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Abstract: Furanodienone (FDN), a major bioactive component of sesquiterpenes produced from
Rhizoma Curcumae, has been repeatedly acknowledged for its intrinsic anticancer efficacy against
different types of cancer. In this study, we aimed to investigate the cytotoxic potential of furano-
dienone against human lung cancer (NSCLC A549) cells in vitro, as well as its underlying molecular
mechanisms in the induction of apoptosis. Herein, we found that FDN significantly inhibited the
proliferation of A549 cells in a dose-dependent manner. In addition, treatment with FDN potentially
triggered apoptosis in A549 cells via not only disrupting the nuclear morphology, but by activating
capsase-9 and caspase-3 with concomitant modulation of the pro- and antiapoptotic gene expression
as well. Furthermore, FDN revealed its competence in inducing cell cycle arrest at G0/G1 phase in
A549 cells, which was associated with decreased expression of cyclin D1 and cyclin-dependent kinase
4 (CDK4), along with increased expression of CDK inhibitor p21Cip1. Intriguingly, FDN treatment
efficiently downregulated the Wnt signaling pathway, which was correlated with increased apoptosis,
as well as cell cycle arrest, in A549 cells. Collectively, FDN might represent a promising adjuvant
therapy for the management of lung cancer.

Keywords: A549 cells; anticancer; apoptosis; cell cycle arrest; non-small cell lung carcinoma;
phyto-compound

1. Introduction

Lung cancer is considered the leading cause of cancer-associated mortalities accounting
for 1.80 million during 2020. Furthermore, a total of 2,206,771 new cases of lung cancer
were reported during the previous year, which constituted 11.4% of all the reported cancer
cases. The escalation in the incidence of lung carcinomas makes it a challenging health
concern globally.

Lung carcinomas fall categorically either under non-small cell lung cancer (NSCLC),
which is responsible for 85% of lung-associated malignancies, or small cell lung carcinomas
(SCLC), accounting for the remaining 15% of lung cancer [1]. Clinical management of
patients diagnosed with NSCLC initially depends on the diagnosed stage and is subse-
quently treated using surgical resection, followed by chemo- and/or radiotherapeutics [2].
Nevertheless, although the past few years have witnessed advances in the therapeutic
approaches of lung cancer, the overall five-year survival rate is still only 19% [3]. Such
poor prognosis in lung cancer patients has been attributed mainly to the development of
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resistance towards antineoplastic agents [4]. Consequently, there is an urgent need for
the development of new anticancer entities that could circumvent the abovementioned
problems, along with improving the prognosis for lung cancer patients.

Recently, naturally occurring compounds derived from a plant source, known as phy-
tochemicals, have received increased interest in oncology. They serve as vital resources for
novel drugs that might act as natural-based alternatives with less toxicity than conventional
chemotherapeutic agents. Furanodienone (FDN) is a furanosesquiterpenoid belonging to
furanogermacranes that is commonly extracted from various Curcuma and Commiphora
species (Scheme 1). FDN was documented to possess interesting pharmacological activities,
such as anti-inflammatory [5] and antimicrobial activities [6]. Most importantly, FDN has
been recently reported to exert potent cytotoxic activity against different cancer cell lines,
including colorectal cancer and breast cancer, through the induction of apoptosis [7,8].
However, the cytotoxic potential of FDN against lung cancer cells along with the possible
molecular mechanisms of its inhibitory activity have not been investigated yet.

Scheme 1. Chemical structure of Furanodienone.

In cancer therapy, the anticancer effect of phytochemicals, including FDN, often act via
regulating molecular pathways involved in cancer growth and progression. For instance,
FDN was reported to trigger G0/G1 arrest and to induce apoptosis in human colorectal
cancer cells via reactive oxygen species/mitogen-activated protein kinases (ROS/MAPKs)-
mediated caspase-dependent pathway [7]. Furthermore, FDN induced cell cycle arrest and
apoptosis in human epidermal growth factor receptor 2 (HER2)-overexpressing human
breast cancer cells via interfering with EGFR/HER2 signaling [8]. The aim of the current
study, therefore, was to investigate the antiproliferative effects and molecular mechanisms
of furanodienone on A549 lung cancer cells in vitro. The results of our study revealed for
the first time the evidence that FDN causes G0/G1 phase arrest and induces apoptosis via
instigating mitochondria-mediated apoptosis in A549 cells, through interfering with the
Wnt signaling pathway.

2. Materials and Methods
2.1. Materials

Furanodienone was obtained commercially from MedChemExpress, Monmouth Junc-
tion, NJ, USA (Cas No. 24268-41-5). Cisplatin, MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide), rhodamine-123 (Rh-123), N-acetyl cysteine (NAC), 2,7-
dichlorodihydrofluorescein diacetate (DCFH-DA), Hoechst-33342, caspase-9 (APT173),
and caspase-3 (CASP3C-1KT) kits, along with respective inhibitors, were obtained from
Sigma Aldrich (St. Louis, MO, USA). Kaighn′s modification of Ham′s F-12 (F-12K) medium,
fetal bovine serum (FBS), and antibiotic–antimycotic solution used in the study were from
Gibco (Fort Worth, TX, USA). FITC Annexin-V apoptosis assay kit was from BD Bioscience
(San Diego, CA, USA). Primers used in the study were obtained from Integrated DNA
Technologies (IDT; Coralville, IA, USA).

2.2. Cell Line

Human NSCLC A549 cells and murine alveolar macrophages J774A.1 were obtained
from the American Type Culture Collection. Human NSCLC A549 cells were cultured
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in Kaighn′s modification of Ham′s F-12 medium (F-12K), while J774A.1 were cultured in
Dulbecco′s modified Eagle′s medium (DMEM). Both media were supplemented with FBS
(10% v/v) and an antibiotic–antimycotic cocktail (1% v/v). During the experimental proce-
dures, the cells were maintained in ambient culture conditions comprising the humidified
atmosphere at 37 ◦C with 5% CO2. A predetermined number of cells were used specifically
for every individual experiment post-quantification of viable cell numbers through 0.4%
trypan blue solution aided by hemocytometer.

2.3. Cytotoxicity Estimation

The cytotoxicity of furanodienone (FDN) on A549 cells was initially evaluated at
varying concentrations, ranging from 0 to 300 µM, to determine the appropriate FDN
concentration(s) to be used throughout the study using the standard procedure of MTT
as previously described [9]. From this study, FDN concentrations of 50, 100, and 200 µM,
which exerted remarkable cytotoxic potential, were selected to be used throughout the
whole study.

Next, cell viability of either NSCLC A549 or murine alveolar macrophage J774A.1 cells
was evaluated upon treatment with different FDN concentrations (50, 100, and 200 µM).
For this purpose, A549 or J774A.1 cells at a cell density of 5 × 103 cells/well were exposed
to FDN for 24 h. Wells containing untreated cells served as the negative control, while
wells containing cells treated with a standard cytotoxic agent (cisplatin; 200 µM) served
as the positive control. At 24 h post-incubation, the wells were decanted and 10 µL MTT
dye from a stock of 5 mg/mL was added to each well, followed by an incubation of 4 h in
ambient culture conditions as stated above. The wells were subsequently supplemented
with dimethyl sulfoxide (DMSO; 0.1 mL) and the plate was vortexed gently for 30 min in the
dark before recording the absorbance of each well at a wavelength of 490 nm using Bio-Rad
spectrophotometer (Hercules, CA, USA). The results were expressed as cell viability (%),
determined using the formula Aassay/Acontrol × 100 (Aassay: absorbance of treated groups
and Acontrol: absorbance of the control group).

2.4. Effects on Morphological Attributes

The morphologies of untreated control and FDN-exposed A549 cells were compara-
tively assessed. Briefly, 1× 104 A549 cells/well were exposed to the stated concentrations of
FDN and were incubated for 24 h. Subsequently, cells belonging to each treated group were
visualized for alterations in their morphology through FLoid Imaging Station, Thermo-
Scientific (Waltham, MA, USA).

2.5. Alterations in Nuclear Morphology

The initiation of apoptosis within A549 cells subjected to the stated FDN concentra-
tions was assessed through evaluating the modifications within nuclear morphology by
Hoechst-33342 stain as described previously [10]. A549 cells (5 × 103) were exposed to
varying concentrations (50, 100, and 200 µM) of FDN and were maintained for at least
24 h under ambient culture conditions. Untreated cells served as controls. Subsequently,
after removing the spent media, cells were re-exposed with 5 µg/mL of Hoechst-33342 and
incubated shortly for 10 min in ambient culture conditions. The cells were then visualized
for their fluorescence through the blue filter of FLoid Imaging Station (Thermo-Scientific,
Waltham, MA, USA). For quantification, the fluorescence intensities of the stained cells
were detected by image J program (NIH, LOCI, University of Wisconsin, Madison, WI,
United States) [11]. The mean signal intensities and standard deviations were calculated
for at least 25 cells per each preparation and control. One-way ANOVA test followed by
Tukey′s multiple comparison post-test were used to attest the statistical significance, where
p < 0.05 was considered significant.
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2.6. Annexin V/FITC Assay

The efficacy of FDN in instigating apoptosis post-treatment in A549 cells was quanti-
fied using Annexin V-FITC/PI apoptosis kit (BD Biosciences, San Diego, CA, USA). Briefly,
4 × 105 cells were seeded in each well of a six-well plate and allowed to adhere overnight.
Thereafter, the cells were exposed to varying FDN concentrations (50, 100, and 200 µM) for
24 h. At 24 h post-incubation, the cells in each well were washed trice prior to the addition
of 1× binding buffer as per the instructions supplied by the manufacturer. Eventually,
nearly 1 × 105 cells constituting to approximately 100-110 µL suspension was treated with
5 µL each of Annexin V-FITC and PI, followed by a brief incubation (15 min) in the dark at
37 ◦C. Thereafter, the volume of the cell suspension was increased up to 500 µL by adding
binding buffer (1×). The suspension was then evaluated using flow cytometer FACS Aria
(BD Biosciences, San Diego, CA, USA).

2.7. Caspase Assay

Colorimetric assay kits specific for caspase-9 and -3 were used to estimate the caspase
activities in human lung cancer cells. After incubation with the above stated FDN concentra-
tions, approximately 3× 106 A549 cells were ruptured through 50 µL of ice-cold lysis buffer
following 10 min incubation on ice. The cellular lysate was thereafter centrifuged for 1 min
at 10,000× g and 4 ◦C. Subsequently, 50µL of lysate was added in each of a 96-well plate
with equal volumes of 10 mM dithiothreitol (DTT) constituted reaction buffer. Thereafter,
4 mM substrate (DEVD-pNA) was supplemented per well and allowed to incubate for
10 min. Post-incubation, the plate was read for the absorbance at 405 nm. The results were
interpreted as percentage (%) increase in the activity of specific caspases by comparing the
absorbance with the untreated control.

To assess the effect of pretreatment of caspase inhibitors on cell viability, A549 lung
cancer cells were pretreated with caspase-9 (Z-LEHD-FMK) and caspase-3 (Z-DEVD-FMK)
inhibitors (50 µM) for 2 h. The cell viability was then estimated by MTT assay after 24 h of
FDN treatment.

2.8. Assessment of FDN-Induced Alterations in ROS

The efficacy of FDN in instigating levels of ROS within NSCLC A549 cells was as-
sessed through DCFH-DA stain as per the protocol described earlier [12]. For qualitative
assessment, 2 × 104 A549 cells/well were treated with 50, 100, and 200 µM of FDN and, at
12 h post-incubation, cells were stained by DCFH-DA (10 µM; 30 min at room temperature).
Finally, the cells were visualized and the photomicrographs were captured through the
green filter of FLoid Imaging Station (Thermo-Scientific, Waltham, MA, USA).

For quantification of ROS generated post-FDN treatment, 2 × 104 A549 cells were
seeded in a black-bottom 96-well plate and subsequently exposed to FDN (50, 100, and
200 µM) for 12 h under optimum culture conditions. Post-FDN exposure, cells were
retreated with 10 µM DCFH-DA at room temperature for 30 min and recorded for their
DCF-DA-instigated fluorescence intensity through Synergy H1 Hybrid Reader (BioTek,
Winooski, VT, USA). The results were elucidated as percentage of mean DCF-DA intensity
compared with the untreated control.

2.9. Alterations within Mitochondrial Membrane Potential (∆Ψm)

The potential of FDN to alter mitochondrial membrane potential (∆Ψm) within treated
A549 cells was investigated using mitochondria voltage-specific Rh-123 dye as described ear-
lier [13]. Briefly, 1 × 105 A549 cells were treated with 50, 100, and 200 µM FDN and incu-
bated overnight under ambient culture conditions. Subsequently, the cells were stained using
5 mg/mL of Rh-123 for 30 min. Finally, the fluorescence associated with cells were visualized
and recorded through FLoid Imaging Station (Thermo-Scientific, Waltham, MA, USA).

Furthermore, MMP was quantitatively estimated by using Rh123 staining. Briefly,
A549 cells were seeded in a 96-well plate, followed by the treatment with different doses of
FDN. Thereafter, the plate was aspirated and the A549 cells were incubated with Rh123 for
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30 min. Fluorescence was analyzed at an excitation wavelength of 488 nm and an emission
wavelength of 525 nm.

2.10. Instigation of Cell Cycle Arrest

The efficacy of FDN in instigating cell cycle arrest within A49 cells was assessed using
propidium iodide (PI) stain as described previously [14]. Briefly, 5 × 105 A549 cells were
incubated for 24 h under standard culture conditions post-FDN treatment. Subsequently,
cells from each group were centrifuged (1200 rpm, 10 min, 37 ◦C) and the pellet was treated
with RNAse-A (50 µg/mL, 30 min) at room temperature. The cells were then fixed through
12 h incubation at −20 ◦C with chilled ethanol. Eventually, the cells were stained with
25 µg/mL of PI (15 min) at 37 ◦C and analyzed using FACS ARIA (BD Biosciences, San
Diego, CA, USA).

2.11. mRNA Expression (Quantitative RT-PCR)

A total of 1× 106 A549 cells were treated with different concentrations of FDN (50, 100,
and 200 µM) and were incubated under optimum culture conditions. Untreated cells served
as controls. At 24 h post-incubation, RNA from different groups was separated using a
commercial kit from Thermo Scientific (Waltham, MA, USA). cDNA was subsequently
synthesized from 2 µg of isolated RNA through a commercially procured kit. Primers
used for synthesis of cDNA were described previously and are stated in Table 1 [14–17].
Afterwards, quantitative RT-PCR was performed through a commercially available qPCR
kit (Thermo Scientific, Waltham, MA, USA), during which glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) gene was used for normalization. Relative CT methodology was
used to quantify the alterations within expression of different genes in comparison with
GAPDH gene, which, in turn, was set to be 1. The comparative levels of mRNA for an
individual gene were normalized to the mean of the respective control and were estimated
by ∆∆CT method.

Table 1. Primer sequences used in the study.

Genes Forward Sequence Reverse Sequence

GAPDH CGACCACTTTGTCAAGCTCA CCCCTCTTCAAGGGGTCTAC
Bax GCCCTTTTGCTTCAGGGTTT TCCAATGTCCAGCCCATGAT
Bad CCTCAGGCCTATGCAAAAAG AAACCCAAAACTTCCGATGG
Bcl2 GATTGTGGCCTTCTTTGAG CAAACTGAGCAGAGTCTTC

CyclinD1 CCGTCCATGCGGAAGATC GAAGACCTCCTCCTCGCACT
CDK4 CCTGGCCAGAATCTACAGCTA ACATCTCGAGGCCAGTCATC
p21Cip1 TCCAGGTTCAACCCACAGCTACTT TCAGATGACTCTGGGAAACGCCAA
Wnt3 CGCTCAGCTATGAACAAGCA AAAGTTGGGGGAGTTCTCGT

β-catenin TCTGAGGACAAGCCACAAGATTACA TGGGCACCAATATCAAGTCCAA

2.12. Statistical Analysis

The reported data represent mean ± SD of three independent experiments replicated
in triplicate. Statistical significance was quantified through GraphPad Prism Ver.5.0 (San
Diego, CA, USA) and was deemed to be significant when p < 0.05 using one-way ANOVA,
subsequently followed by Dunnett and paired Student t-test post hoc test. * p < 0.05,
** p < 0.01, and *** p < 0.001.

3. Results
3.1. FDN Inhibited the Growth of A549 Cells

A cell survival assay was adopted to investigate the anticancer efficacy of FDN against
A549 cells. Initially, A549 cells were treated with various concentrations of FDN ranging
from 0 to 300 µM. As shown in Figure S1, FDN induced a dose-dependent cytotoxic effect
against A549 cells, with a calculated IC50 value of 85.02 µM. According to the cell viability
curve (Figure S1), FDN concentrations of 50, 100, and 200 µM, which exerted remarkable
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cytotoxic potential, were selected to be used throughout the whole study. In the cell viability
study (Figure 1a), FDN efficiently inhibited the growth of A549 cells, in a dose-dependent
manner, implicating the inhibitory effects of FDN. FDN reduced the viability of A549
cells to 83.46 ± 4.61%, 52.40 ± 2.17%, and 29.73 ± 3.81% upon treatment with 50, 100,
and 200 µM FDN, respectively. Of interest, the cytotoxic potential of 200 µM FDN was
comparable to that of a standard compound, cisplatin. In addition, the cytotoxic potential
of FDN was investigated against noncancerous cells via MTT assay. As shown in Figure 1b,
an insignificant decrease in the viability of J774A.1 cells was observed upon treatment with
various concentrations of FDN for 24 h, as compared to the control untreated cells. These
results emphasized the cytotoxic potential of FDN against cancerous A549 NSCLC but not
normal J774A.1 cells. In addition, morphological analysis (Figure 1c) by phase contrast
microscopy revealed that treatment of A549 cell line with FDN for 24 h resulted in low cell
confluence and plasma membrane blebbings, suggesting the induction of cell apoptosis.
Furthermore, FDN treatment reduced the adherence of A549 cells, resulting in floating of
cells, which was not obvious with untreated control cells that remained adhered under the
same culturing conditions.

Figure 1. FDN mediated toxic effects on (a) NSCLC A549 cells and (b) J774A.1 cells as established
through MTT assay. (c) Phase-contrast images of FDN-treated A549 cells for 24 h, instigating
morphological aberrations where swelling and cell membrane lysis within FDN-treated A549 cells
are indicated by green and blue arrows (scale bar 100 µm). * p < 0.05, *** p < 0.001 vs. control.

3.2. FDN Induced Apoptosis via Intrinsic Apoptosis Pathway

To examine whether FDN was able to induce apoptosis in A549 lung cancer cells,
Hoechst-33342 staining was conducted [18]. As shown in Figure 2a, FDN-treated cells,
stained with Hoechst-33342, exhibited brighter blue fluorescence compared to untreated
control cells, particularly at higher FDN concentrations, indicating higher chromatin con-
densation. These results suggest that FDN exerted its cytotoxic potential, at least in part,
via the induction of apoptosis in lung cancer cells. Quantification of fluorescence intensity
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supports our findings, where higher fluorescence intensity was observed in FDN-treated
cells compared to control cells (Figure 2b).

Figure 2. (a) Condensation and fragmentation of nucleus post-FDN exposure (scale bar 100 µm);
(b) signal intensity of Hoechst-33342 staining. The mean signal intensities were determined for at
least 25 cells from each preparation and control using image J program. (c) FDN induced apoptosis in
lung cancer cells as assessed by Annexin-V FITC/PI assay. (d) Percent total apoptosis in FDN-treated
lung cancer cells normalized to the number of untreated cells. * p < 0.05, ** p < 0.01, *** p < 0.001
vs. control.

In addition, apoptosis was also quantitatively estimated by Annexin V-FITC/PI assay
to estimate the efficacy of FDN in inducing apoptosis in A549 cells. As observed in Figure 2c,
cells in the upper right quadrant (UR) undergo early-stage apoptosis (Annexin V-FITC+,
PI−), and cells in the lower right quadrant (LR) witnessing late-stage apoptosis (Annexin
V-FITC+, PI+) were referred to as apoptotic cells. The sum of LR and UR is reported as total
apoptosis, which, in turn, was normalized with the apoptotic cells in the untreated control
(4.7 ± 1.03%). The percentage of A549 cells that had undergone apoptosis was increased
up to 21.08 ± 3.70%, 32.43 ± 4.06%, and 55.57 ± 2.07% when treated with 50 µM, 100 µM,
and 200 µM FDN, respectively (Figure 2d). A minimum of 10,000 events were recorded for
each Annexin V-FITC analysis.

3.3. FDN Instigated Caspase Apoptotic Pathways in A549 NSCLC Cells

In order to elucidate the cellular events associated with apoptosis induction in A549
lung cancer cells upon treatment with FDN, caspase assay was conducted. As shown in
Figure 3a, treatment with FDN substantially enhanced caspase-9 and caspase-3 activities in
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a dose-dependent manner. Treatment with 200µM FDN significantly enhanced caspase-9
and caspase-3 activities by 118.58 ± 3.66% and 144.54 ± 6.44%, respectively, compared to
treatment with 50 µM FDN (35.98 ± 5.41% and 49.69 ± 6.63%, respectively).

Figure 3. (a) Effect of FDN on caspase-3 and -9 activities. Cellular viability of NSCLC A549 cells
pre-exposed to inhibitors of (b) caspase-3 and (c) caspase-9. * p < 0.05, ** p < 0.01 vs. control.

Furthermore, to delineate the contribution of caspases in FDN-mediated apoptosis in
lung cancer, A549 cells were pretreated for 2 h with Z-DEVD-FMK (caspase-3 inhibitor)
and Z-LEHD-FMK (caspase-9 inhibitor) prior to treatment with FDN (50–200µM) for 24 h.
As shown in Figure 3b,c, pretreatment with caspase inhibitors entirely abrogated FDN-
mediated apoptosis in A549 cells. These results strongly confirmed the pivotal role of
caspase activation in FDN-mediated apoptosis in A549 lung cancer cells.

Reactive oxygen species (ROS) production is considered one of the driving forces
in the instigation of apoptotic pathways [14]. Accordingly, levels of ROS were assessed
in FDN-treated and untreated A549 cells. As depicted in Figure 4a, FDN-treated cells
exhibited substantially stronger DCF-DA-mediated fluorescence compared to untreated
control cells. These results obviously indicated the efficiency of FDN in augmenting ROS
production within A549 cells. Similarly, quantification of DCF-DA-mediated fluorescence
intensity revealed that the percentage DCF-DA fluorescence was 146.32 ± 0.08% at 50 µM
FDN, 164.62 ± 0.06% at 100 µM FDN, and 201.46 ± 0.02% at 200 µM FDN, compared with
untreated cells (Figure 4b). This evidence clearly revealed that FDN incited ROS generation
within A549 cells in a dose-dependent manner.

Figure 4. Intracellular ROS generation post-FDN exposure assessed (a) qualitatively (scale bar
100 µm) and (b) quantitatively using DCFH-DA staining. ** p < 0.01, *** p < 0.001 vs. control.
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3.4. FDN Triggered Mitochondrial-Mediated Apoptosis

The interruption of normal mitochondrial function, particularly alterations that affect
the mitochondrial membrane potential (∆Ψm), is a distinguishing feature of apoptosis [19].
Accordingly, alteration in ∆Ψm was assessed in A549 lung cancer cells following treatment
with FDN. As depicted in Figure 5, in the absence of FDN, A549 lung cancer cells showed an
intact ∆Ψm, manifested by the cellular uptake of rhodamine 123 dye and high fluorescence
intensity. On the other hand, upon treatment with FDN (50, 100, and 200µM), a remarkable
reduction in rhodamine 123 dye uptake by A549 cells was observed, as manifested by a
dose-dependent reduction in fluorescence intensity, due to loss of ∆Ψm. These results
suggest that FDN triggered a remarkable drop in ∆Ψm, which, in turn, might contribute to
the apoptotic potential of FDN against A549 lung cancer cells.

Figure 5. (a) Dissipation of ∆ψm post-FDN treatment at respective dosage (scale bar 100 µm);
(b) mean signal intensities were determined for at least 25 cells from each preparation and control
using image J program. * p < 0.05, *** p < 0.001 vs. control.

Furthermore, to quantify the altered ∆Ψm in A549 lung cancer cells upon treatment
with FDN, fluorescence intensities of Rh123 dye were quantified. As shown in Figure 5b,
FDN treatment decreased the fluorescence intensity in a dose-dependent manner in A549
lung cancer cells. The fluorescence intensity in cells treated with 200 µM FDN was signifi-
cantly lower than that in the control group.

In order to further verify the contribution of mitochondria to FDN-induced apoptosis
in A549 lung cancer cells, the mRNA expression levels of some Bcl-2 family members,
namely Bax, Bad (pro-apoptotic protein), and Bcl-2 (anti-apoptotic), which are crucial
mediators of the mitochondrial apoptotic pathway, were evaluated using qRT-PCR analysis.
As shown in Figure 6, treatment with FDN significantly enhanced the expression levels of
proapoptotic proteins (Bax and Bad) in a dose-dependent manner. Treatment with 50, 100,
and 200µm FDN resulted in a 1.31-, 1.94-, and 2.19- and 1.38-, 2.02-, and 2.98-fold change in
the expression levels of both Bax and Bad, respectively, when compared with untreated
cells (Figure 6). Simultaneously, FDN efficiently alleviated the expression levels of the
antiapoptotic protein Bcl-2 compared to control cells. These results collectively indicated
that FDN treatment succeeded in elevating the expression levels of proapoptotic proteins,
with mutual reduction in the expression of antiapoptotic proteins in A549 cells.



Life 2022, 12, 114 10 of 16

Figure 6. Competency of FDN in inducing the alterations within expression of pro- and antiapoptotic
genes as evaluated through RT-PCR. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control.

3.5. FDN Impeded the Progression of A549 Cells at G0/G1 Phase

In order to examine whether alterations in the cell cycle distribution were responsible
for A549-mediated cell growth inhibition and apoptosis induction, the population of A549
cells in different cell cycle phases was quantified by flow cytometry following treatment
with FDN. Treatment of A549 cells with 50, 100, or 200µm FDN for 24 h led to a dose-
dependent accumulation of cells at G0/G1 phase compared to untreated cells. The G0/G1
percentages were 39.75 ± 5.28% (50 µM), 48.68 ± 5.85% (100 µM), and 59.79 ± 5.83% (200
µM), respectively, compared to untreated cells (28.29 ± 3.28%) (Figure 7a,b).

Figure 7. The effect of FDN treatment on cell cycle progression of A549 lung cancer cells. (a) Cell cycle
analysis by flow cytometry of A549 cells treated with FDN (50-200 µM) for 24 h. (P5 = G0/G1, P6 = S
and P7 = G2/M). (b) Quantitative data from three independent experiments. * p < 0.05 vs. control.

Generally, the cell cycle is regulated in part by cyclins and their associated cyclin-
dependent kinases (CDKs) [20]. Therefore, to gain further insight on the impact of FDN on
cell cycle progression, the effect of FDN on cell cycle-associated genes, such as cyclinD1,
CDK4, and p21Cip1 genes, was investigated. As shown in Figure 8, FDN exposure resulted
in a dose-dependent decline in the expression level of both cyclinD1 and CDK4 genes,
which play a crucial role in cell progression through the G1 phase, compared to untreated
cells. Treatment with FDN resulted in a significant decrease in cyclin D1 expression levels,
respectively, compared to untreated cells. Similarly, treatment with 50, 100, and 200 µM
of FDN triggered a dose-dependent reduction in CDK4 expression levels, respectively,
compared to untreated cells. On the other hand, FDN exposure substantially elevated the
expression levels of the cell cycle inhibitor, p21Cip1, compared to untreated cells (Figure 8).
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Collectively, our results indicate that FDN could trigger cell cycle arrest via alleviating the
expression levels of cyclinD1 and CDK4 genes, while elevating the expression of cell cycle
inhibitor, p21Cip1.

Figure 8. Effect of FDN on mRNA expression of genes involved in cell cycle progression. Fold
change in mRNA expression level relative to control of CyclinD1, CDK4, and p21Cip1 was analyzed
quantitatively through RT-PCR. * p < 0.05, ** p < 0.01, *** p <0.001 vs. control.

3.6. Wnt/β-Catenin Signaling Cascade Regulates FDN-Induced Apoptosis in A549 Lung Cancer Cells

Canonical Wnt/β-catenin signaling is activated by the nuclear translocation of
β-catenin, culminating into transcriptional activation of downstream targets. Therefore,
we explored the influence of FDN on the mRNA expression of some peculiar proteins
representing this pathway. As shown in Figure 9, Wnt3 expression was substantially sup-
pressed by treatment with FDN. The expression levels of Wnt3 in A549 cancer cells were
0.74, 0.51, and 0.31 upon treatment with 50, 100, and 200µm FDN, respectively, compared
to untreated cells. Similarly, FDN inhibited β-catenin expression in a dose-dependent
manner. The expression levels of β-catenin were significantly reduced to 0.78, 0.63, and
0.41 in both the nucleus and cytoplasm upon treatment with 50, 100, and 200µm FDN,
respectively, compared to untreated cells. These findings show an FDN-mediated blockade
of the Wnt/β-catenin cascade.

Figure 9. Effect of FDN on mRNA expression of genes involved in the Wnt signaling pathway.
Fold change in mRNA expression level relative to the control of Wnt3 and β-catenin was analyzed
quantitatively through RT-PCR. * p < 0.05, ** p < 0.01 vs. control.
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4. Discussion

Furanodienone (FDN) is an emerging bioactive furanosesquiterpenoid with diverse
pharmacological activities, such as anti-inflammatory and antimicrobial activities [6]. Re-
cently, many reports have emphasized its cytotoxic potential against different cancer cell
lines, including colorectal cancer and breast cancer [7,9,21]. However, the antiproliferative
potential of FDN against human lung cancer has not been elucidated yet. In the current
study, we demonstrated, for the first time, that FDN could efficiently inhibit A549 cell
proliferation (Figure 1). Furthermore, we declared the probable mechanism(s) underlying
such potent cytotoxic effects against lung cancer cells. FDN induced G0/G1 cell cycle arrest
in lung cancer cells (Figure 7). In addition, FDN efficiently triggered apoptosis within
A549 cells via upregulating the expression of apoptotic proteins (Bax, Bad) and down-
regulating the expression of antiapoptotic proteins (Bcl-2) (Figure 6). Most importantly,
FDN-treated A549 cells efficiently downregulated the Wnt signaling pathway (Figure 9),
which was correlated with increased apoptosis as well as cell cycle arrest in A549 cells.

Anticancer effect is usually mediated by the inhibition of proliferation and cell cycle
arrest. In this study, we demonstrated that FDN induces remarkable cell growth inhibition
in A549 in a dose-dependent manner (Figure 1a), with maximum efficacy (>70% growth
inhibition) observed at a concentration of 200 µM. Such a cytotoxic effect of FDN was
comparable to that of a standard compound, cisplatin, signifying the efficiency of FDN
against A549 NSCLC. Similar results were reported by Jiang et al. [7], who demonstrated
that treatment of RKO and HT-29 colorectal cancer cells with 400 µM FDN for 24 h induced
cell growth inhibition of ~50 and 40%, respectively. In the same context, Li et al. [21]
revealed that FDN at a concentration of 160 µM could inhibit BT474 and SKBR3 breast
cancer cell growth by only ~30 and 50%, respectively. Of interest, the calculated IC50,
herein, for FDN against A549 cells was found to be 85.02 µM, which was much lower than
that for FDN against RKO and HT-29 colorectal cancer cells (IC50 values were 156.4 and
251.1 µM, respectively) [7]. Collectively, these results emphasized the efficient anticancer
potential of FDN against A549 lung cancer cells.

Furthermore, in order to demonstrate the antiproliferative efficacy of FDN, the dis-
tribution of treated cells in various cell cycle phases, namely the sub-G0/G1 (apoptosis),
G0/G1, S, and G2/M phases, was detected using PI staining. Generally, G0/G1 and G2/M
stages of the cell cycle are the major checkpoints and are implicated with critical roles in
cell cycle regulation [22]. Our data reveal that FDN arrested the progression of cell cycle
at G0/G1 in NSCLC A549 cells (Figure 7) by preventing the transition from G0/G1 to S,
and thus resulting in their apoptosis. It is well documented that precise timing of cell-cycle
transitions relies, at least in part, on the regulation of the activity of cyclins and their
associated cyclin-dependent kinases (CDKs). Cyclin D1 plays a crucial role in regulating
the transition from G1 phase of the cell cycle to S phase [23]. Furthermore, enhanced
expression of cyclin D1 instigates profound proliferation of cells by altering the cell cycle′s
homeostatic regulatory mechanisms and acts as a risk factor for the onset of cancers [24]. In
the current study, treatment with FDN impeded the expression of cyclin D1 and CDK 4 and
triggered the expression of the cell cycle inhibitor, p21Cip1 (Figure 8), which collectively
might account for the reduced cell viability and/or proliferation of A549 cells.

Apoptosis induction by drugs has emerged as an efficient therapeutic intervention
against cancer cells. DNA fragmentation and chromatin condensation are the chief charac-
teristics of apoptosis, and these were observed in NSCLC cells after treatment with FDN.
Moreover, the results of the FITC-Annexin V/PI assay also confirmed the apoptotic efficacy
of FDN in A549 cells. It was observed that FDN significantly increased the percentage of
Annexin-V-positive cells in a dose-related manner in NSCLC A549 cells, indicating that
FDN is an apoptotic agent.

The key role of mitochondria in the regulation of apoptosis is well acknowledged,
making them an appealing target for the development of novel anticancer drugs [25]. In the
current study, we revealed that FDN could induce mitochondrial membrane disturbance
by dissipating the mitochondrial transmembrane potential (∆Ψm) (Figure 5). Furthermore,
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we demonstrated that FDN treatment triggered the upregulation of proapoptotic proteins
(Bax and Bad), with mutual downregulation of antiapoptotic (Bcl-2) proteins in A549 cells.
The Bcl-2 protein family regulates cell death largely by direct binding interactions that
govern mitochondrial outer membrane permeabilization, which eventually results in the
irreversible release of intermembrane space proteins, caspase activation, and apoptosis. Col-
lectively, these results imply that mitochondria are at the nexus of sensing and processing
the stress induced by FDN in lung cancer cells.

Caspases are a family of cysteine proteases that play important roles in regulating
apoptosis [26]. Accordingly, to gain further insight into the mechanisms involved in the
induction of apoptosis by FDN, caspase activities were evaluated. Our results revealed that
FDN enhanced the activity of not only the initiator caspase-9, but the effector caspase-3 as
well in a dose-dependent manner (Figure 2). Interestingly, the caspase inhibitors, Z-LEHD-
FMK (caspase-9 inhibitor) and Z-VAD-FMK (caspase-3 inhibitor), completely inhibited
the apoptogenic activity of FDN (Figure 3). These results suggest that caspase-dependent
processes are involved in the apoptogenic activity of FDN.

The canonical Wnt/β-catenin signaling cascade is widely known to be functionally
important in the regulation of a myriad of biological processes, including cell prolifer-
ation, differentiation, and apoptosis. Modulations in this pathway are involved in the
pathogenesis of various types of carcinomas [26–29]. Alterations within the Wnt/β-catenin
are prominent in various human carcinomas. The Wnt signaling cascade is important in
NSCLC cell lines. Wnt-1, -2, -3, and -5a components of the Wnt pathway are found to
be overexpressed along with the frizzled-8, disheveled, porcupine, and TCF-4 in NSCLC,
which is associated with poor prognosis [29]. In addition, the oncogenic hyper-activated
Wnt/β-catenin is prominent in lung cancer, playing an important role in tumorigene-
sis, prognosis, and resistance to therapy [30]. Currently, many researches are focusing
on the development of specific inhibitors of WNT/β-catenin signaling for cancer thera-
pies [31,32]. Herein, it was obvious that Wnt3 and β-catenin expression levels were reduced
in A549 cells post-treatment with FDN in a dose-dependent manner (Figure 9). These
results suggest that FDN exerted its anticancer effect, presumably via downregulating the
Wnt/β-catenin signaling cascade in A549 cells. Nevertheless, it is important to underscore
that it is difficult to target only the WNT pathway without interfering with other signaling
pathways. Recent reports have revealed the extensive crosstalk between Wnt/β-catenin
and mitogen-activated protein kinase (MAPK) signaling in cancer [33,34]. Hu and his
colleagues [7] have reported that FDN could induce G0/G1 arrest and trigger cell death
via the ROS/MAPKs-mediated caspase-dependent pathway in human colorectal cancer
cells. Furthermore, Jeong et al. [35] have demonstrated that, in colorectal cancer, Wnt/β-
catenin signaling pathway stimulation efficiently triggered the activation of the MAPK
pathway through Ras stabilization, indicating a positive crosstalk. Collectively, in this
study, FDN might induce apoptosis and cell cycle arrest in A549 lung cancer cells via
a crosstalk between Wnt/β-catenin and MAPK signaling (Scheme 2); however, further
investigations are required to provide a better understanding of FDN-mediated anticancer
effect on human adenocarcinomas.
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Scheme 2. Cartoon depicting the plausible mechanism of the cytotoxic effect of FDN against NSCLC A549.

5. Conclusions

In this study, we demonstrated the efficacy of the natural compound furanodienone
(FDN) to induce apoptosis in non-small cell lung cancer. Our findings not only provide the
first evidence of FDN potential as a novel therapeutic option for the treatment of lung cancer,
but also provide insight into the molecular mechanism(s) by which FDN induces cell death.
FDN suppressed the proliferation of A549 lung cancer cells by restraining the progression of
the cell cycle at G0/G1 phase, and caused cell apoptosis, at least in part, via downregulation
of the canonical Wnt signaling pathway. Collectively, the natural compound, FDN, might
represent a promising adjunctive drug with low toxicity targeting on lung cancer. However,
in vivo model-based exploratory studies elucidating the mechanistic details of FDN are
still a prerequisite to fully validate the anticancer potential of FDN against NSCLC.
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