
life

Article

High-Temperature Short-Time and Holder Pasteurization of
Donor Milk: Impact on Milk Composition

Diana Escuder-Vieco 1,*, Juan M. Rodríguez 2 , Irene Espinosa-Martos 3, Nieves Corzo 4, Antonia Montilla 4,
Alba García-Serrano 4, M. Visitación Calvo 4 , Javier Fontecha 4 , José Serrano 5, Leónides Fernández 6,*,†

and Carmen Rosa Pallás-Alonso 7,†

����������
�������

Citation: Escuder-Vieco, D.;

Rodríguez, J.M.; Espinosa-Martos, I.;

Corzo, N.; Montilla, A.;

García-Serrano, A.; Calvo, M.V.;

Fontecha, J.; Serrano, J.;

Fernández, L.; et al.

High-Temperature Short-Time and

Holder Pasteurization of Donor Milk:

Impact on Milk Composition. Life

2021, 11, 114. https://doi.org/

10.3390/life11020114

Academic Editor: Giacomo Biasucci

Received: 30 December 2020

Accepted: 29 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Banco Regional de Leche Materna, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12,
28041 Madrid, Spain

2 Sección Departamental de Nutrición y Ciencia de los Alimentos (Veterinaria), Universidad Complutense de
Madrid, 28040 Madrid, Spain; jmrodrig@ucm.es

3 Probisearch S.L., Tres Cantos, 28760 Madrid, Spain; irenee70@gmail.com
4 Departamento de Bioactividad y Análisis de Alimentos, Instituto de Investigación en Ciencias de la

Alimentación, CIAL (CSIC-UAM), 28049 Madrid, Spain; nieves.corzo@csic.es (N.C.);
a.montilla@csic.es (A.M.); albamaria.garcia.serrano@csic.es (A.G.-S.); mv.calvo@csic.es (M.V.C.);
j.fontecha@csic.es (J.F.)

5 Departament de Medicina Experimental, Facultad de Medicina, Universitat de Lleida, 25008 Lleida, Spain;
jcserrano@mex.udl.cat

6 Sección Departamental de Farmacia Galénica y Tecnología Alimentaria (Veterinaria), Universidad
Complutense de Madrid, 28040 Madrid, Spain

7 Servicio de Neonatología, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, Universidad
Complutense de Madrid, 28041 Madrid, Spain; kpallas.hdoc@gmail.com

* Correspondence: diana.e.vieco@gmail.com (D.E.-V.); leonides@vet.ucm.es or leonides@ucm.es (L.F.);
Tel.: +34-913-908-811 (D.E.-V.); +34-913-943-745 (L.F.)

† Both authors contributed equally to this work.

Abstract: Holder pasteurization (HoP; 62.5 ◦C, 30 min) is commonly used to ensure the microbiologi-
cal safety of donor human milk (DHM) but diminishes its nutritional properties. A high-temperature
short-time (HTST) system was designed as an alternative for human milk banks. The objective of
this study was to evaluate the effect of this HTST system on different nutrients and the bile salt
stimulated lipase (BSSL) activity of DHM. DHM was processed in the HTST system and by standard
HoP. Macronutrients were measured with a mid-infrared analyzer. Lactose, glucose, myo-inositol,
vitamins and lipids were assayed using chromatographic techniques. BSSL activity was determined
using a kit. The duration of HTST treatment had a greater influence on the nutrient composition of
DHM than did the tested temperature. The lactose concentration and the percentage of phospholipids
and PUFAs were higher in HTST-treated than in raw DHM, while the fat concentration and the
percentage of monoacylglycerides and SFAs were lower. Other nutrients did not change after HTST
processing. The retained BSSL activity was higher after short HTST treatment than that following
HoP. Overall, HTST treatment resulted in better preservation of the nutritional quality of DHM
than HoP because relevant thermosensitive components (phospholipids, PUFAs, and BSSL) were
less affected.

Keywords: donor milk; preterm nutrition; HTST pasteurization; holder pasteurization; macronutri-
ents; myo-inositol; fatty acids; bile salt stimulated-lipase; vitamins

1. Introduction

The composition of human milk is dynamic and depends on different factors, includ-
ing host genetics, environment and gestational age [1]. As a result, own mother’s milk
(OMM) is widely acknowledged as the best feeding option for preterm infants [2]. However,
milk production by mothers of very preterm infants is frequently delayed and/or insuf-
ficient during the first days after birth, and some initiatives to achieve an adequate milk
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supply for the infant, such as the use of galactogogues, have proved to be unsuccessful [3].
When OMM is unavailable or in short supply for meeting the nutritional requirements
of preterm infants, which is common in neonatal intensive care units, the best alternative
is the use of donor human milk (DHM) [4]. DHM pasteurization at 62.5 ◦C for 30 min
(Holder pasteurization; HoP) is the most commonly used treatment in human milk banks
(HMB) to ensure its microbiological safety. Unfortunately, this heating treatment has a
negative impact on some of the nutritional and bioactive properties of human milk [5,6].

Human milk carbohydrates, including lactose and oligosaccharides, and lipids, such
as arachidonic (ARA) and docosahexaenoic (DHA) acids, appear to be unaffected by
HoP [7,8]. In contrast, this treatment reduces the biological activity of some proteins,
including lactoferrin and lysozyme [9]. Moreover, the concentration and activity of bile
salt-stimulated lipase (BSSL), which is involved in the digestion of milk triglycerides in
breastfed infants, is lost after HoP [10]. In relation to DHM vitamins, the results obtained
so far on the impact of HoP are largely inconclusive. It seems that the levels of some
water-soluble vitamins, such as vitamin C, folate or B6, were lower after this treatment,
while those of vitamins A, D and E remained unaffected [6,11].

Understanding the potential impact of pasteurization on milk components provides
an important tool for the management of infant feeding, particularly to meet the nutritional
requirements of preterm infants according to their body weight. Recently, high-temperature
short-time (HTST; 72 ◦C, 15 s) pasteurization has been proposed as an alternative treatment
for DHM [4,12]. Different experimental systems, such as laboratory capillary heat exchang-
ers, industrial heat exchangers or benchtop devices, have been designed for HTST pasteur-
ization of DHM [12–14] but they have never been tested under authentic HMB conditions.

Recently, a continuous HTST system that was developed to pasteurize DHM in the
HMB-operating environment was designed and validated [15]. This new system ensures
the microbiological safety of DHM with minimal heat damage and preserves some bioactive
factors, including immunoglobulins, growth factors and hormones, after DHM treatment
at 72 ◦C for at least 10 s [15,16]. Accordingly, the objective of this study was to evaluate
the impact of this new HTST system compared to standard HoP on the DHM content of
macronutrients, glucose, myo-inositol, selected water-soluble vitamins (thiamine, riboflavin,
FAD, vitamin B2, nicotinamide, pyridoxal and cyanocobalamin) and fat-soluble vitamins
(vitamin A, α-tocopherol, γ-tocopherol, vitamin D3 and vitamin 25(OH)D3), as well as the
fatty acid (FA) profile and BSSL activity.

2. Materials and Methods
2.1. Human Milk Samples

DHM samples were obtained from 48 donor mothers of the Regional Human Milk
Bank “Aladina-MGU” (Hospital Universitario 12 de Octubre, Madrid, Spain). Mean (SD)
age of donors was 33.4 (3.8) years. Among these donor mothers, 80% had a term delivery
and 62% were primigravida. A total of 90% of women delivered vaginally, and the mean
gestational age of their children was 37.1 (5.8) weeks. All donors gave samples of mature
milk (more than 15 days after birth).

Milk collection was performed following a specific protocol for donor mothers, which
was approved by the Hospital 12 de Octubre Clinical Research Ethics Committee (ethical
approval code: 12/325). Informed consent was obtained from each participating donor in
accordance with the Declaration of Helsinki. Milk was collected at home, frozen (−18 ◦C)
afterwards in a domestic freezer, and then transported to the HMB in an insulated box with
provided ice packs.

2.2. Experimental Design

A total of 10 DHM production batches were used in this study. Each production batch
(10 L) was composed of milk from approximately 12 donors (Figure S1). A 120 mL aliquot of
each production batch was kept to be used as a control (raw milk). Another 120 mL aliquot
was subjected to HoP (62.5 ◦C for 30 min) and fast cooling at 4 ◦C in shaking water baths
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(Jeio Tech BS-21, Lab Companion, Oxfordshire, UK) following the standard HMB procedure.
The rest of the batch was processed at a fixed temperature (70, 72 or 75 ◦C) for different
times (from 5 to 25 s) using the HTST equipment previously described by Escuder et al. [15].
Three production batches were processed at 70◦C, 4 batches at 72 ◦C and 3 batches at 75 ◦C.
Some aliquots of the raw and heat-treated DHM were used immediately after treatment to
determine the macronutrient content, while the rest of them were stored at −20 ◦C until
further analysis was performed. Aliquots used for light-sensitive vitamin quantification
were stored in black microcentrifuge tubes (LTT-170-X; Mettler Toledo, L’Hospitalet de
Llobregat, Barcelona, Spain).

2.3. Analysis of Macronutrients

Total fat, protein and lactose in raw and heat-treated DHM were measured in duplicate
by Fourier-transform mid-infrared (FT-MID) spectroscopy in a milk analyzer (MilkoScan
FT2, FOSS S.A., Barcelona, Spain) properly calibrated for the analysis of human milk.

2.4. Determination of Lactose, Glucose and myo-Inositol

Lactose, glucose, and myo-inositol analysis was carried out by gas chromatography
(GC) with flame ionization detection following the method described by Montilla et al. [17]
with the modifications described by Espinosa-Martos et al. [18]. The identity of the carbohy-
drates present in DHM samples was confirmed by relative retention time comparison with
those of standard samples. Quantitative analysis was achieved with the internal standard
method. Response factors were calculated after triplicate analysis of standard solutions
(glucose, myo-inositol and lactose) at concentrations ranging from 1 to 6 g/L (lactose) or
from 1 to 50 mg/L (glucose and myo-inositol). Analyses of milk samples were performed
in duplicate.

2.5. Analysis of Lipids

Total fat extraction in DHM samples was achieved using a modification of the Folch
method [19] and a dichloromethane-methanol solution (2:1 v/v) as the lipid solvent. The
extract was concentrated by removing dichloromethane in a rotatory evaporator and dried
under a gentle nitrogen stream. The extracted fat was weighed in amber vials flushed with
nitrogen and stored at −35 ◦C until chromatographic analysis.

Separation and quantification of lipid classes was performed by high-performance
liquid chromatography (HPLC) (Agilent Technologies, model 1200; Agilent Technologies
Inc., Palo Alto, CA, USA) with evaporative light scattering detection (SEDERE SEDEX
model 85, Alfortville Cedex, France). Prefiltered compressed air was used as the nebulizing
gas at 350 kPa and 90 ◦C, while the gain was set at 6. Two Zorvax Rx-SIL columns
(250 mm × 4.5 mm and 5 µm particle size, Agilent Technologies Inc.) were coupled in
series with a precolumn with the same stationary phase and were equilibrated at 40 ◦C.
The injection volume was 50 µL at a concentration of 5 mg/mL in methylene chloride. The
solvent gradient program has been described previously [19]. Lipid standards were used
for the identification of lipid classes. Assays were carried out in triplicate.

FAs from the DHM samples were directly derivatized to FA methyl esters (FAMEs)
according to Castro-Gómez et al. [19]. FAMEs were analyzed using an Agilent 6890N
GC system (Agilent Technologies Inc.) equipped with a flame ionization detector con-
nected to a 5973N quadrupole mass selective detector (Agilent Technologies Inc.). Chro-
matographic separation was performed on a CP-Sil 88 fused-silica capillary column
(100 m × 0.25 mm i.d. × 0.2 µm film thickness; Chrompack, Middelburg, The Netherlands)
as described previously [20]. The MS detector was operated in electron impact mode
at 70 eV, the transfer line temperature was set at 250 ◦C, the ion source was set at 230 ◦C,
and the quadrupole temperature at 150 ◦C; the scan was set to obtain a mass spectrum
over a mass range of 50–500 Da. The sample volume injected was 1 µL at a 1:25 split
ratio. Anhydrous milk fat (reference material BCR-164; Fedelco Inc., Madrid, Spain) was
assayed to determine and calculate the response factor for FAMEs, while glyceryl tritride-
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canoate (100 µL of 1.28 mg/mL) was used as an internal standard. Assays were carried
out in triplicate.

2.6. Determination of BSSL Activity

BSSL activity in the DHM samples was determined using a lipase activity assay kit
(Sigma-Aldrich Química S.L., Madrid, Spain) following the manufacturer’s instructions.
Sodium taurocholate (10 mM) was added to the lipase assay buffer. After 100 min at
37 ◦C, the absorbance was determined at 570 nm using a Zenyth 200 microplate reader
and spectrophotometer (Anthos Labtec, Salzburg, Austria). One unit of lipase activity
was defined as the amount of enzyme that would generate 1.0 µmole of glycerol from
triacylglycerides (TGs) per minute at 37 ◦C.

2.7. Analysis of Vitamins

The analysis of water-soluble vitamins (thiamine, riboflavin, flavin adenine din-
ucleotide (FAD), nicotinamide (vitamin B3) and pyridoxal) was carried out by ultra-
performance liquid chromatography−tandem mass spectrometry (UPLC–MS/MS) fol-
lowing the method described by Hampel et al. [21]. Prior to the analysis, samples were
subjected to protein precipitation and removal of nonpolar constituents by diethyl ether.
Quantification was performed by ratio response to the isotope-labeled internal standards.

Cyanocobalamin was determined by UPLC–MS/following the procedure described
by Zhang et al. [22]. Briefly, samples were centrifuged to separate and eliminate fat.
The extraction procedure was conducted with aqueous sodium acetate while 150 µL of
1% potassium cyanidin and methotrexate was used as an internal standard. The samples
were heated at 90 ◦C to ensure quantitative conversion of all forms of vitamin B12 to
cyanocobalamin.

The concentrations of retinol (the main form of vitamin A in milk), α-tocopherol (the
main biological form of vitamin E), and γ-tocopherol were determined via HPLC with
fluorescence and ultraviolet detection following the method described by Jiang et al. [23].
The concentration of tocopherols was determined with an excitation wavelength of 295 nm
and a cutoff emission filter of 345 nm, and retinol was determined by ultraviolet detection
(at 325 nm). External quantification was performed based on calibration curves for retinol
and α-tocopherol. Briefly, samples were saponified with a mixed solution of 0.1 g of
ascorbic acid, 2 mL of ethanol including 0.1% butylated hydroxytoluene and 0.5 mL of
50% aqueous potassium hydroxide solution. Subsequently, retinol and tocopherols were
extracted with petroleum ether and the organic fraction was dried with nitrogen and later
dissolved with a mixed solution of methanol and methyl tert-butyl-ether (1:1 v/v) including
0.1% butylated hydroxytoluene.

Vitamin D3 and vitamin 25(OH)D3 were determined by UPLC–electrospray ioniza-
tion/tandem MS as described previously [24]. After protein precipitation with acetonitrile,
vitamin D metabolites were extracted with methyl tert-butyl-ether and the organic fraction
was dried under nitrogen. Furthermore, the samples were dissolved with methanol and
4-phenyl-1,2,4-triazoline-3,5-dione for derivatization. Deuterated metabolites of vitamin D
were used as internal standards during the whole process.

2.8. Statistical Analysis

The normality of the data distribution was tested through histograms and Shapiro–
Wilk tests. Data are presented as the means and SEM. The enzyme activity of BSSL in
heat-treated samples was expressed as the remaining activity in relation to that detected in
raw DHM samples. Repeated measures two-way ANOVA was used to test the effect of
the main variables (time and temperature) of HTST treatment on the different milk com-
ponents and BSSL activity (PROC MIXED with REPEATED statement of the SAS System
with restricted maximum-likelihood estimation, including fixed effects for the duration
(time) and the temperature (temperature) of each HTST treatment, and their interaction).
Data were grouped by the duration of HTST treatment to compare the influence of HTST
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treatment and HoP on the nutrient composition and residual BSSL activity in relation to
those of raw DHM. For these comparisons, data were analyzed using repeated measures
one-way ANOVA tests including treatment (raw, HTST at different treatment durations
and HoP) as fixed effects. Dunnett’s post hoc tests were performed to verify the significance
of differences at the 95% confidence level in pairwise comparisons of the mean nutrient
concentration in heat-treated (HTST at different treatment durations and HoP) DHM with
that of the raw control DHM (a total of six pairwise comparisons). Pearson’s correlation
coefficient test was applied to compare the lactose concentration values obtained by mid-IR
analysis (milk analyzer) and GC. The statistical software Statgraphics Centurion XVI ver-
sion 17.0.16 (Statpoint Technologies Inc., Warrenton, VA, USA) and SAS 9.4 (SAS Institute
Inc., Cary, NC, USA) were used to perform these analyses.

3. Results
3.1. Macronutrients

Lactose was the most widely available macronutrient fraction in DHM. The mean
(SEM) lactose concentration in the DHM samples obtained from the unprocessed batches
was 76.4 (0.3) g/L when measured by FT-MID spectroscopy. The mean (SEM) values for
fat and protein were 34.7 (0.7) g/L and 19.3 (0.2) g/L, respectively (Figure 1). In raw
DHM, a lower intersample variability was observed for protein (IQR = 4.7 g/L) and lactose
(IQR = 4.1 g/L) than for fat (IQR = 8.8 g/L).

HTST processing of DHM led to minor but statistically significant changes in the
lactose and fat concentrations but not in the protein concentration. These changes were
related to the duration of the HTST treatment rather than to the tested temperatures
(repeated measures two-way ANOVA tests, p < 0.001 for the effect of duration of the HTST
treatment on lactose and fat concentrations) (Figure 1). The impact of the duration of the
HTST treatment followed the same trend among the different temperatures tested in the
present study (70 ◦C, 72 ◦C, or 75 ◦C), as indicated by the lack of interaction between time
and temperature for each HTST treatment.

Variations in the macronutrient composition of DHM after HTST treatments and
HoP are shown in F. The lactose concentration was higher (between 0.2 and 0.5 g/L) in
HTST-treated samples than in raw DHM (repeated measures one-way ANOVA, p < 0.001),
except for in samples subjected to the longest treatment (25 s). The fat content after
HTST treatments for 5–15 s did not differ from that of raw DHM, but after the longer
treatments (20 and 25 s), the DHM fat levels were lower (0.8 and 1.4 g/L, respectively)
than in unprocessed DHM (repeated measures one-way ANOVA, p < 0.001). Additionally,
the protein concentration did not vary with any of the HTST treatments compared to that
of raw DHM. Furthermore, with respect to those in unprocessed DHM, there were no
differences in lactose and fat contents, but the protein level was lower (0.2 g/L) after HoP
(repeated measures one-way ANOVA, p < 0.001) (Table 1).

The mean (SEM) lactose concentration in raw DHM samples (measured using GC)
was 67.8 (0.7) g/L, and this value was similar across every HTST treatment and HoP
(Figure 2; Table S1). The correlation between the lactose concentration measured by FT-
MID spectroscopy (milk analyzer), which also includes oligosaccharides, and the lactose
concentration determined by the chromatographic method was weak (r = 0.324, p = 0.025).

3.2. Glucose and myo-Inositol

Other carbohydrates detected by GC in all DHM batches, both before and after any
heat treatment, were glucose and myo-inositol (Figure 2). The mean (SEM) glucose and myo-
inositol concentrations in raw DHM samples were 272.1 (9.1) mg/L and 228.6 (13.6) mg/L,
respectively. The duration but not the temperature of the HTST treatment had a statistically
significant influence on the level of both compounds (repeated measures two-way ANOVA;
p = 0.020 for glucose, and p = 0.037 for myo-inositol) (Table S1). Subsequently, HTST-
treated samples were grouped according to the duration of the HTST treatment for further
analysis (Figure 2). The glucose concentration in HTST-treated samples was similar to
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that found in raw DHM samples, with the exception of HTST-treated DHM for 25 s,
which had a mean concentration approximately 28 mg/L lower than that of raw DHM
(post hoc Dunnett’s test, p < 0.050; Figure 2). Conversely, the glucose content was higher
(by approximately 22 mg/L) in HoP-treated DHM than in raw DHM (post hoc Dunnett’s
test, p < 0.050; Figure 2). Furthermore, the myo-inositol concentration in DHM did not differ
after any heat treatment from that in raw DHM (Figure 2).
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Figure 1. Concentration of macronutrients (lactose, fat, and protein) in 10 batches of donor milk
after HTST treatment at 70 ◦C (#, dashed line; n = 3), 72 ◦C (•, dashed line; n = 4), and 75 ◦C
(•, solid line; n = 3). Samples were regularly taken at 0 (raw milk), 5, 10, 15, 20, and 25 s. Repeated
measures two-way ANOVA tests were used to determine the impact of temperature and duration of
HTST treatment, and their interaction on the concentrations of lactose, fat, and protein. There was
no interaction between the two factors, and only the duration of HTST treatment had a statistically
significant effect on the concentration of lactose and fat (p < 0.001).

Table 1. Macronutrient composition of DHM before (raw) and after HTST treatment for 5 different durations of treatment,
ranging from 5 to 25 s or HoP (62.5 ◦C, 30 min) (n = 10).

Nutrient Raw
HTST

5 s 10 s 15 s 20 s 25 s HoP

Lactose (g/L) 76.4 (0.3) 76.7 (0.3) * 76.9 (0.3) * 76.8 (0.3) * 76.8 (0.3) * 76.6 (0.3) 76.2 (0.3)
Fat (g/L) 34.7 (0.7) 34.8 (0.7) 34.5 (0.7) 34.4 (0.7) 33.9 (0.6) * 33.3 (0.6) * 35.0 (0.5)

Protein (g/L) 19.3 (0.2) 19.3 (0.2) 19.4 (0.2) 19.3 (0.2) 19.4 (0.2) 19.4 (0.2) 19.1 (0.2) *

* Asterisks indicate significant differences in pairwise comparisons between raw and heat-treated (HTST treatments for different du-
rations or HoP) DHM (post hoc Dunnett’s tests at the 95% confidence level. Lactose, fat, and protein concentrations were determined
by Fourier-transform mid-infrared spectroscopy and expressed as the mean (SEM) values. Data were grouped according to the du-
ration of HTST treatment at 70, 72 and 75 ◦C before being analyzed using repeated measures one-way ANOVA including treatment
(raw, HTST with different treatment durations and HoP) as fixed effects. HM, donor human milk; HoP, Holder pasteurization; HTST,
high-temperature short-time.
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treatment for 5 (5 s), 10 (10 s), 15 (15 s), 20 (20 s) and 25 (25 s) seconds or HoP (62.5 ◦C, 30 min;
HoP) (n = 10). Lactose, glucose, and myo-inositol concentrations were determined by GC. The height
of the box indicates the IQR, the horizontal line in the box represents the median concentration
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* Asterisks indicate significant differences in pairwise comparisons between raw and heat-treated
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temperature short-time.

3.3. Lipid Classes and FA Profile

The mean (SEM) values of the percentages of the main lipid classes and FA profile
in DHM samples obtained from 10 unprocessed batches are shown in Tables 2 and 3,
respectively. In general, there was a wide variation in the levels of every lipid class and FA
analyzed in the present study. TG represented 96.69% of the total lipids in the milk fat of
DHM before heat treatment, while diacylglycerides (DG), which were the second most com-
mon class, accounted for only 2.78% (Table 2). Other lipid classes represented less than 0.5%
of the total lipid count, including cholesterol plus free FAs (0.33%), monoacylglycerides
(MG; 0.09%), polar lipids (PL; 0.06%), and cholesteryl esters (0.05%) (Table 2). Similar to
other DHM components, the duration of the HTST treatment (but not the tested tempera-
ture) had a statistically significant impact on the percentage of most lipid classes (TG, DG,
MG, and PL) (repeated measures two-way ANOVA, p < 0.050) (Table S2). Therefore, mean
values of the percentages of each lipid class were grouped according to HTST treatment
duration (ranging from 5 to 25 s) to compare the effect of HTST treatments (Table 2).



Life 2021, 11, 114 8 of 16

Table 2. Percentage of lipid class levels in DHM before (raw) and after HTST processing for 5 different durations of
treatment ranging from 5 to 25 s or HoP (62.5 ◦C, 30 min) (n = 10). 1.

Lipid Class Raw
HTST

5 s 10 s 15 s 20 s 25 s HoP

CE 0.05 (0.01) 0.03 (0.00) 0.04 (0.01) 0.03 (0.01) 0.04 (0.01) 0.04 (0.02) 0.03 (0.01)
CHOL +

FFAs 0.33 (0.04) 0.22 (0.02) * 0.25 (0.03) 0.27 (0.03) 0.20 (0.04) * 0.28 (0.03) 0.18 (0.03) *

TG 96.69 (0.18) 95.71 (0.44) 95.73 (0.44) 95.79 (0.38) 96.16 (0.04) 96.39 (0.36) 97.26 (0.36)
DG 2.78 (0.19) 3.86 (0.42) * 3.80 (0.40) * 3.74 (0.36) 3.44 (0.41) 3.12 (0.32) 2.45 (0.33)
MG 0.09 (0.02) 0.05 (0.01) * 0.05 (0.01) * 0.05 (0.01) * 0.05 (0.01) * 0.05 (0.01) * 0.03 (0.01) *
∑PL 0.06 (0.01) 0.13 (0.11) * 0.14 (0.12) * 0.13 (0.01) * 0.12 (0.11) * 0.13 (0.12) * 0.06 (0.04)
PE 29.23 (0.72) 27.32 (1.19) 26.24 (1.46) 27.48 (2.58) 27.70 (1.84) 26.08 (1.79) 25.97 (1.43)
PI2 4.10 (0.39) 3.17 (0.11) 3.14 (0.21) 3.10 (0.64) 4.16 (0.71) 3.56 (0.16) 3.88 (0.26)
PS2 4.97 (1.04) 5.54 (0.09) 4.68 (0.94) 6.32 (1.41) 7.00 (1.61) 5.79 (0.48) 5.49 (0.39)
PC2 27.72 (0.81) 28.07 (1.65) 27.70 (1.47) 28.70 (3.33) 28.16 (1.77) 28.83 (0.63) 27.8 (0.78)
SM 33.97 (1.53) 35.90 (2.56) 38.25 (3.16) 34.39 (2.46) 32.97 (3.32) 35.73 (2.07) 36.86 (1.25)

1 Lipid classes were determined by HPLC-ELSD and expressed as the mean (SEM) values of percentages. Levels of the lipid classes CE,
CHO + FFAs, TG, DG, MG, and PL were expressed as percentages of the total lipid DHM fraction. Levels of PE, PI, PS, PC, and SM were
expressed as percentages of the total PL fraction. Data were grouped according to the duration of HTST treatment (at 70, 72 and 75 ◦C)
before being analyzed using repeated measures one-way ANOVA including treatment (raw, HTST at different durations and HoP) as fixed
effects. * Asterisks indicate significant differences in pairwise comparisons between raw and heat-treated (HTST treatment for different
durations and HoP) DHM (post hoc Dunnett’s tests at the 95% confidence level).

Table 3. Percentage of fatty acid levels in DHM before (raw) and after HTST processing for 5 different durations ranging
from 5 to 25 s or HoP (62.5◦C, 30 min) (n = 10). 1

Fatty Acid Raw
HTST

5 s 10 s 15 s 20 s 25 s HoP

C8:0 0.15 (0.01) 0.16 (0.01) 0.14 (0.01) 0.14 (0.01) 0.15 (0.01) 0.14 (0.01) 0.19 (0.02)
C10:0 1.46 (0.06) 1.39 (0.07) 1.35 (0.06) 1.29 (0.04) * 1.29 (0.03) * 1.31 (0.04) 1.59 (0.09)
C12:0 6.28 (0.34) 5.77 (0.28) 5.72 (0.24) * 5.61 (0.16) * 5.46 (0.10) * 5.46 (0.15) * 6.46 (0.24)
C14:0 6.30 (0.38) 5.94 (0.33) 6.04 (0.33) 5.85 (0.28) 5.75 (0.25) 5.74 (0.27) * 6,19 (0.32)
C15:0 0.17 (0.01) 0.19 (0.01) 0.19 (0.02) 0.17 (0.01) 0.18 (0.01) 0.16 (0.02) 0.17 (0.01)
C16:0 22.65 (0.56) 21.46 (0.27) 21.67 (0.38) 21.74 (0.39) 21.70 (0.56) 21.02 (0.36) * 22.85 (0.46)
C17:0 0.15 (0.01) 0.19 (0.01) * 0.19 (0.01) * 0.17 (0.01) 0.18 (0.01) * 0.19 (0.01) * 0.14 (0.01)
C18:0 5.67 (0.22) 6.06 (0.25) * 6.13 (0.21) * 5.93 (0.16) 6.12 (0.27) * 6.23 (0.21) * 5.66 (0.18)
C20:0 0.15 (0.03) 0.23 (0.02) * 0.25 (0.04) * 0.22 (0.03) * 0.26 (0.02) * 0.24 (0.04) * 0.13 (0.06)

C16:1 cis-9 1.61 (0.07) 1.68 (0.08) 1.66 (0.09) 1.62 (0.07) 1.62 (0.11) 1.69 (0.08) 1.61 (0.08)
C18:1 cis-9 36.12 (0.90) 36.15 (0.86) 36.22 (1.11) 36.54 (0.90) 36.60 (0.95) 36.53 (0.79) 36.00 (0.84)

C18:1 cis-11 1.36 (0.07) 1.61 (0.04) * 1.57 (0.05) * 1.52 (0.04) 1.53 (0.10) 1.60 (0.03) * 1.35 (0.05)
C18:1

trans-11 0.11 (0.02) 0.21 (0.03) * 0.18 (0.03) 0.15 (0.03) 0.20 (0.04) * 0.22 (0.04) * 0.08 (0.02)

C18:2 cis-9,12 16.48 (0.27) 17.08 (0.35) 16.86 (0.39) 17.16 (0.34) 16.99 (0.49) 17.35 (0.35) * 16.44 (0.42)
CLA 0.12 (0.01) 0.20 (0.02) * 0.19 (0.02) * 0.17 (0.02) 0.20 (0.03) * 0.19 (0.03) * 0.10 (0.01)
C18:3

cis-9,12,15 0.24 (0.04) 0.31 (0.03) 0.31 (0.03) 0.33 (0.04) 0.32 (0.04) * 0.34 (0.04) 0.20 (0.02)

C18:3
cis-6,9,12 0.18 (0.03) 0.20 (0.03) 0.27 (0.02) * 0.23 (0.03) 0.27 (0.04) * 0.28 (0.04) * 0.12 (0.01)

ARA 0.19 (0.02) 0.30 (0.02) * 0.24 (0.04) 0.27 (0.02) 0.30 (0.04)* 0.34 (0.03) * 0.16 (0.02)
DHA 0.08 (0.01) 0.15 (0.02) * 0.14 (0.02) * 0.13 (0.02) * 0.14 (0.02)* 0.16 (0.02) * 0.06 (0.008)
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Table 3. Cont.

Fatty Acid Raw
HTST

5 s 10 s 15 s 20 s 25 s HoP

SFAs 43.06 (1.04) 41.41 (0.66) 41.78 (0.82) 41.22 (0.57) * 41.18 (0.43) * 40.61 (0.49) * 43.46 (0.70)
MUFAs 37.59 (0.95) 37.97 (0.86) 38.15 (1.06) 38.20 (0.88) 38.33 (0.87) 38.34 (0.76) 37.43 (0.85)
PUFAs 17.29 (0.29) 18.32 (0.39) 18.08 (0.48) 18.33 (0.40) * 18.27 (0.63) * 18.72 (0.38) * 17.208 (0.44)

Total n-6
PUFAs 16.85 (0.27) 17.66 (0.36) 17.44 (0.43) 17.70 (0.37) 17.62 (0.56) 18.03 (0.36) * 16.71 (0.43)

Total n-3
PUFAs 0.32 (0.05) 0.46 (0.04) * 0.45 (0.05) 0.46 (0.06) 0.49 (0.04) * 0.50 (0.04) * 0.27 (0.02)

1 Fatty acids were determined by GC-MS and expressed as the mean (SEM) values of the percentage of total fatty acid methyl esters (FAMEs).
Data were grouped according to the duration of HTST treatment (at 70, 72 and 75 ◦C) before being analyzed using repeated measures
one-way ANOVA including treatment (raw, HTST at different durations and HoP) as fixed effects. * Asterisks indicate significant differences
in pairwise comparisons between raw and heat-treated (HTST treatment for different durations or HoP) DHM (post hoc Dunnett’s tests at
the 95% confidence level). ARA, arachidonic acid; CLA, conjugated linoleic acid; GC, gas chromatography; DHA, docosahexaenoic acid;
DHM, donor human milk; HoP, Holder pasteurization; HTST, High-temperature short-time; MUFAs, monounsaturated fatty acids; PUFAs,
polyunsaturated fatty acids; SFAs, saturated fatty acids.

The following variations were observed in the lipid profile of HTST-treated DHM
when compared to that of raw DHM (Table 2). First, the TG content was similar, and the
DG fraction was 39% and 37% higher in HTST-treated DHM for the treatment times of
5 and 10 s, respectively, than in raw DHM and the MG fraction was nearly 50% lower than
that in raw DHM after any HTST treatment. Second, the PL fraction in HTST-treated milk
doubled in proportion, although no differences were noted in the levels of the individual
PLs (Table 2). Third, the fraction containing cholesterol and FFAs was approximately one-
third lower in HTST-heated DHM than in raw DHM after treatment for 5 and 20 s (Table 2).
HoP also led to differences in the content of some lipid classes in relation to that of lipids
in raw DHM; in particular, the MGs and the fraction of cholesterol plus free FA levels were
67% and 45% lower than in raw DHM, respectively. The cholesteryl ester fraction remained
unchanged after all heat treatments (Table 2).

In relation to the FA profile in raw DHM samples, both SFAs and MUFAs were present
in higher proportions (43% and 38%, respectively) than that of PUFAs (17%) (Table 3). The
most abundant individual FAs were the MUFA oleic acid (C18:1 cis-9) that was present at
36%, the SFA palmitic acid (C16:0) at 23%, and the PUFA n-6 linoleic acid (C18:2 cis-9,12) at
16%. Other PUFAs found in DHM in lower amounts were α-linolenic acid (C18:3 cis-9,12,15;
0.24%), CLA (0.12%), ARA (C20:4 cis-5,8,11,14; 0.19%), and DHA (C22:6 cis-4,7,10,13,16,19;
0.08%) (Table 3).

Overall, the impact of the time and temperature variables of the HTST treatment in
the FA profile was more linked to the duration of the treatment than to the temperature,
although a significant interaction between the two factors was observed for most FAs
(repeated measures two-way ANOVA, p < 0.050) (Table S3). HTST treatment for 15–25 s
resulted in lower (4-6%) SFA levels and a higher (6-8%) proportion of PUFAs than in raw
DHM, while MUFAs remained unaffected (Table 3). In contrast, HoP did not affect the
mean values of SFAs, MUFAs, and PUFAs in relation to those of raw DHM. Table 3 shows
the effect of the HTST treatment for 5 to 25 s or HoP on individual FAs. It should be
noted that the percentage of CLA and DHA was higher (between 58 and 79% for CLA and
63 and 100% for DHA) in DHM after most HTST treatments, but not after HoP (Table 3).

3.4. Activity of BSSL

The mean (SEM) value of BSSL activity in raw DHM (n = 7) was 9.26 (0.83) U/mL.
BSSL activity was determined after HTST treatment at 70 ◦C (n = 3) and 72◦C (n = 4) for 5,
15, and 25 s and after HoP. High variability in the inactivation of BSSL after HTST treatment
for 5 s resulted in average retention rates of activity that ranged from 50% to 2% (Figure 3).
The retention rates of BSSL activity were higher after HTST treatment for 5 s (mean value



Life 2021, 11, 114 10 of 16

of 20% retention rate) than after HoP (7%) (repeated measures one-way ANOVA, p = 0.035)
(Figure 3).
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3.5. Vitamins

The contents of the most relevant vitamins in DHM samples (n = 5) before and after
HTST treatment and HoP are presented in Table 4. A wide sample-to-sample variation was
noted for both water- and fat-soluble vitamin concentrations in raw DHM. Among water-
soluble vitamins, nicotinamide and vitamin B2 (riboflavin/flavin adenine dinucleotide)
were the most abundant in raw DHM and were present at mean (SEM) concentrations of
501.8 (48.3) µg/L and 402.3 (26.9) µg/L, respectively. The levels of pyridoxal, thiamine and
cyanocobalamin [mean (SEM) values of 91.0 (7.7) µg/L, 22.2 (2.9) µg/L and 0.5 (0.1) µg/L,
respectively] were lower than those of nicotinamide and vitamin B2. Regarding fat-soluble
vitamins, raw DHM contained 3.8 (0.2) mg/L α-tocopherol, 0.5 (0.1) mg/L γ-tocopherol,
and 0.4 (0.1) mg/L vitamin A. Vitamins D3 and 25(OH)D3 were only present at low concen-
trations in raw DHM (mean (SEM) concentrations of 85.0 (14.8) µg/L and 26.6 (5.0) µg/L,
respectively).

Table 4. Vitamin concentrations in DHM before (raw) and after HTST treatment (processing at 70, 72 and 75 ◦C for 15, and
25 s) or HoP (62.5 ◦C, 30 min) (n = 5). 1

Vitamins Raw HTST Treatment HoP

Water–soluble vitamins
Thiamine (µg/L) 22.2 (2.9) 21.6 (3.1) 22.2 (1.6)
Riboflavin (µg/L) 33.2 (7.6) 34.3 (6.0) 37.5 (11.8)

FAD (µg/L) 369.1 (28.4) 427.3 (48.3) 427.1 (56.9)
Vitamin B2 (Riboflavin + FAD) (µg/L) 402.3 (26.9) 461.1 (41.3) 464.6 (54.9)

Nicotinamide (µg/L) 501.8 (48.3) 463.4 (40.7) 526.4 (34.5)
Pyridoxal (µg/L) 91.0 (7.7) 82.9 (5.8) 80.8 (4.8) *

Cyanocobalamin (µg/L) 0.5 (0.1) 0.5 (0.1) 0.6 (0.1)

Lipid–soluble vitamins
Vitamin A (mg/L) 0.4 (0.1) 0.4 (0.1) 0.4 (0.1)

α-tocopherol (mg/L) 3.7 (0.2) 3.4 (0.2) 3.5 (0.2)
γ-tocopherol (mg/L) 0.5 (0.1) 0.5 (0.1) 0.5 (0.1)
Vitamin D3 (µg/L) 85.0 (14.8) 101.9 (18.1) 124.7 (28.4) *

Vitamin 25(OH)D3 (µg/L) 26.6 (5.0) 29.6 (5.2) 34.9 (4.9)
1 Vitamins were determined by HPLC and expressed as the mean (SEM) values. Data from all HTST-treated samples for 15 and 25 s at 70,
72 and 75 ◦C were grouped before being analyzed using repeated measures one-way ANOVA including treatment (raw, HTST treatment,
and HoP) as fixed effects (p = 0.046 for pyridoxal and p = 0.036 for vitamin D3). * Asterisks indicate significant differences in pairwise
comparisons between raw and HoP DHM (post hoc Dunnett’s tests at the 95% confidence level). DHM, donor human milk; FAD, flavin
adenine dinucleotide; HoP, Holder pasteurization; HTST, high-temperature short-time.
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Neither of the two processing variables (temperature and duration of HTST treatment)
had a statistically significant influence on the concentration of either water- or lipid-soluble
vitamins (repeated measures two-way ANOVA, p > 0.05) (Table S4). HTST treatment did
not affect the concentration of any vitamin that were present in raw DHM samples (Table 4).
In contrast, the concentrations of pyridoxal and vitamin D3 were 12% lower and 47% higher
in DHM after HoP than in raw DHM (repeated measures one-way ANOVA; p = 0.046 for
pyridoxal and p = 0.036 for vitamin D3) (Table 4).

4. Discussion

In our study, we showed that the duration (5–25 s) of the HTST treatment had a higher
impact on the nutrient composition of DHM than the temperature (70–75 ◦C). In general,
the magnitude of the observed differences in nutrient content between HTST-treated and
raw DHM was small, although statistically significant. This finding may indicate that
HTST treatments have a modest but consistent effect on the nutrient composition of DHM,
although the impact of the change in clinical practice remains unknown. In addition, our
study demonstrated that HoP had a distinct impact on the nutritional composition of DHM
when compared to HTST treatment.

BSSL activity was determined enzymatically. The height of the box indicates the IQR,
the horizontal line in the box represents the median concentration value and the cross
represents the mean concentration value. Values of retained BSSL activity after HTST
treatment at 70 ◦C and 72 ◦C were grouped according to the duration of HTST treatment.
Repeated measures one-way ANOVA tests were used to determine differences in the
retention of BSSL activity between HTST-treated DHM for 5–15 s and HoP DHM. The
asterisk indicates a significant difference in the pairwise comparison between HTST-treated
DHM for 5 s and HoP DHM (post hoc Dunnett’s tests at the 95% confidence level.

Currently, most HMBs process DHM using HoP [3,11]. Several studies have addressed
the effect of this type of pasteurization on milk macronutrients, reporting no differences in
the protein and lactose content between raw and HoP-treated DHM [5]. In relation to fat,
some authors found up to a 25% reduction in fat concentration in DHM after HoP when
compared to that in untreated DHM [25], while others reported no significant differences
between pre- and post-HoP-treated DHM [26]. In our study, the mean protein concentration
in HoP-treated DHM was 0.2 g/L lower than that in raw DHM, but there was no difference
in lactose and fat levels. This disparity among study results may reflect differences in
sample preparation or analytical procedures. The macronutrient content of DHM was
assessed in our study by using a mid-IR analyzer specifically validated for human milk
analysis. On the other hand, the maximum average variations in lactose and fat content
(>0.5 and <1.4 g/L, respectively) found in HTST-treated DHM compared to raw DHM in
our analysis were statistically significant, but the differences were smaller than the natural
batch-to-batch variation registered in unprocessed DHM [27]. Therefore, the inference
might be that HTST treatments do not have a negative impact on the macronutrient com-
position of DHM. Moreover, the differences observed in lactose concentrations (∼1 g/dL)
in our study depending on the analytical technique (mid-IR analyzer and GC) are most
probably related to the inclusion of human milk oligosaccharides (HMOs) in the results
provided by the mid-IR analyzer [28]. The values of total fat, protein and lactose in the
samples analyzed in the present study before heat processing were consistent with those
reported previously for DHM and similar to those described for fresh human milk [29].
A lower fat content in DHM than in freshly expressed human milk (3.0–4.0% vs. 3.5–4.5%)
has been associated with the strong adherence of milk fat to container surfaces [29,30].

Our study also aimed to evaluate the impact of HTST treatments on the myo-inositol
content of DHM because this sugar alcohol is strongly demanded by neonatal tissues, such
as skeletal muscle and the epidermis, and it is found at high levels in neonatal blood and
the newborn brain [31]. Our results indicate that neither HTST nor HoP treatments affected
the myo-inositol content of raw DHM, and confirmed data from a previous study assessing
the impact of HoP on DHM composition [32]. However, the myo-inositol concentration in
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mature milk (such as DHM) is lower than that found in colostrum and, probably, does not
fulfill the requirements of the preterm infant [31,32].

Heat treatments (>70 ◦C) may denature some proteins in the milk fat globule mem-
brane (MFGM), and this, combined with the freeze-thawing of milk, may favor lipolysis
and the release of lipids into the aqueous phase [33]. The results presented in our study
indicate that the TG fraction, the most abundant lipid class in DHM and the main energy
source for preterm infants, was not modified after HTST or HoP treatments. In contrast,
the content of MG was lower in both HTST- and HoP-treated DHM than in unprocessed
DHM, which could partially explain the lower antimicrobial activity of pasteurized DHM
compared to that of raw milk [34].

PLs are key components of the biological membrane enveloping milk fat globules
whose structural and mechanical properties are important for milk fat digestion [35].
The PL/TG ratio in HTST-treated DHM in our study was twice that in raw DHM, which
may indicate a size reduction in the milk fat globules [36]. The availability of a larger
membrane surface on milk fat globules for the adsorption of digestive enzymes may
improve fat absorption in preterm infants [37]. In contrast, the PL/TG ratio in HoP-treated
DHM was equal to that of raw DHM.

The impact of HoP on the FA profile of DHM has been examined repeatedly, and,
almost unanimously, all studies concluded that milk FA composition was unaffected by this
heat treatment [6]. Our evaluation of individual FAs in HoP-treated DHM confirmed this
fact. In contrast, our results indicated that HTST treatment for 15–25 s resulted in a lower
content of SFAs (<4–7%) and a higher content of PUFAs (>6–8%) that in raw DHM. Overall,
the most important variations in HTST-treated DHM that was processed for 25 s were
found for CLA (158%), α- and γ-linolenic acids (142% and 155%, respectively), ARA (179%),
and DHA (200%), which may indicate a higher lipid peroxidation in raw and HoP-treated
DHM than in HTST-treated DHM samples during frozen storage. PUFAs, particularly
long-chain PUFAs, are highly susceptible to peroxidation even during frozen storage [8],
and our results denote that longer and more unsaturated PUFAs resulted in higher losses
in raw and HoP-treated DHM. Alternatively, HTST treatment may preserve the antioxidant
capacity of DHM, although the impact of different storage conditions of DHM on the
antioxidant potential is currently unclear [8]. A higher PUFA content in DHM would be
desirable for preterm nutrition because free FAs are readily absorbed in the immature
gastrointestinal tract [37]. This finding may have biological and clinical relevance since
preterm infants have a reduced bile pool and low pancreatic and lingual lipase activity [38].
The provision of LC-PUFAs by DHM to the preterm infant is relevant for the regulation
of key physiological processes, as well as for the development and function of neural and
immune tissues [39]. The higher CLA and DHA content in DHM after HTST treatment
observed in our study may provide an additional benefit when compared to HoP.

Additionally, BSSL was not fully destroyed after the HTST process, resulting in 15–20%
(mean values) retained BSSL activity. However, the high variability in BSSL residual activity
after the shorter HTST treatments (5–15 s) highlights the importance of tight control of
processing parameters to maximize the retention of this thermosensitive enzyme. Instead,
BSSL was completely lost in DHM treated by HoP, as has been previously reported [9,40].

In our study, water- and fat-soluble vitamins were stable after both HTST treatment
and HoP of DHM, with the exception of pyridoxal (11% lower in HoP than in raw DHM).
In addition, processing conditions during HoP in our study may have facilitated the
conversion of previtamin D3 into vitamin D3, as suggests the higher (145%) content of
this vitamin in HoP-treated DHM compared than in unprocessed DHM. The relevance
of these findings to clinical practice is still unclear given that there is no consensus about
which is the most adequate intake of some vitamins, such as vitamin D or E, in preterm
infants. Moreover, DHM is usually mature milk and does not guarantee appropriate
vitamin coverage for preterm infants, for which it is often fortified [41,42].

High pressure processing (HPP) is a non-thermal technology widely applied now in
the food industry and represents another promising alternative to HoP for treating DHM
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in human milk banks [12,43]. In HPP, food is subjected to pressures within the range of
100–1000 MPa for a short period of time (minutes). HPP treatment (200 MPa for 10 min,
followed by an interval of 10 min, and 400 MPa for 10 min) at ambient temperature of DHM
destroys efficiently milk vegetative bacteria but allows preserving the lipid profile, vitamins
and some bioactive molecules, such as insulin, leptin, adiponectin, hepatocyte growth
factor, IgG, BSSL, lysozyme and lactoferrin, when compared to HoP treatment [44–47]. The
results of a recent study comparing HTST and HPP as potential alternatives to HoP to
improve the quality of DHM indicated that both new processing technologies resulted
in better DHM quality (regarding the protein profile) than classic HoP. However, both
HTST and HPP treatments modified differently some bioactive molecules in DHM since,
although secretory IgA was better preserved by HTST treatment, more lactoferrin activity
was retained after HPP [48].

The results obtained in the present study are promising but also present a few lim-
itations. First, some analytical determinations (BSSL activity and vitamin content) were
not performed in all samples due to time and resource constraints. However, samples
taken for these analyses were selected according to preliminary results to minimize the
impact on the reported results. Furthermore, current benefits of HTST-pasteurized milk
administration to preterm infants should be confirmed by additional clinical trials that are,
in fact, currently in progress. For future studies, it should be taken into account that there
are other factors that may influence the content of bioactive molecules in processed DHM,
independently of the heat treatment, including the number of donors in the pooled sample
and the storage conditions (i.e., refrigerated or frozen storage) of DHM samples before or
after using any treatment [33,49,50].

HTST pasteurization at 72 ◦C for at least 10 s achieves the microbiological safety
of DHM while ensuring a high retention of immunoglobulins, growth factors, and hor-
mones [15,16]. The present study confirms that macronutrients, myo-inositol, lipid classes,
and vitamins in DHM are preserved using the same equipment and processing variables as
outlined in the above mentioned studies (Table 5). In addition, higher CLA and DHA levels
together with higher retention of BSSL activity in HTST-treated DHM than in HoP-treated
DHM could improve infant nutrition. In conclusion, our results indicate that this new
HTST pasteurization system is an attractive alternative for the treatment of DHM in HMBs,
particularly when considering that DHM is the feeding method of choice for preterm
infants when OMM is not available [2,15,16].

Table 5. Comparison of the changes on DHM composition between HoP (62.5 ◦C, 30 min) and HTST
treatment (72 ◦C for 15 s).

Nutrient 1 HTST HoP

Lactose (by FT-MID) ↑ (0.05%) 2 -
Lactose (by GC) - -

Fat - -
Protein - ↓ (1%)
Glucose - ↑ (7%)

myo-Inositol - -

TG - -
DG - -
MG ↓ (45%) ↓ (67%)
∑PL ↑ (117%) -
SFAs ↓ (4%) -

MUFAs - -
PUFAs ↑ (6%) -
CLA ↑ (42%) -
ARA - -
DHA ↑ (63%) -
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Table 5. Cont.

Nutrient 1 HTST HoP

Retention of BSSL activity 18% 7%

Thiamine, riboflavin, FAD,
nicotinamide,

cyanocobalamin
- -

Pyridoxal - ↓ (11%)
Vitamin A, α-tocopherol,
γ-tocopherol, vitamin

25(OH)D3

- -

Vitamin D3 - ↑ (47%)
1 Nutrient data were expressed as percentages compared to their value in raw milk. 2 ↑, increase; ↓, decrease;
-, no change. ARA, arachidonic acid; BSSL, bile salt stimulated lipase; CLA, conjugated linoleic acid; DG,
diacylglycerides; DHA, docosahexaenoic acid; DHM, donor human milk; FAD, flavin adenine dinucleotide;
FT-MID, Fourier-transform mid-infrared spectroscopy; HoP, Holder pasteurization; HTST, high-temperature short-
time; MG, monoacylglycerides; MUFAs, monounsaturated fatty acids; PL, polar lipids; PUFAs, polyunsaturated
fatty acids; SFAs, saturated fatty acids; TG, triacylglycerides.
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