (c) nitrogen surplus of maize under different
treatments. CK: no fertilizer, CF: chemical fertilizer, HH: blackwater, CH1: combined application of
chemical fertilizer and blackwater at ratio of 1:1, CH2: combined application of chemical fertilizer
and blackwater at ratio of 2:1. Bars indicate the standard error of the mean (+SE) for three replicates
of each treatment. Letters above columns indicate significant differences according to the Tukey’s
multiple range test (p < 0.05) among all treatments.

The nitrogen uptake of maize under different treatments ranged from 72.4–130.0 kg·ha−1

(Figure 3b). Compared with the CK treatment, the 4 fertilization treatments significantly
increased the nitrogen uptake in the aboveground part of maize; however, there was no
statistical significance among the 4 fertilizer treatments (p > 0.05). An analysis of nitrogen
surplus showed that the nitrogen surplus of each fertilization treatment was significantly
higher than that of the CK treatment (Figure 3c). Among the fertilization treatments, the HH
treatment had the largest nitrogen surplus, reaching 132.4 kg·ha−1, which was significantly
higher than that of the CH1 treatment (51.2%; p < 0.05).

3.3. Nitrate Nitrogen Migration in Soil Profile

Figure 4 shows the soil nitrate nitrogen profile at a depth of 0–120 cm under different
fertilization strategies. The 3 treatments with blackwater application (HH, HF1, and HF2)
reached the highest nitrate nitrogen content at a 40–80 cm depth. The highest nitrate nitro-
gen content of CF was observed at a depth of 80–100 cm, which indicates that the nitrogen
from chemical fertilizers leached more easily downward. This result was supported by the
one-way ANOVA.
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Figure 4. Nitrate nitrogen distribution in different soil profiles. Bars indicate the standard error of
the mean (+SE) for three replicates of each treatment. CK: no fertilizer, CF: chemical fertilizer, HH:
blackwater, CH1: combined application of chemical fertilizer and blackwater at a ratio of 1:1, CH2:
combined application of chemical fertilizer and blackwater at a ratio of 2:1.
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The nitrate nitrogen content in the soil profile and its spatial distribution characteristics
are important indicators to characterize the leaching risk (Table 2). At a depth of 80–100 cm,
the nitrate nitrogen content of the CF treatment was significantly higher than those of the
blackwater application treatments, which were 63.4% (HH), 40.1% (HF1), and 27.7% (HF2)
(p < 0.05). However, there was no statistical difference between the accumulation of nitrate
nitrogen in the 4 fertilized soils at a depth of 60–80 cm (p > 0.05). The two-factor ANOVA
showed that the fertilization strategy and soil depth significantly affected nitrate nitrogen
leaching (Table 2).

Table 2. Nitrate nitrogen content in different soil profiles. CK: no fertilizer, CF: chemical fertilizer,
HH: blackwater, CH1: combined application of chemical fertilizer and blackwater at a ratio of 1:1,
CH2: combined application of chemical fertilizer and blackwater at a ratio of 2:1.

Soil Profile
(cm) CK CF HH CH1 CH2 Two-Way

ANOVA

0–20 13.9 ± 2.4bC 26.1 ± 5.6cBC 37.8 ± 7.4bcAB 48.3 ± 9.9cdA 37.9 ± 6.4bcAB Treatment (T)
20–40 29.1 ± 3.3aC 43.8 ± 6.8bcBC 66.6 ± 12.0aA 34.5 ± 7.1dC 58.2 ± 8.8abAB p < 0.001
40–60 23.0 ± 3.9abC 39.4 ± 6.0bcB 76.3 ± 7.9aA 86.2 ± 7.2aA 46.9 ± 4.3bcB Soil profile (S)
60–80 18.5 ± 4.0abB 59.3 ± 8.6bA 59.1 ± 9.4abA 74.1 ± 4.5abA 78.7 ± 12.4aA p < 0.001
80–100 26.9 ± 3.8aC 96.5 ± 9.8aA 33.4 ± 5.3cC 57.8 ± 5.7bcB 69.7 ± 7.1aB T × S

100–120 23.4 ± 5.1abC 50.8 ± 8.5bAB 35.6 ± 5.1cBC 64.1 ± 7.8bcA 26.4 ± 6.5cC p < 0.001

Data are mean values ± standard error (SE). Different small letters within the same column and different capital
letters within the same row for each treatment indicate a significant difference at p < 0.05, determined by Tukey’s
multiple range tests.

3.4. Nitrogen Leaching

Table 3 shows the different forms of nitrogen in the leachate of each treatment. The
total nitrogen leached from the different treatments was 34.91–60.95 kg·ha−1. Compared
with CK, all of the fertilization treatments significantly increased the amount of leached
nitrate nitrogen and TN, with increases of 57.80–87.97% and 52.22–74.59%, respectively
(p < 0.05). However, there was no significant difference among the four fertilization treat-
ments. Compared with the other treatments, the amount of leached ammonium nitrogen
was significantly higher in the HH treatment. The amount of leached nitrate nitrogen ac-
counted for 17.05–20.31% of the total leached nitrogen, and the leaching rate of ammonium
nitrogen was relatively small, accounting for 0.38–1.41% of the total nitrogen leached from
all the different treatments.

Table 3. Cumulative leaching amount of nitrogen (NH4
+-N, NO3

−-N, total nitrogen [TN]) from
different treatments in the summer maize growing season. CK: no fertilizer, CF: chemical fertilizer,
HH: blackwater, CH1: combined application of chemical fertilizer and blackwater at ration of 1:1,
CH2: combined application of chemical fertilizer and blackwater at ratio of 2:1.

Nitrogen Form
Cumulative Leaching Amount (kg·ha−1)

CK CF HH CH1 CH2

NH4
+-N 0.75 ± 0.12b 0.76 ± 0.13b 2.82 ± 0.73a 1.31 ± 0.53b 1.08 ± 0.32b

NO3
−-N 21.61 ± 5.88b 40.62 ± 7.87a 37.63 ± 2.53a 36.52 ± 6.47a 34.10 ± 5.64a

TN 34.91 ± 4.81b 60.95 ± 11.00a 56.31 ± 16.47a 56.21 ± 7.57a 53.14 ± 10.50a

Data are mean values ± SE. Different small letters within the same row for each treatment indicate a significant
difference at p < 0.05, determined by Tukey’s multiple range tests.

4. Discussion
4.1. Effect of Fertilization Strategies on Nitrogen Leaching

Leaching is an important mechanism of nitrogen fertilizer loss, and the form of fertil-
izer used is an important farmland management measure affecting nitrogen leaching. In
this study, compared with CF, nitrogen leaching decreased by 7.6–12.8% in the 3 treatments
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based on blackwater, although there were no statistically significant differences. Previ-
ous studies have shown that nitrogen leaching may vary with fertilizer type [25]. Under
the same nitrogen application levels, the combined application of organic and inorganic
fertilizers can significantly reduce nitrogen leaching (the content of organic matter in black-
water is higher than that in chemical fertilizer) compared to single application of chemical
fertilizers [26]. This is due to the inherent ability of organic matter to improve the soil
quality, increase the soil water retention capacity, and promote crop nitrogen uptake [27,28].
Studies have also shown that a high C/N ratio helps to promote the conversion of mineral
nitrogen to organic forms (i.e., nitrogen immobilization.) [29,30], thereby reducing nitrogen
leaching and runoff.

Interestingly, although no fertilizers were used in the CK treatment, nitrogen leaching
of 34.91 kg·ha−1 occurred, which we presumed was due to: (i) nitrogen fertilizer remaining
from previous crops, since residual nitrate can move continuously downwards and be lost
even if it is not leached during the season of application [11]; (ii) nitrogen deposition, for
example, a 3-year study investigated atmospheric deposition of different nitrogen species
at 10 sites in Northern China and the results indicated that nitrogen deposition levels in
Northern China were high, with an average of 59.8 kg·N·ha−1·yr−1 [31].

4.2. Effect of Fertilizer with Blackwater on Nitrate-Nitrogen Migration

In our study, the NO3
− leaching of the 4 fertilization treatments accounted for approx-

imately 17.05–20.31% of the fertilizer input, which was slightly higher than some other
studies, such as a meta-analysis conducted by Zhou & Butterbach-Bahl [32], who collected
32 published studies reporting NO3

− leaching losses in maize and determined that 15% of
applied fertilizer nitrogen to maize systems worldwide are leached in the form of NO3

−.
However, our obtained results are within the value estimated by Cui et al. [33], which
conducted a meta-analysis of 17 published studies from 19 study sites, including 94 ob-
servations from maize system in China, and found that with typical farming practices, an
average of 20.8% of the applied nitrogen was either leached or lost as runoff from the maize
systems. The difference between the results may be attributed to soil physico-chemical
properties such as texture, pH [34], soil organic carbon [35], crop type [25], or annual
precipitation. It is worth mentioning that the residual NO3

− in the soil profile showed
that the NO3

− leaching depth was deeper in the CF treatment, with a peak value at the
80–100-cm depth. The root system of the maize plats was mainly concentrated in the soil
layer above 90 cm, which indicated that CF was more likely to cause NO3

− leaching to
groundwater.

The total nitrate accumulations in the 0–4 m soil layer of maize fields was as high as
749 ± 75 kg·N·ha−1 in China [36]. However, the average accumulation of nitrate in the
0–120 cm soil layer was 51.5–60.8 kg·nitrogen·ha−1 in this study, considerably lower than
the national average value. There are 3 possible reasons that may explain this finding: (1)
the nitrogen application rate in our experiment (200 kg·nitrogen·ha−1) was lower than
the typical rates (263 kg·nitrogen·ha−1) for wheat in the North China Plain [37]; (2) we
conducted the experiment in the rainy season of the North China Plain, which facilitated
the rapid transport of nitrate deeper into the underground water [38]; (3) the soils have
high permeability and low cation exchange capacity [20].

4.3. Effects of Blackwater Application on Soil Nitrogen Surplus and Maize Yield

Nitrogen surplus is an effective indicator for measuring nitrogen input productivity,
environmental impact, and soil fertility changes [39]. Maintaining the nitrogen balance
of the soil-crop system can achieve higher target yields without consuming soil nitrogen.
In our study, the highest nitrogen surplus was obtained in the HH treatment, which may
have been due to this treatment yielding the lowest maize yield of the four fertilizer
treatments. The lowest nitrogen surplus in CH1 treatment may have been related to its
high nitrogen uptake.
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Chemical fertilizers (especially nitrogen fertilizers) are applied at high rates for food
production in China, which leads to decreases in crop yield and quality, and an increase
in fertilization costs [40]. This study showed that the application of pure blackwater
significantly reduced maize yield compared to the application of conventional fertilizer,
which may have been attributed to the higher content of base ions in blackwater [41].
Studies have shown that maize is susceptible to soil salinity, which significantly decreases
seed germination, causes harmful effects in growth, and leads to low yield [42]. However,
in this study, the yields under the combined treatments were not significantly different from
that under CF, which indicated that an appropriate amount of blackwater can maintain
the maize yield. Nitrogen fertilizer is a costly component of crop production [43], and
at present, the average price of chemical fertilizers in China is 3 yuan/kg. Therefore,
according to our results, the use of a combined fertilization treatment can lead to savings of
approximately 190–300 yuan/ha, which would reduce the economic burden of fertilization
to farmers.

4.4. Feasibility and Prospect of Returning Blackwater to the Field

A large-scale survey revealed that the proportion of pathogenic bacteria in the effluent
from septic tanks is very low [44], and ensured environmental health and agricultural
application safety. While approximately 86% of the households stated that they would
prefer their excreta to be used in agriculture as fertilizer [45], there is no instructional
document to teach farmers how to use blackwater to fertilize, and the usual practice of
farmers is to return all the collected blackwater to the field. However, according to our
study, excessive blackwater may lead to reduced crop production, which has a huge impact
on farmers. A balance is needed between increasing farmers’ income and decreasing
environmental impact, and the fertilizer strategy involving the CH2 treatment appeared to
meet both requirements.

In addition, our previous study shows that the application of a reasonable propor-
tion of blackwater and chemical fertilizers did not significantly increase reactive nitrogen
emissions [46]. However, application of blackwater-based fertilizers in agriculture will
alleviate the environmental impacts of phosphorus mining and synthetic ammonia produc-
tion [47]. In summary, exploration of the means by which to recycle blackwater or using
excreta-derived fertilizers in agriculture is urgently for decision makers.

5. Conclusions

In summary, this study showed that compared to chemical fertilizer, blackwater
application could prevent nitrate nitrogen from moving to deeper soils (below 80 cm), and
that there was no statistical difference in soil nitrogen surplus and crop nitrogen uptake.
Furthermore, the blackwater fertilizer strategy decreased the nitrate nitrogen and total
nitrogen leaching by 7.4–16.1% and 7.6–12.8%, respectively. However, the application
of blackwater at 200 kg·nitrogen·ha−1 reduced the maize yield by approximately 24.4%
compared to application of chemical fertilizer, which may have been due to the high salt
content of blackwater. The combined application of blackwater and chemical fertilizers
maintained the maize yield without increasing the risk of nitrogen leaching, especially
when the ratio of chemical fertilizer to blackwater was 2:1 (i.e., chemical fertilizer provided
133 kg·nitrogen·ha−1, blackwater provided 67 kg·nitrogen·ha−1). Our study shows that a
potential reduction in nitrogen leaching and obtainable high maize yield can be achieved by
the appropriate blackwater substitution of chemical fertilizers. We suggest that promoting
the return of blackwater to fields not only involves allowing farmers to utilize it as fertilizer,
but also includes introducing, demonstrating, and teaching them how it can be optimally
carried out.
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