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Abstract: As incidences of food poisoning, especially norovirus-induced diarrhea, are associated
with climate change, there is a need for an approach that can be used to predict the risks of such
illnesses with high accuracy. In this paper, we predict the winter norovirus incidence rate in Korea
compared to that of other diarrhea-causing viruses using a model based on B-spline added to logistic
regression to estimate the long-term pattern of illness. We also develop a risk index based on the
estimated probability of occurrence. Our probabilistic analysis shows that the risk of norovirus-related
food poisoning in winter will remain stable or increase in Korea based on various Representative
Concentration Pathway (RCP) scenarios. Our approach can be used to obtain an overview of
the changes occurring in regional and seasonal norovirus patterns that can help assist in making
appropriate policy decisions.

Keywords: norovirus; climate change; relative risk; generalized additive logistic model

1. Introduction

As the reproduction of microorganisms is substantially affected by weather-related
factors such as temperature and humidity, climate change is extremely likely to cause
changes in the seasonal patterns of food poisoning incidents caused by microorganisms.
Therefore, as climate conditions continue to change, it is expected that adjustments to
food safety policies related to food will become necessary, and scientific methodologies
that can accurately predict long-term fluctuations in food poisoning patterns must be
developed to assist administrators in proactively devising reasonable policies to respond to
the effects of climate change. Most advanced countries already have access to vast amounts
of weather and food poisoning-related clinical data; the key challenge is deriving useful
information from these big data. According to a recent 2016 study, more than 40 million
disability-adjusted life years were lost in children under the age of five due to cases of
diarrhea and related deaths [1]. Although the incidence of diarrhea may be reduced by
economic development, some reports have found that climate change damages urban
infrastructure and reduces overall water availability [2]. The spread of diarrhea is complex
and depends on many factors. Infectious diarrhea can be caused by a variety of pathogens,
and it is affected by both host susceptibility and environmental components. Therefore,
there is an urgent need for research that quantifies the impact of diarrheal illness as well as
improved predictive estimates [3–6]. This paper chooses to consider norovirus specifically
for two main reasons. First, variations in the incidence pattern of norovirus are clinically
significant. As diagnostic technology continues advancing, norovirus has been increasingly
identified as a major cause of food poisoning [7]. The World Health Organization (WHO)
reports that norovirus is one of the top five causes of death from food poisoning [8]. More
than 200,000 people die from norovirus every year, including 70,000 children in developing

Life 2021, 11, 1332. https://doi.org/10.3390/life11121332 https://www.mdpi.com/journal/life

https://www.mdpi.com/journal/life
https://www.mdpi.com
https://doi.org/10.3390/life11121332
https://doi.org/10.3390/life11121332
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/life11121332
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life11121332?type=check_update&version=2


Life 2021, 11, 1332 2 of 16

countries [9]. In the United States, norovirus causes 23 million cases of acute gastroenteritis
(AGE) every year [10]. According to the Centers for Disease Control and Prevention (CDC),
norovirus causes annual economic losses of more than $2 billion in the United States alone.
In other words, norovirus continues to have a negative impact on both human life and the
economy worldwide. Second, norovirus has a distinct seasonal pattern, with the frequency
of cases rising in the winter [11]. Because of this, it is also called “the winter vomiting
disease” [12,13]. New norovirus variants often emerge on cruise ships in the winter and
early spring. In the United States, there were particularly high numbers of deaths from
norovirus in the winter months in both 2002–2003 and 2006–2007. These seasonal patterns
in disease prevalence make it easier to analyze the relationship between weather-related
factors and food poisoning using probabilistic methods. As described above, the main
causes of norovirus are contaminated food and human contact; however, many papers
examining the relationship between norovirus incidence and climate support the assertion
of this paper. Previous studies have shown that norovirus is negatively correlated with
mean temperature [14] and that it is a wintertime phenomenon, at least in the temperate
northern hemisphere [15]. Another study reviewing norovirus incidence over the previous
decade showed differences in case numbers between influenza and norovirus infections,
with norovirus still showing strong incidence in certain high population density areas [16].
A recent study examined temperature and relaxation rates among patients with diarrhea
given the climate change scenarios in Japan. That study estimated the future probability
of the disease based on a simple comparison by region [17]. The above study explains the
importance of temperature-related future changes in diarrheal patients. To simplify the model
and actively identify temperature-related effects, among various weather-related factors, the
current study focused on average daily temperature among various weather-related factors. In
this paper, we also attempted to predict the variations in norovirus incidence that will occur as
the temperature continues to rise in winter due to climate change.

We introduce an index that we developed to quantify the incidence rate of norovirus-
induced diarrhea according to Representative Concentration Pathway (RCP) scenarios that
explain climate change, and we used this index to calculate the future risk of disease due
to climate change. In this analysis, a generalized additive linear model (GALM) method
using B-spline was used to compensate for the fact that the probability of dependence on the
explanatory variable increases or decreases in simple logistic regression. In addition, the risk
assessment was made more objective by using the relative risk index (RRI) to represent risk.

2. RCP Scenarios

In order to establish an effective response and adaptation plan for risk factors that
will appear due to climate change, the Intergovernmental Panel on Climate Change (IPCC)
introduced a set of climate change scenarios. The RCP scenarios consider both recent ob-
servations along with greenhouse gas reduction technologies. The IPCC has recommended
that researchers use the RCP scenarios as basic data for studies that involve climate change
impact evaluations; in particular, four scenarios have been introduced: RCP2.6, RCP4.5,
RCP6.0, and RCP8.5. The numbers in the scenario names indicate the increasing amounts
of net radiation energy experienced by the year 2100 [18].

The Korea Meteorological Administration (KMA) has contributed to the RCP sce-
narios (http://www.climate.go.kr (accessed on 5 August 2021)). The KMA developed
RCP scenarios using five regional climate models (HadGEM3-RA, RegCM4, SNURCM,
GRIMs, WRF) [19–23]. As climate models contain uncertainty associated with several
sources, e.g., imprecise initial conditions, some statistical refinement techniques and bias
correction methods are applied to the output of the model, before providing data to the
end users [24]. From these five models they created two model ensembles. The first model
is MME4s, based on data from HadGEM3-RA, RegCM4, SNURCM, and WRF. The second
one is MME5s, based on data from HadGEM3-RA, RegCM4, SNURCM, GRIMs, and WRF.
Climate projections until the year 2100 are evaluated under RCP2.6 and 6.0 for MME4s,
and under RCP4.5 and 8.5 for MME5s. The latitude and longitude of the RCP scenario
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data range from 33◦ N to 39◦ N and 124.5◦ E to 132.0◦ E, respectively, which includes the
entirety of the southern Korean Peninsula.

3. Data Descriptions

From 2005 to 2018, the total number of patients in Korea reported to have diarrhea
was 283,651. Of these cases, 24,642 were caused by norovirus, representing a rate of 8.69%,
thus making norovirus a very significant cause of diarrhea. These clinical data come from
the Korea Centers for Disease Control and Prevention Portal (http://www.kdca.go.kr/
(accessed on 3 September 2020)). Table 1 summarizes the known norovirus outbreaks by
gender and age and the rate of norovirus diarrhea cases compared to diarrhea cases from
all-causes. The incidence rates of norovirus do not significantly differ by gender, with the
rates in males and females being 8.82% and 8.53%, respectively. In contrast, the effect of
age is clearly significant. In particular, the incidence rates of norovirus in the age groups of
0–5, 6–15, 16–59, and over 59 are 13%, 3.37%, 4.79%, and 8.74%, respectively. This shows
that very young people are significantly more vulnerable to norovirus than those in other
age groups. When dividing Korea into northern, central, and southern regions, there were
slight differences in the rates of norovirus outbreaks between regions, with rates of 10.14%,
6.05%, and 9.26%, respectively. In the southern part of the country along the coast, diet and
temperature are expected to affect the risk of norovirus outbreaks. The northern part of the
country also has a somewhat high risk as it includes Seoul, which is particularly densely
populated, leading to higher disease risk. The results of the logistic regression analysis
used to calculate the odds ratio by gender, age, and region for norovirus occurrence are
shown in Table 2. The odds ratio for a female (vs. male) is 0.101, which is not significant.
Age had a significant effect: compared to those aged 0–5, the odds ratios were 0.646, 0.350,
and 0.245 for individuals aged 6–15, 16–59, and 60 and older, respectively. This indicates
that individuals under five years of age are substantially more vulnerable to norovirus
infection than those in other age groups. In addition, the odds ratio for the central and
southern regions of the country relative to the northern region were significantly different
at 0.777 and 1.062, respectively. Figure 1 shows the regions described in Table 2 on a map
for better understanding. We used R 4.2.1 for all data analysis [25–30].

Table 1. Clinical characteristics of Korean patients with diarrhea (2005–2018).

Characteristic Number of Patients
with Norovirus(%)

Total Diarrhea
Patients

Total 24,642 (8.69) 283,651

Gender
Male 13,787 (8.82) 156,397

Female 10,855 (8.53) 127,254

Age

0–5 17,390 (13.00) 133,737
6–15 2062 (8.74) 23,605
16–59 3139 (4.79) 65,524

over 60 2051 (3.37) 60,785

Region
South Area 11,706 (9.26) 126,467

Central Area 4452 (6.05) 73,533
North Area 8484 (10.14) 83,651

http://www.kdca.go.kr/
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Table 2. Results of logistic regression analysis.

Covariates β exp (β) se p-Value 95% CI

Intercept −1.884 0.152 0.012 <0.001 0.148–0.156

Gender
Male Reference

Female 0.01 1.01 0.014 0.461 0.983–1.037

Age

0–5 Reference
6–15 −0.437 0.646 0.024 <0.001 0.616–0.678

16–59 −1.051 0.350 0.02 <0.001 0.336–0.364
over 60 −1.405 0.245 0.024 <0.001 0.234–0.257

Region
South Area Reference

Central
Area −0.252 0.777 0.019 <0.001 0.749–0.806

North
Area 0.06 1.062 0.015 <0.001 1.031–1.094
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trative divisions.

4. Methods

First, the relationship between weather-related factors and the occurrence of food
poisoning caused by norovirus was analyzed stochastically. Based on the results of that
analysis, we calculated how the seasonal pattern of norovirus incidence is expected to
change in the future due to climate change. In Korea, incidences of diarrhea are reported
daily by region and cause. We used average daily temperature data from the Meteoro-
logical Data Open Portal (https://data.kma.go.kr/ (accessed on 5 August 2021)). The
number of diarrhea patients with norovirus may vary as winter temperatures rise rapidly
in accordance with the climate projections under the considered RCP scenarios.

In addition, a generalized additional model (GAM) was employed to express the
additive model of the functions including these bases. The logistic model using GAM
helps us to predict the probability of the occurrence of norovirus according to the average
temperature. In the GAMs that were used, the linear components β j ∑ xij of the model were
replaced with β j ∑ f j

(
xij
)

[31–34]. π(yi
∣∣xi1, xi2, · · · , xip) is used to denote the probability

https://data.kma.go.kr/
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that norovirus cases appear along with the explanatory variables xi1, xi2, · · · , xip. The
GALM assumes that

log

[
π
(
yi
∣∣xi1, xi2, . . . , xip

)
1− π

(
yi
∣∣xi1, xi2, . . . , xip

)] = β0 + β1 f1(xi1) + β1 f1(xi1) + · · ·+ βp fp
(
xip
)

(1)

where we used the functions f1, f2, · · · , fp to smooth bases estimated in various forms,
such as with B-spline, cubic splines, and natural cubic splines. We used recursive 4th
B-spline bases as supports of the mean temperature as follows [34–38]. Let U be a set of
m + 1 non-decreasing numbers, u0 ≤ u1 ≤ u2 ≤ · · · ≤ um.

Ni,0(u) =
{

1 i f ui ≤ u ≤ ui+1
0 otherwise

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (2)

We create a logistic regression model using the previously generated Ni,p as fp
(

xip
)

and the presence or absence of norovirus as the dependent variable. A backfitting algorithm
is typically used for estimations when the splines are complex. However, in this paper,
the splines are calculated and then used to estimate the logistic regression because they
can be calculated with relative ease. We calculate the binary logistic regression model
using iteratively reweighted least squares (IRLS), which is equivalent to maximizing the
log-likelihood of a Bernoulli distributed process using Newton’s method as follows.

parameters : wT = [β0, β1, β2, . . .]

explanatory variables : x(i) = [β0, β1, β2, . . .]T

X =

 1 x1(1) x2(1)
1 x1(2) x2(2)
...

...
...

· · ·
· · ·


response variables : y(i) = [y(1), y(2), . . .]T

expected value of the Bernoulli distribution : µ(i) =
1

1 + e−wTx(i)

µ = [µ(1), µ(2), . . .]

using iterative algorithm

wk+1 =
(

XTSKX
)−1

XT(SkXwk + y− µk) (3)

The average temperature that maximizes the probability of GALM is defined as the
maximum rate temperature, and the intervals of height corresponding to 0.8 and 0.9 times
the maximum rate are respectively defined as the risk interval and the high-risk interval.

We employed the RRI to understand the effect of temperature-dependent probabil-
ities in the RCP scenarios. RRI measures how the probability of occurrence is driven by
temperature in GALM models.

Relative risk index (RRI) = ∑
yi∈A

Deviationi × χ(Deviationi) (4)

where A is defined as the focus set, Deviationi is defined as π(yi|·)—the critical value, and
χ represents the indicator function.

Larger RRIs indicate an increased risk of infection by norovirus. That is, the probability
in a particular group is greater than the mean probability of being infected by norovirus
among diarrhea patients. For example, the incidence of norovirus among all diarrhea
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patients aged 0–5 is 13.00%, so the critical value is 0.13. We can compute the RRI for age,
region, and X-year RCP scenarios.

We calculated the RRI in each RCP scenario for the winter months in Korea (December
to February). We organized the 451,351 grids in the RCP scenarios into 96,172 grids based
on their location in the Korean peninsula to calculate the RRIs, and then we used the GALM
model to predict the probability of the incidence of norovirus on a daily basis. Figure 2
shows the grid, made up of 96,172 points, we used. In a logistic regression model the
outcome of yi is 0 or 1, with 1 indicating an event occurring (such as becoming infected with
a disease) and 0 indicating no event occurring. In a typical logistic model, the probability
of a response increases or decreases depending on the value of the explanatory variable.
Therefore, the quadratic form, which increases and decreases in order to obtain an optimum
value, is not applicable here. To compensate for this, a number of orthogonal bases were
used in this paper to make the quadratic form feasible.
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5. Results

Figure 3 shows the GALM analysis using B-spline. The GALM model is more useful
for predicting the probability of occurrence than the generalized linear model. The findings
indicate that the rate of occurrence in patients in different age groups differs significantly
depending on temperature. From the analysis of Figure 3 it is evident that people under
the age of 15 are more than twice as likely to contract norovirus compared to those over the
age of 15. Especially, the two age groups containing patients under the age of 15 show the
highest probability of contracting norovirus when the temperature is near 0 degrees, while
the other two age groups, 16–59 years and over 60 years, have the highest probability of
being infected by a norovirus when the temperature is between −10 and 0. In other words,
the temperature interval in which the highest probability of norovirus occurs was found to
be lower for those over 15 years of age compared to those under 15 years of age.
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Table 3 lists the maximum incidence rates, maximum rate temperatures, risk intervals,
and high-risk intervals of the four age groups. Table 3 shows the temperatures at which
patients in each group are vulnerable to norovirus; this information could prove very
helpful in preventing norovirus. As noted in the previous section, the proportion of all
diarrhea patients aged 0–5 who contract norovirus is 13%, which is significantly higher
than the corresponding proportions in all other age groups. The predicted norovirus
infection rate among patients aged 0–5 years reaches a maximum of 23.8% at −2.0 ◦C,
which is significantly greater than the overall observed rate of 13.00%. A risk interval
above 19.0% corresponds to an average daily temperature between −10.4 ◦C and 6.4 ◦C.
In addition, a high-risk interval over 21.4% corresponds to an average daily temperature
between −7.8 ◦C and 3.8 ◦C. The predicted norovirus infection rate among all diarrhea
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patients aged 6–15 years reaches a maximum of 21.2% at −0.5 ◦C; this is significantly
greater than the overall observed rate of 8.74% for the same group. A risk interval above
17.0% corresponds to an average daily temperature of between −5.7 ◦C and 4.6 ◦C. A
high-risk interval exceeding 19.1% corresponds to an average daily temperature between
−4.1 ◦C and 3.0 ◦C. The predicted norovirus infection rate among all diarrhea patients
aged 16–59 reaches a maximum of 11.9% at −5.8 ◦C, which is more than double the overall
observed rate of 4.79% for the same group. A risk interval exceeding 9.5% corresponds
to an average daily temperature between −14.3 ◦C and 2.7 ◦C. The high-risk interval
exceeding 10.7% corresponds to an average daily temperature between −11.7 ◦C and 0.1◦C.
The predicted norovirus infection rate among all diarrhea patients aged 60 years or older
reaches a maximum of 7.7% at −4.6 ◦C, which is significantly greater than the overall
observed rate of 3.37% for the same group. The risk interval exceeding 6.2% corresponds
to an average daily temperature between −12.9 ◦C and 3.6 ◦C. A high-risk interval, which
exceeds 7.0%, corresponds to an average daily temperature between −10.3 ◦C and 1.1 ◦C.
In particular, the incidence rates in patients aged 0–5 and 6–15 are much greater than the
average rates. In this paper, we constructed scenarios with rates greater than the average
(13% for 0–5 years old and 8.74% for 6–15 years old) where norovirus occurs as a priority
for each age group.

Table 3. Calculated maximum norovirus incidence rate and temperature by age group.

Age Maximum
Rate

Maximum Rate
Temperature

Risk Interval High-Risk Interval

Rate Temperature Range Rate Temperature Range

0–5 23.8% −2 ◦C 19.0% −10.4 ◦C 6.4 ◦C 21.4% −7.8 ◦C 3.8 ◦C
6–15 21.2% −0.5 ◦C 17.0% −5.7 ◦C 4.6 ◦C 19.1% −4.1 ◦C 3 ◦C

16–59 11.9% −5.8 ◦C 9.5% −14.3 ◦C 2.7 ◦C 10.7% −11.7 ◦C 0.1 ◦C
Over 60 7.7% −4.6 ◦C 6.2% −12.9 ◦C 3.6 ◦C 7.0% −10.3 ◦C 1.1 ◦C

For each age group, the RRI was calculated using the critical value of the incidence
of norovirus among diarrhea patients. Tables 4–7 and Figure 4 show the resulting values
and 25 and 97.5 percentile of these RRIs by age relative to the critical values in the years
2030, 2050, 2070, and 2100 according to RCP scenarios 2.6, 4.5, 6.0, and 8.5. These results
were obtained using percentile bootstrap methods over 100 trials. In Figure 4, the RRI
shows a similar pattern in the same age groups and RCP scenarios. In the RCP 2.6 scenario,
the RRI for the 0–5 years, 16–59 years, and over 60 years age groups will increase by 2050
and 2070, but in 2100 it is similar or only slightly higher than in 2030. In RCP 4.5, RRI
tends to decrease, but it rises briefly in 2070. In RCP 6.0, the RRI increases until 2070 and
then decreases slowly, and by 2100 the RRI is decreasing rapidly. In RCP 8.5, the RRI is
maintained until 2050, then decreases significantly until 2100. In Figures 5–8, we present
the probability of being infected with norovirus according to the temperature calculated
by GALM for each grid on the map of the Korean Peninsula. Overall, it can be seen that
the more rapid the climate change, the lower the probability of infection. In addition, in
terms of the regional analysis, the probability of infection decreases from the southern and
eastern coasts. In Figure 6, it can be seen that in all RCPs, the probability of infection in the
northeast area is low in 2030 and in 2050. It is lower in the coastal areas than in other areas
for two age groups, 16 to 60 and over 60 years groups.
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Table 4. RRI for the 0–5 years age group in the four RCP scenarios.

Age RCP Year RRI se 2.5% 97.50%

0–5

RCP2.6

2030 744,363.191 56.249 744,238.988 744,475.598

2050 798,557.165 58.093 798,448.003 798,682.025

2070 799,461.843 58.131 799,364.242 799,581.800

2100 769,219.313 64.379 769,104.059 769,342.982

RCP4.5

2030 797,518.059 50.979 797,417.997 797,620.212

2050 746,507.322 54.491 746,404.296 746,603.098

2070 765,325.678 66.426 765,193.106 765,443.671

2100 719,243.670 72.033 719,098.98 719,370.906

RCP6.0

2030 773,885.898 59.472 773,778.616 774,007.359

2050 819,199.541 45.961 819,120.154 819,287.547

2070 796,606.392 48.595 796,516.908 796,685.359

2100 680,299.531 78.89 680,118.010 680,425.951

RCP8.5

2030 793,144.660 52.257 793,056.644 793,233.400

2050 789,608.884 58.676 789,479.547 789,718.438

2070 696,860.635 77.764 696,731.282 697,019.472

2100 637,696.714 76.576 637,551.772 637,827.478

Table 5. RRI for the 6–15 years age group in the four RCP scenarios.

Age RCP Year RRI se 2.5% 97.50%

6–15

RCP2.6

2030 759,573.415 87.567 759,392.791 759,752.307

2050 830,048.756 87.292 829,897.173 830,171.827

2070 847,114.171 85.711 846,989.130 847,286.762

2100 824,541.476 85.232 824,408.661 824,737.405

RCP4.5

2030 797,031.139 92.947 796,868.583 797,198.477

2050 780,405.365 88.667 780,244.899 780,579.088

2070 818,259.560 91.263 818,110.020 818,439.662

2100 744,777.347 109.334 744,567.330 744,988.180

RCP6.0

2030 814,398.394 76.988 814,255.317 814,547.288

2050 873,433.728 78.062 873,283.645 873,577.149

2070 850,347.595 85.542 850,199.707 850,538.008

2100 721,090.103 102.792 720,891.629 721,264.156

RCP8.5

2030 839,317.621 80.411 839,185.498 839,501.208

2050 842,927.700 82.334 842,793.436 843,091.020

2070 726,317.494 119.128 726,139.886 726,580.614

2100 675,713.129 112.328 675,513.487 675,906.920
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Table 6. RRI for the 16–59 years age group in the four RCP scenarios.

Age RCP Year RRI se 2.5% 97.50%

16–59

RCP2.6

2030 443,918.399 56.697 443,813.478 444,020.317

2050 487,006.047 42.343 486,927.932 487,083.852

2070 478,341.416 36.410 478,277.169 478,404.044

2100 441,578.840 46.270 441,503.240 441,667.933

RCP4.5

2030 514,711.088 38.449 514,641.502 514,797.870

2050 434,542.392 49.690 434,429.309 434,637.481

2070 444,944.118 50.705 444,840.469 445,052.900

2100 419,674.710 55.697 419,577.711 419,794.594

RCP6.0

2030 470,768.449 46.386 470,685.615 470,851.935

2050 493,738.981 38.454 493,661.984 493,798.576

2070 469,803.798 44.892 469,712.005 469,881.028

2100 374,173.545 60.717 374,068.956 374,298.359

RCP8.5

2030 472,046.924 47.130 471,954.943 472,142.872

2050 464,492.952 47.240 464,407.449 464,577.836

2070 397,364.829 63.693 397,242.417 397,481.481

2100 343,059.165 56.321 342,955.761 343,160.810

Table 7. RRI for those aged more than 60 years in the four RCP scenarios.

Age RCP Year RRI se 2.5% 97.50%

over 60

RCP2.6

2030 282,203.504 26.677 282,156.802 282,257.290

2050 308,661.955 26.281 308,604.289 308,703.138

2070 304,635.017 25.072 304,589.212 304,683.773

2100 283,677.657 28.946 283,622.792 283,730.317

RCP4.5

2030 321,812.213 20.200 321,776.156 321,848.276

2050 277,891.568 30.253 277,824.773 277,943.525

2070 284,957.856 33.514 284,888.233 285,012.275

2100 267,956.163 31.890 267,900.299 268,015.764

RCP6.0

2030 298,005.491 26.261 297,947.565 298,047.385

2050 314,090.960 21.365 314,052.541 314,135.816

2070 300,210.740 29.942 300,160.387 300,264.328

2100 241,975.568 36.335 241,903.235 242,032.298

RCP8.5

2030 300,852.815 24.281 300,802.806 300,888.892

2050 296,927.581 26.964 296,875.699 296,971.395

2070 254,937.229 35.084 254,858.145 254,992.024

2100 222,659.981 35.031 222,595.774 222,712.245
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6. Discussion and Conclusions

In the previous section, we calculated the probability of norovirus occurrence for
different age groups by applying the GALM model using average daily temperature as
an explanatory variable, and we calculated the risk index according to RCP scenarios
based on the RRI index presented in this paper. These results are consistent with the
general observation that food poisoning caused by norovirus occurs most often in winter.
Considering that the average winter temperature in Korea is 1.5 ◦C in December, −1.0 ◦C
in January, and 1.1 ◦C in February, Korea’s winter season is favorable for norovirus to
occur. The results show that the risk of norovirus occurrence increases in 2050 and 2070 but
decreases by the year 2100 under the RCP 2.6 scenario for 0–5 years, 15–60 years, and over
60 years age groups. For all age groups, the risk of norovirus occurrence decreases over time
under the RCP 4.5 scenario, despite a brief increase in 2070. Under the RCP 6.0 scenario,
for all age groups, the risk increases until 2070 and then decreases to 2100. Under the RCP
8.5 scenario, for all age groups, the risk remains stable until 2050 and then decreases to
2100. In the prediction probability plots, we can see that the probability of occurrence
decreases from near the coast, and that the probability of occurrence in the northeast
area is low in 2030 and 2050 in all RCP scenarios. In general, the incidence of norovirus
is predicted to decrease when the temperature rises due to climate change. However,
the findings of this study indicate that, even if the temperature rises, the temperature in
Korea will remain within the risk interval of temperature for norovirus occurrence, so
the risk of norovirus will either remain stable or increase. Despite the predicted increase
in temperature due to climate change, it is necessary to continue to prepare for future
norovirus outbreaks in Korea, among those under the age of 15. Based on these simulation
results, if the winter temperature rises, the possibility of food poisoning due to domestic
norovirus will increase, and effective disease control measures will be needed. Of course,
our ability to predict changes in the pattern of norovirus outbreaks simply by looking at the
average daily temperature alone may be somewhat limited. A number of factors should be
considered to improve the accuracy of these predictions, such as humidity and precipitation
in particular, as these are closely related to microbial reproduction. In fact, there have
been reports that lower water temperatures increase the viability of noroviruses in their
natural environments [39,40], and, statistically, lower water temperatures in the Ontario
River have been associated with many cases of food poisoning caused by noroviruses [41].
Norovirus can be transmitted not only through fecal and oral routes but also through
aerosols caused by vomiting, so an increase in humidity is likely to increase pathogen
viability [40]. In a similar vein, there have been reports that high humidity increases the
viability of rotavirus [42]. In order to reasonably predict changes in the seasonal patterns
of norovirus outbreaks, it is necessary to consider not only climate-related factors but also
human behavior and socioeconomic changes that may occur with climate change. The
cooler temperatures in winter cause people to remain inside longer, thus increasing the
incidence of food poisoning from norovirus, meaning that changes in human behavior can
affect the incidence of norovirus.

This paper calculated the risk index according to the temperature changes suggested
in various RCP scenarios, but this approach has limitations, as the occurrence of norovirus
is affected by other latent factors. For example, outbreaks of food poisoning caused by
norovirus are often related to the consumption of fresh fruits and vegetables, so a significant
increase in the consumption of fresh fruits and vegetables in winter could lead to a marked
increase in norovirus food poisoning regardless of the climate conditions. In addition,
42.5% of cases of food poisoning caused by norovirus in Korea from 2000 to 2007 are known
to have been caused by careless food handling by cooks, so improved hygiene practices
among individuals working in large centers that handle fresh agricultural products could
reduce incidences of norovirus. Nevertheless, based on the results of this study, we predict
that the risk of norovirus in winter will either remain stable or increase in Korea despite
climate change leading to warmer winters. This approach provides an overview of the
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likely changes that will occur in regional and seasonal norovirus patterns, which are
expected to help appropriate policy decisions.
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