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Abstract: Biofilm infections in wounds seriously delay the healing process, and methicillin-resistant
Staphylococcus aureus is a major cause of wound infections. In addition to inactivating micro-
organisms, low-temperature gas plasma can restore the sensitivity of pathogenic microbes to an-
tibiotics. However, the combined treatment has not been applied to infectious diseases. In this
study, low-temperature gas plasma treatment promoted the effects of different antibiotics on the
reduction of S. aureus biofilms in vitro. Low-temperature gas plasma combined with rifampicin also
effectively reduced the S. aureus cells in biofilms in the murine wound infection model. The blood
and histochemical analysis demonstrated the biosafety of the combined treatment. Our findings
demonstrated that low-temperature gas plasma combined with antibiotics is a promising therapeutic
strategy for wound infections.

Keywords: low-temperature gas plasma; biofilm; antibiotic; wound; methicillin-resistant
Staphylococcus aureus

1. Introduction

Skin infections represent one of the most common infectious diseases, and microbial
infections seriously prevent or delay the healing process [1–3]. Staphylococcus aureus
especially methicillin-resistant S. aureus (MRSA), is one of the most frequent causes of skin
infections [3–7]. S. aureus cells generally form biofilms on infected skin tissues and are not
easily eradicated [8,9]. Biofilms formed by aggregated microbial cells are surrounded by a
self-produced extracellular polymeric matrix made of proteins, DNA, and polysaccharides,
and adhere to a surface, such as the surfaces of living tissues [10,11]. The structure of the
biofilm makes the biofilm-associated bacteria more resistant to the host immune defense
system, antibiotics, and other antimicrobial agents [12–14]. Skin tissues infected with
biofilms are generally treated by surgical incision and debridement, topical antimicrobials,
administration of antibiotics, or a combination of these treatments [15]. Surgical incision
and debridement probably damage the uninfected skin tissues, while the effect of antibiotic
treatment is poor and high amounts of antibiotics cause cytotoxicity [16]. Therefore,
developing an effective and safe treatment for biofilm reduction is a challenging issue in
the therapy of wound infections.
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The development of antimicrobials and antibiotic adjuvants is centered around reac-
tive oxygen species (ROS) [17–19]. Low-temperature gas plasma (LTGP) contains various
reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as H2O2, 1O2, •OH,
and •NO as well as electrons, ions, and photons. The temperature of LTGP is near room
temperature and therefore it treats cells and tissues without thermal damage, reflecting
its attractiveness for a range of biomedical applications, such as bacteria inactivation and
cancer treatment [20–24]. The FDA has authorized the use of at least three plasma-based
products using “plasma biomedicine” technology, and more biomedical applications, such
as ulcer treatments, are currently in preclinical and clinical studies [25–27]. LTGP treatment
can also be used as a novel topical antimicrobial therapy for wound infections. However,
high doses of LTGP carry a risk of damaging body tissues, while low doses of LTGP cannot
effectively inactivate pathogens, especially when the pathogens are located deep within
a tissue [28]. Thus, a combination of topical treatment with a lower dose of LTGP and
conventional antibiotics may represent a therapeutic strategy for infectious skin diseases.

In this study, the combination of LTGP and conventional antibiotics were used to treat
the methicillin-resistant S. aureus biofilms both in vitro and in murine wounds and the
combined treatment effectively reduced the S. aureus cells in biofilms. These results suggest
that this combination is a novel potential treatment strategy for skin infections.

2. Materials and Methods
2.1. Biofilm Assay

The biofilms were cultured as described previously [9,29]. S. aureus ATCC33591, a
methicillin-resistant strain, was purchased from the American Type Culture Collection
(ATCC). A single S. aureus ATCC33591 colony was grown in 4 mL of Tryptic Soy Broth
(TSB, Oxoid) at 250 r.p.m. at 37 ◦C overnight. The overnight S. aureus cultures were diluted
1:100 in TSB with 1% glucose. Silica films (10 × 10 × 0.5 mm) were attached to the bottom
of wells of 24-well plates, covered with diluted S. aureus, and cultured at 37 ◦C for 3 days.
The medium was carefully removed, and the silica films with biofilms were gently washed
three times with saline solution (0.9% NaCl). After the different treatments, the biofilms
were solubilized in 1 mL of saline in 1.5-mL Eppendorf tubes by sonication for 1 min
and vortexing for 5 min. Serial dilutions of each biofilm were performed, and 10 µL of
each dilution was spotted onto TSB plates and incubated overnight at 37 ◦C. The resulting
colony-forming units were calculated and analyzed.

2.2. LTGP Device and Treatments

The LTGP device was similar to that used in previous studies [9,29]. As shown in
Figure 1, the surface discharge structure of the LTGP consisted of a high-voltage plane
electrode, a liquid-facing grounded mesh electrode with a hexagonal shape, and a dielectric
layer (made of polytetrafluoroethylene) sandwiched between the two electrodes. The LTGP
was generated when a sinusoidal high voltage was applied, and the discharge power den-
sity was 0.2 W/cm2 with good mesh-to-mesh homogeneity. The S. aureus biofilms in a petri
dish (a diameter of 35 mm), which was smaller in size than the LTGP (40 mm × 40 mm),
were placed under the LTGP, and the distance between the LTGP and the surface of
biofilms was approximately 9 mm (Figure 1A). For the treatment of the wounds in a murine
model, the posterior part of the mice was placed under the LTGP, and the distance be-
tween the LTGP and the wounds was between 8–12 mm (Figure 1B,C). The LTGP system
was housed in a sealed organic glass box with a gas flow of helium and 1% artificial air
(79% N2 + 21% O2) at a constant rate of 4 L/min. Artificial air was used as the source of
ROS, while helium was used to enhance the production efficiency of those species as well
as their flux on the treated samples via diffusion. The spectra emitted from the plasma
were detected by an optical emission spectrometer (Andor, SR750) of which the head of
optical fiber was located at 3 cm from the mesh electrode, and the detected spectral range
was between 200 and 800 nm.
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Figure 1. Schematic diagram of the LTGP treatment. (A) The treatment of S. aureus biofilms with
LTGP. (B) The front view (left) and side view (right) of the wounds in the murine model treated with
LTGP. (C) Emission spectra of the surface plasma with the working gas of helium and 1% air.

2.3. Antibiotic Treatment of Biofilms

The untreated biofilms and biofilms treated with LTGP were cultured in TSB with
1% glucose and 1250 µg/mL ciprofloxacin, norfloxacin, or vancomycin, or 625 µg/mL
rifampicin at 37 ◦C for 12 h. In the combined experiment of two antibiotics, after culture
in TSB containing the first antibiotic at 37 ◦C for 12 h, the biofilms were washed three
times with saline solution and cultured in TSB containing the second antibiotic at 37 ◦C for
another 12 h. The medium was carefully removed, and the biofilms were solubilized in
1 mL of saline in 1.5-mL Eppendorf tubes by sonication for 5 min and vortexing for 1 min.
Serial dilutions of each biofilm were performed, and 10 µL of each dilution was spotted
onto TSB plates and incubated overnight at 37 ◦C.

2.4. The Minimum Bactericidal Concentration (MBC) Assay

The untreated biofilms and biofilms treated with LTGP were cultured in TSB with 1%
glucose and 20–2500 µg/mL ciprofloxacin, norfloxacin, vancomycin, or rifampicin for 24 h.
The medium was carefully removed, and the biofilms were solubilized in 1 mL of saline in
1.5-mL Eppendorf tubes by sonication for 5 min and vortexing for 1 min. Serial dilutions of
each biofilm were performed, and 10 µL of each dilution was spotted onto TSB plates and
incubated overnight at 37 ◦C.
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2.5. Regrowth of Biofilms after LTGP Treatment

The biofilms were treated with LTGP for 2, 4, 6, and 8 min, respectively. Then the
biofilms were transferred into the fresh TSB containing 1% glucose for regrowth. After
culture for 3 days, the biofilms were solubilized in 1 mL of saline by sonication for 5 min
and vortexing for 1 min. Serial dilutions of each biofilm were performed, and 10 µL of each
dilution was spotted onto TSB plates and incubated overnight at 37 ◦C.

2.6. Mouse Wound Infection Model

Healthy Balb/c mice were purchased from the Laboratory Animal Care Committee of
Xi’an Jiaotong University, China. The animals were housed at a temperature of 22 ± 1 ◦C,
relative humidity of 55 ± 5%, and a 12 h dark-light cycle. All experiments in this study
complied with the “Guide for the Care and Use of Laboratory Animals.” The dorsal fur of
the Balb/c mice was shaved and the skin disinfected by swabbing with 70% ethanol cotton,
then the mice were anesthetized with an intraperitoneal injection of sodium pentobarbital.
On the depilated posterior part of each mouse, square wounds of 8 × 8 mm on average
were generated by cutting carefully through the full thickness of the skin. The animals
were randomly divided into six groups, including one uninfected group and five infected
groups. Twenty microliters of S. aureus ATCC33591 suspension containing approximately
108 cells in saline was inoculated onto each wound, and infections were allowed to progress
for 3 days. Uninfected mice were used as additional controls. After 3 days, one group of
infected mice was sacrificed and the numbers of bacteria were determined to ensure the
establishment of the wound infection model. The infected skin was aseptically excised and
homogenized in PBS using a homogenizer (IKA). The homogenates were serially diluted,
and samples were plated on TSB agar and incubated at 37 ◦C overnight.

2.7. Treatment

The infected groups were treated individually with LTGP, rifampicin, or a combination
of LTGP and rifampicin for 3 days. Photographs of the wounds were taken on days 3,
6, 8, 10, 12, 14, and 16. The wound dimensions were blotted on transparent paper and
measured using graph paper. For the treatment of LTGP on the wounds in murine models,
the wounds were treated with LTGP for 6 min once every day for 3 days. For the rifampicin
treatment groups, rifampicin (30 mg/kg) was given by intragastric administration every
12 h for 3 days. The untreated and treated mice were sacrificed 24 h after treatment. A
cardiac blood sample was taken immediately following euthanization and was divided
into two tubes: one tube for 0.2 mL was stored in anticoagulant tubes for the hematological
test, and another tube was stored at 4 ◦C overnight, and then the serum was separated by
centrifugation for the serum biochemical examination. After the collection of blood, the
wound tissue samples were also fixed in 4% (v/v) paraformaldehyde for more than 24 h.
Then, the fixed tissues were cleared in xylene and embedded in paraffin. To determine
the center of the wound and adequately monitor the healing process, the whole sample
was serially cross-sectioned (4 µm) with a microtome and mounted on a glass slide. The
sections were stained with hematoxylin and eosin. All images were observed under a light
microscope and captured at 20×magnification. Anti-S. aureus antibody (ab37644, Abcam)
was used as the primary antibody in the immunofluorescence analysis and was scanned
using a Pannoramic 250 Flash III.

2.8. Statistical Analysis

All experiments were performed independently at least three times with triplicate
samples. Statistical analyses were performed in SPSS 13.0 (IBM, Armonk, NY, USA) using
the Mann–Whitney U test of non-parametric statistical tests. The statistical significance of
the data was established at a p-value of <0.05.
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3. Results
3.1. The Gaseous Reactive Species Produced by the Surface Plasma

The gaseous reactive species produced by the surface discharge plasmas with working
gas of helium and 1% air was conducted by optical emission spectrometry (OES). The
emission intensities of the N2(C3Πu→B3Πg) and N2

+(B2∑+
u→X2∑+

g ) were higher, which
resulted from the inelastic collisions between the high-energy electrons in the plasma and
the nitrogen, which occupied a large proportion of the ambient air. The trace amounts
of oxygen and water vapor in the gaseous phase could also be dissociated to generate
excited atoms and molecules such as O and OH and their spectrum lines were diagnosed
in the OES. In addition, the spectrum lines of metastable He were also identified. The
interaction of these gaseous RONS with aqueous solutions on the surface of biofilms or
wounds could induce the production of aqueous reactive species, which directly reacted
with the biomolecules and produced the biological effects.

3.2. LTGP Treatment Promotes the Reduction of Biofilm by Antibiotics

The S. aureus biofilms displayed strong tolerance to antibiotics. Treatment with antibi-
otics for 12 h decreased the number of living cells by less than two orders of magnitude
(Figure 2A). Treatment with two antibiotics sequentially decreased the number of living
cells by approximately 1–3 orders of magnitude (Figure 2B). LTGP treatment for 6 min
decreased the number of living cells by approximately two orders of magnitude and treat-
ment for 8 min decreased the number of living cells by approximately four and a half orders
of magnitude, but the cell numbers of the biofilms recovered after 12 h of culture without
antibiotics (Figure 2C,D). The treatment of the biofilms using the working gas without ap-
plying a voltage exhibited little effect (Supplementary Figure S1). In the experiments of the
combination of LTGP and antibiotics, the short-term treatment of LTGP for 2, 4, and 6 min
and 1250 µg/mL ciprofloxacin, norfloxacin, or vancomycin, or 625 µg/mL rifampicin, were
employed. The combination of LTGP treatment for 6 min and ciprofloxacin, norfloxacin,
and rifampicin reduced the living cells in the biofilms close to the detection limit, while
the combination of LTGP treatment for 6 min and vancomycin reduced more than five
orders of magnitude living cells in the biofilms (Figure 2E–H). Therefore, the combination
of LTGP treatment and antibiotics can effectively reduce the living cells in biofilms in vitro.

To further verify the promotion of antibiotic effects by LTGP treatment, the minimum
bactericidal concentration (MBC) values of untreated biofilms and biofilms treated with
LTGP were measured. The untreated biofilms could be eradicated by only 2500 µg/mL ri-
fampicin. After LTGP treatment for 2 min, the biofilms could be eradicated by 2500 µg/mL
ciprofloxacin, norfloxacin, or vancomycin and 1250 µg/mL rifampicin (Table 1). The MBC
values of ciprofloxacin, norfloxacin, vancomycin, and rifampicin against biofilms treated
with LTGP for 4 min were 625, 1250, 625, and 312.5 µg/mL, respectively, and those against
biofilms treated with LTGP for 6 min were 312.5, 312.5, 312.5, and 156 µg/mL, respectively
(Table 1). These results indicated that the LTGP treatment lowered the MBC of the S. aureus
biofilms and enhanced the killing of living cells in biofilms by antibiotics.
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Figure 2. Reduction of S. aureus biofilms by LTGP treatment in combination with antibiotics. (A) The inactivation of S.
aureus biofilms by antibiotics. (B) The inactivation of S. aureus biofilms by two antibiotics sequentially. (C) The reduction of
S. aureus biofilms by LTGP treatment. (D) The regrowth of S. aureus biofilms after LTGP treatment. (E–H) The reduction of
S. aureus biofilms by LTGP treatment in combination with ciprofloxacin (E), norfloxacin (F), rifampicin (G), or vancomycin
(H). The treated and untreated biofilms were solubilized in 1 mL saline by sonication and vortexing. Serial dilutions of each
biofilm were performed and 10 µL of each dilution was spotted onto TSB plates and incubated overnight at 37 ◦C. Error
bars represent the standard deviation (SD). ** p < 0.01.

Table 1. The MBC of the S. aureus biofilms after LTGP treatment.

Treatment Time
(min)

Ciprofloxacin
(µg/mL)

Norfloxacin
(µg/mL)

Vancomycin
(µg/mL)

Rifampicin
(µg/mL)

0 >2500 >2500 >2500 2500
2 2500 2500 2500 1250
4 625 1250 625 312.5
6 312.5 312.5 312.5 156

3.3. LTGP Treatment in Combination with Rifampicin Reduces Infections in Wounds

In an attempt to assess whether LTGP combined with antibiotics could serve as
a beneficial tool for wound infection treatment, murine infectious wounds were used
to evaluate. The excisional wounds on the posterior parts of mice were infected with
methicillin-resistant S. aureus and the biofilms formed in the wounds after 3 days. Based
on the results of in vitro experiments and administration of antibiotics, rifampicin was
selected as the antibiotic for animal experiments. The infected mice were treated with LTGP
once a day, intragastric administration with rifampicin every 12 h, or the combination of
LTGP and intragastric administration with rifampicin for 3 days (Figure 3A). The reduction
of biofilm in wounds was assessed by plate counting and immunofluorescence analysis.
The intragastric administration of rifampicin for 72 h reduced less than 0.5-log10 S. aureus
cells and exhibited little effect on the wounds, and the treatment of LTGP alone for 3 days
decreased the bacterial cell numbers by approximately 2.0-log10 (Figure 3B). Remarkably,
the combination of LTGP treatment and rifampicin decreased the bacterial cell numbers by
approximately 6.3-log10 within 3 days (Figure 3B). Then, the skin tissues around wounds
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were detected by HE staining and immunofluorescence analysis (Figure 3C). After 3-day
treatment, compared with the untreated group, the inflammation reaction in the groups
treated with rifampicin alone or LTGP alone and the combined treatment all significantly
decreased, especially in the group treated with the combined treatment. The growth of
granulation tissue was greatest in the group treated with the combined treatment. In
the immunofluorescence analysis, the non-specific binding of the antibody to the scar
tissue of the wounds produced non-specific green fluorescence signals on the surface of
the wounds (Figure 3C). The S. aureus cells represented by green fluorescence signals
greatly decreased in the group treated with the combined treatment and decreased in the
surface parts in the group treated with LTGP, while that slightly decreased in the group
treated with rifampicin, which was consistent with the bacterial counts of wound tissues
(Figure 3C). Therefore, the combination of LTGP and rifampicin treatment can effectively
reduce biofilms in infected wounds.

The sizes of wounds were measured at day 3, at which the biofilms formed in wounds
and the treatment initiated; day 6, at which the bacteria numbers in wounds were de-
termined, and day 8, 10, and 12 (Figure 4A). The wound areas of the non-infected mice
decreased and those of the infected mice increased first and then decreased, which was
consistent with the phenomenon of a previous study [30]. The sizes of the excisional skin in
the wounds treated with LTGP alone or the combination of LTGP and rifampicin reduced
more rapidly and could be observed after 6 days, while those of the untreated wounds
and the wounds treated with rifampicin groups reduced slowly each day and were not
significantly different (Figure 4B,C). The wounds treated with LTGP alone or the combi-
nation of LTGP and rifampicin healed significantly quickly and complete wound closure
was observed after 10 days, while the untreated wounds and the wounds treated with
rifampicin still displayed small amounts of edema and closed after 16 days (Figure 4B,C).
Therefore, the combination treatment of LTGP and rifampicin could effectively reduce the
biofilms in the infected wounds and promote the healing of the infectious wounds.
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Figure 3. Reduction of S. aureus infection in murine wound model by the combined treatment of LTGP and rifampicin.
(A) Schematic representation of the murine wound model and the treatments with LTGP and rifampicin. (B) The reduction
of S. aureus in infected wounds by the combined treatment of LTGP and rifampicin. Groups of 5 Balb/c mice were used for
each experiment. Colony-forming units (c.f.u.) from the wound tissue of each mouse were plotted as individual points, and
error bars represent the standard deviation (SD) within an experimental group. The asterisks represent the reduction to
the limit of detection. (C) Histopathological and immunofluorescence analyses of the skin tissues of the wounds in mice.
The right column images of HE staining and immunofluorescence are magnified images of the enclosed area in the left
columns. For immunofluorescence analyses, the wound samples were immunostained with anti-S. aureus antibody (green)
and stained with DAPI (blue).
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Figure 4. Analysis of wounds in mice. (A) A time diagram of wound treatment. (B) Wounds of
Balb/c mice (n = 5 per group) infected with S. aureus and then treated with LTGP, rifampicin, or a
combination of these two treatments, at day 3, 6, 8, 10, and 12. The bar represents 1 cm. (C) Wound
sizes of the Balb/c mice skin lesions. Wounds were non-infected, infected and untreated, or infected
and treated with LTGP, rifampicin, or a combination of these two treatments. Error bars represent
the standard deviation (SD). The results shown are representative of an individual experiment. The
blue star represented the p-value of the untreated group and the group treated with LTGP, the purple
star represented the p-value of the untreated group and the group treated with the combination, and
the gray star represented the p-value of the group treated with LTGP and the group treated with the
combination *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3.4. Biosafety of the Combined Treatment

Biological safety should be considered for the application of the combination treatment
of LTGP and antibiotics (Table 2). The blood test demonstrated that the group treated
with LTGP alone and the group treated with the combination exhibited little change in the
numbers of red blood cell count, white blood cell, platelet count, lymphocytes, lympho-
cytes, monocytes, neutrophils, and the concentration of hemoglobin as compared with the
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non-infected group. A serum biochemical examination was analyzed and compared for
the systemic organ effects. The basic liver function, assessed through the enzyme activity
of alkaline phosphate, aspartate aminotransferase (AST), alanine aminotransferase (ALT),
and the concentration of total bilirubin in serum showed no significant differences between
the group treated with LTGP, the group treated with the combination, and the non-infected
group. The kidney function was assessed with the concentrations of blood urea nitrogen
(BUN) and creatinine, and the two parameters exhibited no significant differences between
the three groups. The levels of albumin, total protein, cholesterol, blood glucose, triglyc-
eride, and uric acid in the serum were also analyzed and there were no significant changes
between the three groups (Table 2). Further, a histochemical analysis of the hearts, lungs,
livers, spleens, and kidneys from mice was performed. The five organs are commonly
used for toxicological tests and the changes in the five organs reflected the toxicity of
substances. The comparison showed that the treatment of LTGP alone or the combined
treatment with LTGP and rifampicin had little changes of cellular swelling, fatty degenera-
tion, hyaline change, or other pathological damage in the organs (Figure 5). Therefore, the
treatment of LTGP alone or the combination treatment of LTGP and rifampicin exhibited
little organ toxicity.

Table 2. Effects on hematological and serum biochemical parameters in mice.

Parameters Non-Infected and
Untreated

Infected and Treated
with Plasma

Infected and Treated with
Plasma and Rifampicin

Hematology

Number of red blood cells (×1012/L) 11.10 ± 0.56 10.67 ± 0.55 11.45 ± 0.70
Number of white blood cells (×109/L) 4.58 ± 0.68 4.90 ± 1.38 a 5.24 ± 1.92

Platelet count (×109/L) 1263.4 ± 372.2 1254.0 ± 181.0 1224.2 ± 398.2
Hemoglobin (g/L) 167.6 ± 10.6 162.4 ± 8.5 168.2 ± 16.8

Number of lymphocytes (×109/L) 2.18 ± 0.28 2.70 ± 0.67 3.38 ± 1.84
Number of monocytes (×109/L) 0.18 ± 0.08 0.30 ± 0.10 0.24 ± 0.05
Number of neutrophils (×109/L) 1.62 ± 0.64 2.26 ± 0.73 1.62 ± 0.75

Kidney

Blood Urea Nitrogen (BUN) (mmol/L) 28.70 ± 3.91 26.58 ± 3.13 38.43 ± 14.41
Creatinine (µmol/L) 30.04 ± 1.82 27.33 ± 5.78 31.08 ± 4.11

Hepatic

Alkaline phosphatase (U/L) 188.13 ± 49.80 161.47 ± 22.69 150.55 ± 47.55
Aspartate aminotransferase (AST, U/L) 209.19 ± 59.78 184.64 ± 40.44 211.25 ± 36.11
Alanine aminotransferase (ALT, U/L) 72.43 ± 38.15 66.06 ± 11.45 74.41 ± 21.99

Total bilirubin (µmol/L) 22.13 ± 4.29 18.08 ± 3.18 20.52 ± 8.23

Nutrition

Total protein (g/L) 49.36 ± 3.70 45.40 ± 7.49 47.49 ± 3.28
Albumin (g/L) 34.36 ± 3.50 37.26 ± 2.03 33.47 ± 1.05

Cholesterol (mmol/L) 1.82 ± 0.38 2.01 ± 0.19 2.23 ± 0.43

Metabolize

Triglyceride (mmol/L) 0.57 ± 0.12 0.62 ± 0.10 0.56 ± 0.14
Glucose (mmol/L) 3.05 ± 0.85 3.18 ± 0.71 2.45 ± 0.63
Uric acid (µmol/L) 320.20 ± 92.83 331.79 ± 70.87 349.43 ± 41.62

a p < 0.05, comparison with the non-infected and untreated group (determined by the Mann–Whitney U test).
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Figure 5. Histopathological analysis of the hearts, lungs, livers, spleens, and kidneys from the infected
mice treated with LTGP or the combined treatment of LTGP and rifampicin, and the non-infected
and untreated mice. The bars represented 50 µm.

4. Discussion

Biofilm infections, especially biofilms formed by multidrug-resistant bacteria, are resis-
tant to antibiotics and the immune system; therefore, they are very difficult to cure [31,32].
Because of the toxicities and side effects of conventional antibiotics and the limitations of
renal and hepatic function, the effective concentrations of antibiotics for biofilm inactivation
are almost impossible to reach [32]. In particular, biofilms formed by antibiotic-resistant
bacteria in wounds on the surface of the human body are more difficult to eradicate.
Therefore, the combination of effective topical antimicrobials and antibiotics would be
a potent strategy for the treatment of wound infections. This study demonstrated that
LTGP treatment promoted the effectiveness of antibiotics and lowered the concentrations
of antibiotics needed to inactivate MRSA biofilms and that LTGP treatment combined with
antibiotics can efficiently reduce biofilms both in vitro and in the murine wound model.

LTGP treatment can lower the MBCs of S. aureus biofilms and enhance the reduction
of biofilm by antibiotics, and the combination of these two agents effectively treats wound
infections caused by antibiotic-resistant bacteria, which may alleviate the increasing an-
tibiotic resistance. A previous study reported that •OH induced in Ag+-treated bacteria
and O2

•- generated by fosfomycin can both potentiate the bactericidal activity of many
antibiotics [33,34]. Compared with ROS generated by chemicals, various ROS are generated
by the LTGP, and then act directly and synergistically on bacteria without chemical residues.
Therefore, LTGP can be developed as a potential topical antimicrobial and combined with
antibiotics for the treatment of wound infections.

The intensity of ultraviolet generated in the surface plasma with working gas of
Helium and 1% air was was very weak, approximately 3 µW/cm2, even lower than the
ultraviolet generated in the fluorescent lamp. Therefore, it was supposed that the ultraviolet
had little effect and the ROS and RNS played critical roles in the biomedical application [35].
Because of the non-selectivity of reactive oxygen species and reactive nitrogen species,
they highly react with biological macromolecules—DNA and proteins—and cause damage.
The ROS of LTGP inevitably induced DNA damage, such as double-strand break and
DNA-protein crosslinking [9,35,36]. Quinolone antibiotics, ciprofloxacin and norfloxacin,
impede DNA replication, which is also blocked by DNA damage [37]. Rifampicin inhibits
the transcription process through inactivating RNA polymerase [38]. The ROS of LTGP
may also inactivate RNA polymerase and the DNA damage caused by LTGP blocked
the transcription process. Vancomycin inhibits bacterial cell wall biosynthesis and the
reactive species of LTGP could break the bonds in the cell wall, which could synergize with
vancomycin on bacteria [39]. The NO2 and ONOO- of RNS could induce protein damages,
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such as oligomerization and nitration, and ONOO- also induced the damage of DNA
nucleotide, such as 8-nitroguanine [40,41]. The damages on other enzymes and cell walls
caused by ROS and RNS of LTGP can also synergize with different types of antibiotics.

When LTGP is applied to the treatment of wounds, it inevitably acts on the sur-
rounding skin tissues; subsequently, the safety and toxicity of LTGP application should be
considered. In this study, the appearance of the skin in healing wounds and the histopatho-
logical analysis exhibited no evident changes (Figures 4B and 5). The safety of LTGP
has been investigated for a long time, and clinical trials also demonstrated that 5-min
daily treatment with LTGP decreased bacteria in chronic wounds of patients without side
effects [27]. Studies in animal models showed that LTGP could efficiently inactivate S.
aureus and Escherichia coli on pig skin without inducing morphological changes or damage-
related apoptosis [42]. A micronucleus assay on human cells also demonstrated that LTGP
treatment did not increase mutagenicity [43]. These studies reflect the safety of LTGP
applications in wound treatment.

Based on these results, a model of LTGP treatment combined with antibiotics for
the reduction of biofilm was proposed (Figure 6). Reactive oxygen species generated by
LTGP, such as O2

•−, diffused into biofilms, entered into S. aureus cells and caused damages,
which synergize with antibiotics for the reduction of biofilms. The combined application
of LTGP treatment and antibiotics could also efficiently reduce biofilms in the murine
wound model. Therefore, LTGP treatment combined with antibiotics can effectively reduce
biofilms formed by antibiotic-resistant bacteria. Low-temperature gas plasma combined
with antibiotics could be developed into a potent therapeutic strategy for wound infections.

Figure 6. The reduction of methicillin-resistant S. aureus in the wound of the murine model by the
combined treatment of LTGP and antibiotics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11080828/s1, Figure S1: The effects of the working gas of helium and 1% air (4 L/min)
without applying a 2 voltage on the S. aureus biofilms.
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