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The discovery that a considerable fraction of the eukaryotic proteins lacks a well-
defined three-dimensional structure in their native state has revolutionised our general
understanding of proteins. In fact, the dogma sequence determines structure determines
function constituted, until recently, the foundations of our description of the protein uni-
verse. Consequently, it is not surprising that the early years of the intrinsically disordered
proteins (IDPs) field have seen some scepticism. In fact, the experimental finding that some
proteins did not display a well-ordered structure in isolation was merely considered as an
artefact, assuming that the crowded environment of the cell could in fact reshape the native
state. Thus, disorder was very far from being considered as a key player in orchestrating
some of the molecular events controlling cell biology.

The recent collaborative efforts between experimentalists and theoreticians, however,
have contributed in catalysing a revolution in the protein universe and protein disorder
has gradually acquired a central role in molecular biology. In this issue of Life, a collection
of articles is presented with the specific focus of describing the “Functions, Regulation and
Dysfunction of Intrinsically Disordered Proteins”. Lermyte et al [1] provided a compre-
hensive review on IDPs, devoting a particular attention to some disordered systems of
relevance for neurological disorders as well as viral infections. The biological properties of
IDPs are described vis-à-vis an analysis of the biophysical methods that have been recently
optimised to study the structural properties of IDPs. Structural disorder has many faces,
and Murciano-Calles [2] review a specific aspect of this by showing how a protein interac-
tion domain class, namely the PDZ domains, have ample and malleable folding landscapes
that enable an intrinsic plasticity that enable a connection between diverse binding partners.
Protein–protein interactions are crucial in the function and pathology of IDPs. Studying the
mechanism of binding by IDPs is a top priority. Visconti et al. [3] used kinetic experiments
to characterise the binding between the cancer-related IDP Gab2 and the N-SH2 domain of
SHP2, showing how partner recognition occurs in this disordered system.

In the study of IDPs, molecular dynamics simulations (MD) have made fundamental
contributions. In this issue, Sullivan and Weinzierl [4] used MD to probe the conformation
of the N-terminal 88 amino acids of c-MYC, an oncoprotein that plays a key role in control-
ling cell proliferation and apoptosis. In the context of IDP interactions, Sala et al. [5] studied
the properties of the Sic1 kinase-inhibitor domain (KID) using MD. The results showed that
this protein relies on a conformational selection mechanism to recognise the correct molec-
ular partners. Coarse-grained MD simulations were also used by Navarro-Paya et al. [6] to
characterise the fundamental binding of α-synuclein (αS), a central IDP whose aggregation
is associated with Parkinson’s disease, to synaptic membranes. This protein is completely
disordered in the cytosol but undergoes disorder-to-order transition upon binding with
biological membranes. New insights on the αS conformations in the cell were provided
by Colla and co-workers [7], who developed a set of Forster Resonance Energy Transfer
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biosensors to distinguish between monomeric and oligomeric conformations of αS in the
cellular milieu.

In the context of αS interactions, Burmann and co-workers [8] reviewed the crucial
role of molecular chaperones in regulating their physiological functions as well as the
pathological aspects. Moreover, the crucial interactions with mitochondria as well as the
regulation by posttranslational modifications were elucidated to understand the mecha-
nisms of αS aggregation in the pathological contexts leading to Parkinson’s disease and
other synucleinopathies. Other pathological mechanisms involving αS have been pro-
posed. In particular, Pountney and co-workers [9] studied the upregulation of the secretion
machinery in the astrocyte response to extracellular αS, suggesting a role in the release of
neuroinhibitory and proinflammatory factors in synucleinopathies.

The onset and development of neurodegenerative diseases such as Parkinson’s and
Alzheimer’s are inherently associated to the insurgence of oxidative stress in the neurons.
The excessive production of free radicals and reactive oxygen species (ROS) have been
associated to the mechanisms leading to neuronal death, review by Abramov et al. [10]
Intracellular formation of ROS is also originated by metal imbalance. In the context of metal
interactions by IDPs associated with neurodegenerative disease, Lucas and co-workers [11]
investigated the process of dityrosine crosslinking of αS upon iron binding, with tyrosine
39 resulting as the main contributor to dityrosine and Y125 appearing to be involved
in dityrosine crosslinks in unmetalated αS. Similarly important is the interaction of the
Abeta IDP with copper(II). In this context, Valensin and coworkers [12] characterised the
potent antioxidant rosmarinic acid and its role as a mediator of the copper(II)-induced
neurotoxicity. The study showed that rosmarinic acid is able to interfere with the interaction
between amyloid β and copper(II) by forming a ternary association.

The main conformational transition of IDPs involved in neurodegenerative diseases
involves the formation of fibrillar aggregates with common structural topologies (cross-
β spine) and showing peculiar mechanical properties at a microscopic level that make
them stronger than steel. Scollo and La Rosa [13] reviewed how the interaction with the
membranes is a fundamental aspect of the pathological mechanisms involving amyloid
aggregates of otherwise soluble proteins. Visentin et al. [14] studied how the aggregation
of neuroserpin in the context of familial encephalopathy can be suppressed in vitro by em-
belin, suggesting routes of treatments against neuroserpin aggregation. It has also emerged
that amyloids are not only pathological accidents but that they can occasionally have a
functional relevance. This aspect is discussed in this issue by Rubel and co-workers [15],
overviewing the variety of roles that are currently known for functional amyloids.

In summary, we have assembled a collection of articles that study and discuss different
aspects of this intriguing class of proteins. More remains to be discovered in the IDP
universe, and this elusive state poses the challenges for the next decades to overcome the
limitations of current techniques in vitro and in vivo that have mostly been tailored to
study structurally defined systems.
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