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Single-Cell Transcriptome Profiling Simulation Reveals the
Impact of Sequencing Parameters and Algorithms on Clustering
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Abstract: Despite the scRNA-seq analytic algorithms developed, their performance for cell clustering
cannot be quantified due to the unknown “true” clusters. Referencing the transcriptomic heterogene-
ity of cell clusters, a “true” mRNA number matrix of cell individuals was defined as ground truth.
Based on the matrix and the actual data generation procedure, a simulation program (SSCRNA)
for raw data was developed. Subsequently, the consistency between simulated data and real data
was evaluated. Furthermore, the impact of sequencing depth and algorithms for analyses on cluster
accuracy was quantified. As a result, the simulation result was highly consistent with that of the
actual data. Among the clustering algorithms, the Gaussian normalization method was the more
recommended. As for the clustering algorithms, the K-means clustering method was more stable
than K-means plus Louvain clustering. In conclusion, the scRNA simulation algorithm developed
restores the actual data generation process, discovers the impact of parameters on classification,
compares the normalization/clustering algorithms, and provides novel insight into scRNA analyses.

Keywords: single cell; bioinformatics; simulation; clustering; cell type annotation

1. Introduction

Single-cell RNA sequencing technology has developed rapidly in recent years. It has
gradually become the preferred sequencing technology for researchers in fields including
histological variation [1–3] and the tumor immune microenvironment [4,5]. However,
there are still some shortcomings in the current analysis workflow. The sequencing depth
for a single cell (50,000 [3], limited data allocated to too many cells) is insufficient for
transcriptome profiling analysis [6]. Thus, the quantification of sequencing depth and some
other parameters on classification accuracy is necessary for scRNA analysis.

Several scRNA-seq analysis algorithms based on reasonable assumptions and models
have been proposed in the past few years, including Biscuit, K-means plus Louvain
clustering, MNN (matching mutual nearest neighbors), and CCA (canonical correlation
analysis) in batch effect removing [7–9]. However, a few articles used the same analysis
workflow or parameter [1–5,10–12], leading to quite different analysis results. In the
absence of ground truth, it is hard to determine which is better, and the researchers might
choose algorithms subjectively.

Simulation is a frequently used option. Simulation refers to using relevant mathe-
matical models to imitate real processes by computer, which in turn generates simulated
data. With the pre-defined ground truth and parameters of the simulator, the influence of
parameters can be quantified without systematic errors [13]. Several simulation programs
for scRNA-seq court data (refers to the quantification result of the mapped reads) have been
released, including SPsimSeq, Splatter, SPARSim, and SymSim [14–17]. These algorithms
are all hypothesis-driven instead of data-proposed models [18,19]. The drawback for these
algorithms is that the consistency to actual data is difficult to verify in multiple situations
except for the features included in the model hypothesis. It is difficult to use a single
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mathematical model to fit or formulate single-cell expression profiles that constitute several
cell populations whose expression is divergent from each other [20].

To address the problems, the SSCRNA program (https://github.com/liuyunho/SSCRNA-
v1.0 (accessed on 9 July 2021)) was developed, following a pre-defined ground truth, to sim-
ulate scRNA-seq data (fastq data). The SSCRNA program mimicked the actual sequencing
process, including the sequencing library building and sequencing process [21], which enabled
flexibility to adjust the parameters that might be introduced in each part of actual sequencing.
Additionally, consistent with the actual process, a simulated sequencing library could be used
several times for sequencing with different parameters. The reliability of the SSCRNA program
was verified by comparing the analysis results of both the actual and the simulated data.
Using this tool, the impact of sequencing depth on clustering accuracy was quantified, and the
performance of current analysis procedures was also evaluated.

2. Materials and Methods
2.1. Construction of Ground Truth

From the GPL96 platform (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GPL96 (accessed on 9 July 2021)), we collected 225 samples from 11 datasets (Table S1), and
the samples were classified into 11 major categories and 42 sub-categories according to
the type of enriched cells. We treated the distribution of genes in individual subcategories
(at least 3 samples) as independent normal distributions, while the overall distribution of
genes was estimated using the mean and variance of each gene from the collected data.
Then, 50 cell samples were sampled for each sub-category, and the final dataset with 2100
cells (50 cell × 42 categories = 2100) was generated.

2.2. Correlation Calculation between Samples of Collected Dataset on GPL96 Platform

Whole genes and 530 hemocyte-specific genes were used to calculate the correlation
between collected samples (Table S1). The cor function in R environment was used to
calculate Pearson’s correlation coefficient between samples, and the data were scaled before
the correlation calculation.

2.3. Differential Analysis for Class-Specific Genes

Limma package was used to calculate the differential expression gene for each cluster
in a one-vs.-others way. If the gene is obtained as a differential gene for more than four
clusters, the gene is deleted, and the remaining genes were viewed as cluster-specific genes.

2.4. Default Procedure for Single Cell Analysis
2.4.1. Raw Data Processing Processes

The putative cell barcode was estimated using the “whitelist” function in UMItools,
and the cell barcode and UMI were extracted using the “extract” function. STAR software
was used to map the reads to reference genome (GRCH38). The featureCounts software
was used to determine the gene number according to the map results (Gencode.v29; https:
//www.gencodegenes.org/human/ (accessed on 9 July 2021) (Hinxton, UK)). The “count”
function in UMItools was used to eliminate the polarization effect during the amplification
process and to obtain the final scRNA-seq sparse expression matrix.

2.4.2. Count Data Processing Processes (Default Workflow)

R language was used for the subsequent analysis of the expression matrix. The
library.size.normalize function of the phateR package was used to make the global library
size normalization. The prcomp function was used to reduce the feature dimension and
the top 30 feature vectors were selected. The cells were clustered using the Rphenograph
package, which was based on the K-means and Louvain algorithm. TSNE plots were used
to display the distribution of cells that was incorporated in the Rtsne package.

https://github.com/liuyunho/SSCRNA-v1.0
https://github.com/liuyunho/SSCRNA-v1.0
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.gencodegenes.org/human/
https://www.gencodegenes.org/human/
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2.5. Standardization, Dimension Reduction, and Clustering Methods

All the algorithms were implemented in an R environment. The following is the
explanation of the function for each algorithm.

2.5.1. 12 Standardization Methods

(1). Count data: Expression matrix obtained using the “count” function in UMItools;
(2). Quantile: normalize.quantiles function in the preprocessCore packages; (3). Scale: scale
function; (4). Library size standardization: library.size.normalize function of the phateR
package; (5). Log transformation: log10 function; (6). Rank standardization: rank function;
(7). TPM standardization: the formula of count to TPM ((TPMi = Xi/li · [1/(∑j Xi/li]) where
l represents the transcript length, i represents the gene number, j represents cell number)
was used to obtain the TPM matrix; (8). EdgeR standardization: using each cell as a sample,
standardized factors were calculated using the calcNormFactors function in the edgeR
package, common dispersion was calculated using the estimateCommonDisp function, and
intergenic range dispersion was calculated using the estimateTagwiseDisp function. The
estimated pseudo counts matrix were multiplied with the standardized factors to obtain
the final standardized data; (9). Scran standardization: The SingleCellExperiment function
in the scran package was used to convert the expression matrix to SingleCellExperiment
objects, and the quickCluster function was used to sub-cluster cells. Then, the compute-
SumFactors function was used to calculate standardized factors within each subclass, and
finally, the normalize function was used to complete the standardization.

2.5.2. Two Dimension-Reduction Methods

(1). PCA (Principal Component Analysis): prcomp function; (2). ICA (Independent
Component Analysis): fastICA function in the fastICA package.

2.5.3. Five Clustering Methods

(1). Density cluster: findClusters function in the densityClust package; (2). Hierar-
chical cluster: hclust function; (3). Som (self-organized map) cluster: som function in the
som package; (4). K-means cluster: kmeans function; (5). K-means and Louvain cluster:
Rphenograph function in the Rphenograph package.

3. Results
3.1. SSCRNA—A Simulation Program to Generate scRNA-Seq Data

In the scRNA-seq development, a series of sequencing workflows had arisen, such
as SMART-seq2, CELL-seq, and Drop-seq [22–24], and the process of all these methods
consists of the following three sections: cell isolation and capture, library building, and
sequencing (Figure 1a). To generate scRNA-seq simulation data, the SSCRNA program
mimics the actual sequencing process.

In actual cell definition (cell isolation and capture), the SSCRNA advised a dataset
collected from several previous studies (Methods). Previous count simulators used a
mathematical model with parameters (e.g., gamma distribution) to define the state of real
cells. Although the use of a parametric model allowed more flexibility in adjusting data
shape, they often differed significantly from reality, especially in the case of single-cell data
with high resolution. The collection and integration of a large amount of real data avoided
the difficulty of estimating the signal-to-noise ratio of simulated data and could fit the real
situation more closely. In the dataset, the collected samples were classified into 11 major
categories and 42 sub-categories (Table S1), which was approaching the number of the
clusters of the current scRNA-seq analysis result. The Pearson correlation between samples
among the inter and inner group was verified (shown in Figure S1). The ground truth was
sampled from the collected dataset (Methods; Figure 1(b1)).
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Figure 1. Comparison of the processing of SSCRNA program with the actual process: (a) The scRNA-seq process (1. Sam-
ple manipulation and cell isolation; 2. Library building: from cDNA to sequencing library). (b) The overall process of the 
SSCRNA program (1. Ground truth: by sampling from the expression data of collected enriched cells; 2. Simulation se-
quencing library (Consisting of the following four sub-libraries: cell barcode library, gene fragment library, PCR control 
library, and UMI library); 3. Full-length sequence; 4. Error and quality control files. Example data are available in 
https://github.com/liuyunho/SSCRNA-v1.0 (accessed on 9 July 2021)). 
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Figure 1. Comparison of the processing of SSCRNA program with the actual process: (a) The scRNA-seq process (1. Sample
manipulation and cell isolation; 2. Library building: from cDNA to sequencing library). (b) The overall process of the
SSCRNA program (1. Ground truth: by sampling from the expression data of collected enriched cells; 2. Simulation
sequencing library (Consisting of the following four sub-libraries: cell barcode library, gene fragment library, PCR control
library, and UMI library); 3. Full-length sequence; 4. Error and quality control files. Example data are available in
https://github.com/liuyunho/SSCRNA-v1.0 (accessed on 9 July 2021)).

In the library building simulation, the SSCRNA program implemented a tag-based
quantification method, which incorporated UMI (Unique molecular identifier) technol-
ogy [25] to eliminate the polarization power of amplification. For this implementation, the
simulated sequencing library consisted of the following four constituent parts: cell barcode
library, gene fragment library, UMI library, and PCR control library (Figure 1(b2)). The
reference transcripts sequences (GRCH38) and gene count (Ground truth) were served as
input for fragment library simulation (By multi_cell2 function, Figure 2). After randomly
missing some sequences from head and tail with a certain probability for a single copy
of each gene, the fragment was recorded by the start and end positions relative to the
corresponding reference sequence of the gene. All the copies of the genes in one cell
were processed in this way to form a single fragment file. The fragment files of all the

https://github.com/liuyunho/SSCRNA-v1.0
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cells constituted the full fragment library. The UMIs of a certain length matching with
each fragment were generated randomly (using the get_UMI_bank function). The cell
barcodes corresponding to each cell were generated randomly with a settable hamming
distance between them (using the get_barcord_bank function; two hamming distances
as the default). The PCR (Polymerase Chain Reaction) simulation emulated the actual
exponential amplification process. After a set number of cycles (three was set as default), a
PCR control library was produced to record the number of each fragment and potential
mutation introduced in the PCR process (using the PCR_database function). Then, the
completed sequencing library was fed into the next on-machine sequencing simulation
program (Figure 2).
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Figure 2. Flow chart and illustration of SSCRNA program and settable parameters.

The sequencing simulation could be executed after a set sequencing depth and threads
number (using the simulation_in_preDatabase script). The sequenced genes were ran-
domly selected, and their respective components were extracted from four sub-sequencing
libraries to form a full-length sequence (based on combination rules of different platforms;
Figure 1(b3)). In reads file generating, the sequencing error and base quality were intro-
duced based on the assumption that the error probability and quality expectation for each
base rely on the base type, the mutation type, and the position in the sequence (controlled
by Error_Profile and Quality_Profile files, Figure 1(b4)). The resulting sequences and
corresponding quality were organized into raw seq-data files at last.

The sequencing library produced using SSCRNA was written into the hard disk, which
could be used for several sequencing simulations with different parameters for comparison.
As in the actual situation, after the scRNA-seq library was built, the on-machine sequencing
could be conducted several times. The program incorporated multi-threads to enable fast
random search and extract sequences in large sequencing library files and quickly produce
massive scRNA-seq simulation data. The implementation of this program provided a
framework that considered each part in the actual sequencing process, which could be
updated further by adding different parameter sets and models into the relevant part.

3.2. The Validation of SSCRNA by Comparing with Real Data

The scRNA-seq data, which assigning limited reads to a large number of cells accord-
ing to cell barcode [26], gives it a low sequencing depth for individual cells and a high
dropout value for the entire expression matrix. To validate the reproducible ability of the
SSCRNA program, actual scRNA-seq data (DA1, Table S2) was employed as ground truth
for the program’s input to simulate the sequencing data (Table S3) with a similar data
size. The features were compared (Table 1; Figure 3a), and the analysis result consistency
(Figure 3c,d) was evaluated between the simulated and the actual data.
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Table 1. Comparison of characteristics between simulation data and real data.

Data Type Real Data Simulation Data

File Size (Fastq) 83.75 G (one of paired files) 87.91 G (one of paired files)
Gene detected in each cell 696.634 (673.759, 719.509) 633.3647(612.8463, 653.8831)

Dropout ratio of full matrix 97.28% 95.38%

The corrective effect [27,28] using UMI was verified in the simulation data (Figure 3b),
satisfying the actual exponential amplification model, which causes more divergency under
more substrates. The cell cluster distribution between the actual and the simulated data
was comparable (Figure 3c; Data process pipeline and clustering workflow: UMItools
for cells and reads identification, STAR for transcripts mapping, library size factor for
normalization [29], prcomp function for dimension reduction and Rphenograph for cluster-
ing [30,31]). Cluster-specific genes were identified in both data sets, which exhibited a high
degree of intersection (Figure 3d), indicating that the simulated data had a high recurrence
rate. Taken together, these results indicated that the SSCRNA program reproduced the
actual data and encapsulated the feature of scRNA-seq data.

3.3. Applications of SSCRNA to Test the Impact of Sequencing Parameters and Algorithms
on Clustering
3.3.1. Impact of Sequence Depth

Different sizes of sequencing depth were set to simulate data (Table S4; four main
gradients; eight8 sub-gradients). As the depth deepens, the actual labels were gradually
clustered into blocks in the TSNE plots (Figure 4a; Figure S2B,C). After the classification
analysis of each gradient data, the clusters were annotated by the type of true cells that
occupy the largest proportion of it. The major category accuracy quickly entered the plateau
period, while that of sub-category accuracy is significantly lower, even when the reads
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per cell reached 17,324 and genes per cell reached 3906 (Figure 4b). Although the cluster
number (~40) is close to the current analysis, the average reads and genes detected were
much higher than the current sequencing depth (reads per cell around 2000, genes per
cell around 600). As a conclusion of this part, the depth of the current actual sequencing
data could effectively distinguish main categories, while it was far from being able to
distinguish sub-categories under the current analysis workflow.
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data labeled by major category items (simulation data from left to right: RDc.2; RDc.2.1; RDc.2.3;
RDc.2.5; RDc.3 in Table S4). (b) The classification accuracy curve (left panel: the accuracy of major
category; right panel: the accuracy of sub-category. Sub-gradients were set within an interval of the
main gradient, where the current real data was located, to make the analysis more precise around the
real situation; random accuracy referred to the accuracy obtained by randomly disrupting the cluster
index of the analysis result).

3.3.2. Reasonableness of Analysis Results in Low Depth

To explore the reasonableness of observations from downstream analysis results
under lower sequencing depths, a simulation datum with low accuracy (RDc.2.1, Table
S4: Accuracy of major category: 0.6606445; Accuracy of sub-category: 0.2412109), while
showing an acceptable cluster distribution (Figures 4a and 5a), was chosen for downstream
analysis (1-VS-others differential analysis by limma [32]). The top 20 specific genes of
each cluster showed great discriminatory power (Figure 5c). However, only 85 genes
of the specific genes (716) overlapped with the hemocyte-specific genes [33] (Figure S3),
which meant that the analysis results only recovered less than a quarter of the actual
prior knowledge (Figure 5b). FCGR3B (Neutrophils specific gene) was highly expressed
in cluster four (Figure 5b), which was consistent with the distribution of neutrophils
(Figure 5(d1)). CD2 (T cell-specific gene) was not identified, while its expression was
highly compatible with the T cells distribution (Figure 5(d2)), which may result from the
nonlinearity distribution of the actual cluster. More surprisingly, at lower depths, the
CD5 expression profile did not coincide with the distribution of specific cells that were
showing high CD5 expression in prior knowledge (Figure S3; Three sub-categories of T
cells: activated memory T cells, Tregs, and Teffs). Therefore, the finding showed that the
analysis results of scRNA-seq might not fully reproduce prior knowledge under a low
sequencing depth.
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Figure 5. Observations of analysis results at low depth situation. (a) TSNE plot of RDc.2.1 data
(Table S4); (b) Venn diagram of the intersection of cluster specific-genes by differential analysis
and the specific genes of prior knowledge; (c) Heatmap of cluster-specific genes using differential
analysis; (d) Cell and gene abundance distribution map (1. FCGR3B gene abundance and neutrophils
distribution; 2. CD2 gene abundance and T cell distribution; 3. CD5 gene abundance and subset of T
cell (activated memory T cells, Tregs, and Teffs) distribution).

3.3.3. Impact of Normalization Algorithms

Considering that the dropout and low count ratios of the expression matrix [20] rep-
resented the sparsity of the features that were determinant for classification, a simulated
dataset (Table S5) that was consistent with the actual data (Table S2) in these two character-
istics (Figure 6a,b)) was chosen to test 12 normalization methods. Different normalization
algorithms had quite a considerable impact on clustering accuracy (Figure 6c,d). The
TPM and edgeR [34,35], recommended in bulk-RNA seq analysis, performed the worst.
Scran [36,37], which can normalize sub-clusters separately, did not perform better. In con-
trast, a simple z-score normalization method (Scale) contributed the most to classification
accuracy. Specifically, log transformation improved the accuracy of other algorithms. Since
log transformation and scale normalization were both Gaussian standardization methods,
thus, Gaussian standardization was recommended.Life 2021, 11, 716 9 of 14 
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(b) Relationship between low count ratio and sequencing depth. (Bluepoint: main gradient; redpoint:
sub-gradient. Boxplot referred to the two batches of real data (Table S2), and the sequencing depth of
the data of second batch (red box) was higher than the first batch (green box)). (c) Major category
classification accuracies of 12 normalization methods. (d) Sub-category classification accuracies of 12
normalization methods.

3.3.4. Impact of Dimension Reduction and Clustering Algorithms

To comprehensively investigate the dimension reduction and clustering algorithms’
performance, the full normalized data of the last result was enrolled in this part. As a result
(Figure 7, Figure S4), som and hierarchical clustering were the least effective. The K-means
and K-means and Louvain algorithm were outperformed by the others, while K-means
was more stable with different feature inputs.

Life 2021, 11, 716 10 of 14 
 

 

 
Figure 7. Boxplot of classification accuracy with different combinations of dimension reduction 
method and clustering method (Dimension reduction: PCA, ICA [38]. Clustering: density cluster 
[39,40], hierarchical cluster, self-organized map (SOM) [41], K-means, and K-means and Louvain 
[30]. For each clustering method, the inputs were, from left to right, all genes, the first 100, 70, 40, 
and 10 features of PCA reduction, the first 100, 70, 40, and 10 features after ICA reduction): (a). major 
category classification accuracy; (b). sub-category classification accuracy. 

A different combination of normalization and clustering algorithms significantly im-
pacted the overall clustering accuracy. The K-means and Louvain algorithm performed 
better with scaled data (Figure 8a left panel), while quantile normalized data were more 
suitable for K-means (Figure 8a right panel). The stability also differed between algorithms 
(Figure 8b; Left panel: by different clustering features; Right panel: by different normali-
zation method). K-means and Louvain was the most unstable under different feature di-
mensions as input, which was precisely the opposite of the K-means. In summary, the 
performance of the five clustering algorithms was somewhat divergent, while K-means 
and Louvain and K-means should be the best choice under the current workflow, and K-
means was a more prudent option. 

Figure 7. Boxplot of classification accuracy with different combinations of dimension reduction
method and clustering method (Dimension reduction: PCA, ICA [38]. Clustering: density clus-
ter [39,40], hierarchical cluster, self-organized map (SOM) [41], K-means, and K-means and Lou-
vain [30]. For each clustering method, the inputs were, from left to right, all genes, the first 100, 70,
40, and 10 features of PCA reduction, the first 100, 70, 40, and 10 features after ICA reduction): (a).
major category classification accuracy; (b). sub-category classification accuracy.

A different combination of normalization and clustering algorithms significantly im-
pacted the overall clustering accuracy. The K-means and Louvain algorithm performed
better with scaled data (Figure 8a left panel), while quantile normalized data were more
suitable for K-means (Figure 8a right panel). The stability also differed between algorithms
(Figure 8b; Left panel: by different clustering features; Right panel: by different normal-
ization method). K-means and Louvain was the most unstable under different feature
dimensions as input, which was precisely the opposite of the K-means. In summary, the
performance of the five clustering algorithms was somewhat divergent, while K-means and
Louvain and K-means should be the best choice under the current workflow, and K-means
was a more prudent option.



Life 2021, 11, 716 10 of 14
Life 2021, 11, 716 11 of 14 
 

 

 
Figure 8. The preference standardized algorithm for different clustering methods and the stability 
of clustering methods: (a) The line plot of classification accuracy (left panel: sub-category classifica-
tion accuracy of scale normalized data; right panel: sub-category classification accuracy of quantile 
normalized data; The color of the lines referred to different normalization methods and different 
input dimension; *** meant the difference was significant at the 0.001 level). (b) The boxplot of clas-
sification accuracy variance with different clustering method (left panel: variance calculated using 
different normalization methods; right panel: variance calculated using different dimension reduc-
tion methods). 

4. Discussion 
This project proposed a program (SSCRNA), which utilized a pre-defined ground 

truth to simulate the scRNA-seq raw data. SSCRNA mimicked the actual sequencing pro-
cess at all stages, allowing for the generation of raw data according to the parameters of 
different sequencing platforms. The comparison of the simulation data with the actual 
data verified the reliability of the program. A ground truth obtained by augmenting the 
collected data was employed for simulation. We used the simulated data to examine the 
effect of sequencing depth and analysis workflow on classification accuracy. The test re-
sult of sequencing depth suggested that the actual data (10,000 cells) needed at least 50 
million reads to achieve better classification results (the classification accuracy of 7 major 
categories is close to 1, and that of 42 sub-categories is more than 0.5). The test result of 
the analysis workflow suggested that Gaussian normalization was suitable for the current 
workflow and K-means clustering was more stable than K-means and Louvain clustering. 
The scope of the conclusion was limited to the cluster–annotation way. For some other 
annotation methods that may emerge in the future, it is unknown which normalization 
algorithm will perform better because it is believed that a minor deformation for the raw 
data that retains more information might enable a higher potential for upper limits on 
classification accuracy. 

For the fitting of single-cell data properties, researchers have developed several sim-
ulation algorithms, including splatter, SPsimSeq, SPARSim, and SymSim, all count simu-
lators [14–17]. The splat algorithm was recommended in the splatter package, which also 
inherited a variety of simple algorithms, such as lun2, scDD, etc. [42–45]. The splat algo-
rithm assumed that the gene expression profile is based on a negative binomial distribu-
tion and estimated outlier probability, library size, and dropout indicator from the actual 

Figure 8. The preference standardized algorithm for different clustering methods and the stability of
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classification accuracy variance with different clustering method (left panel: variance calculated
using different normalization methods; right panel: variance calculated using different dimension
reduction methods).

4. Discussion

This project proposed a program (SSCRNA), which utilized a pre-defined ground truth
to simulate the scRNA-seq raw data. SSCRNA mimicked the actual sequencing process at
all stages, allowing for the generation of raw data according to the parameters of different
sequencing platforms. The comparison of the simulation data with the actual data verified
the reliability of the program. A ground truth obtained by augmenting the collected data was
employed for simulation. We used the simulated data to examine the effect of sequencing
depth and analysis workflow on classification accuracy. The test result of sequencing depth
suggested that the actual data (10,000 cells) needed at least 50 million reads to achieve better
classification results (the classification accuracy of 7 major categories is close to 1, and that of
42 sub-categories is more than 0.5). The test result of the analysis workflow suggested that
Gaussian normalization was suitable for the current workflow and K-means clustering was
more stable than K-means and Louvain clustering. The scope of the conclusion was limited
to the cluster–annotation way. For some other annotation methods that may emerge in the
future, it is unknown which normalization algorithm will perform better because it is believed
that a minor deformation for the raw data that retains more information might enable a higher
potential for upper limits on classification accuracy.

For the fitting of single-cell data properties, researchers have developed several simu-
lation algorithms, including splatter, SPsimSeq, SPARSim, and SymSim, all count simula-
tors [14–17]. The splat algorithm was recommended in the splatter package, which also
inherited a variety of simple algorithms, such as lun2, scDD, etc. [42–45]. The splat algo-
rithm assumed that the gene expression profile is based on a negative binomial distribution
and estimated outlier probability, library size, and dropout indicator from the actual data to
generate the observed count as the simulation data. SimSeq was a non-parameter method,
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which made simulations by sampling from the actual data. Based on this, SPsimSeq was
aroused as a semi-parameter method, which made use of Gaussian-copulas to retain the
between-genes correlation structure. The SymSim method assumed that the individual
gene’s expression follows the stationary distribution of the two-state kinetic model, which
used the following three parameters: expression on, off probability, and transcription
rate, and specifies the cell state using EVF (extrinsic variability factors). SPARSim, on
the other hand, constructed a single-cell count matrix model with a gamma-multifactor
hypergeometric distribution model. The common denominator of these methods was that
they assumed single-cell expression data satisfy numerous statistical models and estimated
the probability distribution of genes through several parameters from actual data, and
randomly sampled from this distribution to generate simulation data.

However, for the data with abundant mixed types, which may distribute differently,
the algorithm with a relatively simple statistical model and a small size of parameters
is unlikely to simulate accurately. First, due to the lack of single population expression
data, these algorithms cannot accurately estimate model parameters. In our project, single
population expression data were collected in large quantities, and single genes were
amplified individually, significantly maintaining the properties of single-cell expression
data. Second, the evaluation of the previous method was limited to the comparison of
the parameters estimated from the overall distribution and lacked the interpretation of
cell population characteristics. Here is an extreme example that swapping data positions
randomly in the count matrix will not change the distribution of various parameters
(sparsity, coefficient of variation, etc.); the count matrix after the swapping is not consistent
with the original matrix. Moreover, although the data processing of scRNA sequencing
was analogous to bulk-RNA sequencing data, many parameters, such as sequencing error,
mapping efficiency, and sequencing depth, might affect the analysis results at a different
level. The previous algorithm ignores the mapping process of reads to count value, while
the SSCRNA program allows complete integration of the whole process.

The quantification of the “true state” of the cell population used in the construction of
ground truth was derived from the dataset of the array platform. There was a certain degree
of subjectivity, such as a quantitative relationship between the signal intensity of the probe
and the actual mRNA number. The diversity of gene sequences also introduces noises in
the actual sequencing process, which causes lower mapping accuracy. However, this bias
was not implemented in the SSCRNA simulator. This study mainly discusses sequencing
depth in scRNA-seq analysis, which should be the most apparent parameter on accuracy.
Other parameters in the sequencing and analysis process need further exploration, such as
the error propensity of different sequencing platforms, different cell barcode estimation
algorithms, and the types of errors introduced by different library building processes.

Several potential analysis directions can be pursued in further analysis, such as
exploring the patterns of single-cell expression, screening for new methods for single-cell
analysis, and testing the effectiveness of differentiation-related algorithms [46,47]. It is
necessary to screen for more relevant algorithms that may generate better results, and the
SSCRNA program makes the screening process possible.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11070716/s1, Figure S1: Correlation heatmap of combined data. Figure S2: Cell distri-
bution of simulation data marked by cluster index, sub-category labels, and major category labels
respectively. (A) Cell la-beled by cluster index. (B) Cell labeled by major category labels. (C) Cell
labeled by sub-category labels. (Simulation data from left to right: RDc.1; RDc.2.2; RDc.2.4; RDc.2.6;
RDc.2.7; RDc.2.8; RDc.4; Table S4); Figure S3: Heatmap of hemocyte-specific genes of combined data
(Table S1; CD2, CD5, FCGR3B specified the row in which the corresponding gene was located; Figure
S4: Classification accuracy of different clustering methods under different dimension reduction and
normalization methods. (A) Classification accuracy without gene feature dimension reduction. (1. Ac-
curacy for sub-category; 2. accuracy for major-category) (B) Sub-category classification accuracy with
ICA reduction. (C) Sub-category classification accuracy with PCA reduction. (D) Ma-jor-category
classification accuracy with ICA reduction. (E) Major-category classification accuracy with PCA
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reduction. (the column of picture labelled by (1): 10 features; the column of picture la-belled by (2):
40 features; the column of picture labelled by (3): 70 features; the column of picture labelled by (4):
100 features); Table S1: The information of real data sequencing files; Table S2: The information of
read data re-sequencing simulation data; Table S3: the information of collected data from GPL96
platform for augmentation-formed ground truth.; Table S4: The information of simulation data files
of augmentation-formed ground truth.;Table S5: The information of simula-tion data files analogous
to real data.
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