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Abstract: Depression is considered the second leading cause of the global health burden after cancer.
It is recognized as the most common physiological disorder. It affects about 350 million people
worldwide to a serious degree. The onset of depression, inadequate food intake, abnormal glycemic
control and cognitive impairment have strong associations with various metabolic disorders which
are mediated through alterations in diet and physical activities. The regulatory key factors among
metabolic diseases and depression are poorly understood. To understand the molecular mechanisms
of the dysregulation of genes affected in depressive disorder, we employed an analytical, quantitative
framework for depression and related metabolic diseases. In this study, we examined datasets
containing patients with depression, obesity, diabetes and NASH. After normalizing batch effects
to minimize the heterogeneity of all the datasets, we found differentially expressed genes (DEGs)
common to all the datasets. We identified significantly associated enrichment pathways, ontology
pathways, protein–protein cluster networks and gene–disease associations among the co-expressed
genes co-expressed in depression and the metabolic disorders. Our study suggested potentially
active signaling pathways and co-expressed gene sets which may play key roles in crosstalk between
metabolic diseases and depression.

Keywords: depression; metabolic disease; diabetes; obesity; NASH; DEGs

1. Introduction

Major depressive disorder (MDD) is a psychiatric disease. It is considered one of the
major global health burdens [1]. An estimation by the WHO suggested that 350 million
people of all ages suffer from MDD that involves serious suicidal ideation [2,3]. External
stressors can act as stimuli that cause MDD, depending on their repetitiveness and dura-
tions [4]. The pathophysiological responses in MDD include adaptive hormonal changes,
such as increases in corticosteroids and adrenocorticotropin, which altogether play a signifi-
cant role in the hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis at the onset
of depression [5]. Studies over the years have found that there is a significant association
between obesity and depression [6]. The excess intake of macronutrients above physiolog-
ical requirements raises the sugar and the fat depots by increasing body weight, which
promotes obesity. Obesity has been associated with many metabolic dysfunctions which in
turn may act as stimulators of MDD [7]. Metabolic disorders such as hyperlipidemia and
hyperglycemia are prevalent in a wide range of the psychiatric patients with MDD [8]. How-
ever, a strong link between depression and obesity has not been established [6]. Reports
suggest that prediabetic patients and undiagnosed diabetic patients have more prevalence
of depression compared to nondiabetic individuals [9]. Patients with type 1 and type 2
diabetes tend to acquire much more clinical symptoms of depression than nondiabetic indi-
viduals [10]. Overactivation of innate immunity by the cytokine-mediated inflammatory
response leads to dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis [11].
Hyperactivation of the HPA axis can disrupt metabolic homeostasis and promote obesity.
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HPA axis hyperactivation can include corticotrphin releasing hormone (CRH) suppression
and leptin resistance. Activation of the HPA axis and the sympathetic nervous system
(SNS) increases the production of adrenalin, noradrenalin and cortisol, promoting insulin
resistance, visceral obesity and diabetes. Simultaneously, proinflammatory cytokines might
directly affect the brain, causing depressive symptoms [12]. Reports from meta-analyses
also support that depression may increase the risk of developing type 2 diabetes [13].
Hyperphagia is a commonly observed symptom in patients with depressive disorders, and
this may cause issues with hepatic biochemistry, including hepatic injury, elevated hepatic
enzymes and loss of hepatic blood flow [14]. These histological abnormalities during
depression may cause liver disease: NAFLD ranges from simple steatosis to NASH and
fibrosis [15]. Reports showed that the prevalence of MDD is higher in the NASH population
than that in control subjects [16]. Importantly, they found that the diagnosis of MDD tended
to be associated with steatosis grades [17]. It is widely accepted that psychiatric disorders,
including MDD, are associated with histological severity of liver diseases [17]. As it is
known that depression is associated with inflammation [18], which in turn affects insulin
resistance, which could be relevant to the causality of NASH [14]. The associations between
depressive disorder and the above-mentioned metabolic diseases have been established,
but the genetic co-expression and interconnections among them have not been well eluci-
dated yet. We employed a systematic approach to study independent microarray datasets
related to depression, obesity and related metabolic disorders—diabetes and NASH. To
understand the effects of depression on these metabolic diseases, we studied differentially
dysregulated genes, enriched pathways, ontology analysis and protein–protein interactions;
and lastly, for validation of our study, we compared the results with another OMIM disease
database and datasets related to depression.

2. Methods and Materials
2.1. Overview of the Study

To identify links between depression and its effects on metabolic disorders, we em-
ployed microarray datasets from NCBI. Differentially expressed genes (DEGs) identified in
these datasets were further analyzed to find out the commonly expressed DEGs among
depression and related metabolic diseases. These genes were further used to construct a
gene–disease association network, analyze KEGG pathways, analyze ontological pathways
(GO) and perform protein–protein-interaction (PPI) network analysis. To validate the po-
tential DEGs identified from enrichment analysis, the OMIM disease database and dbGap
were used.

2.2. Retrieval of Microarray Datasets

We analyzed gene expression data with 4 independent experimental microarray
datasets—accession numbers GSE58430 [19], GSE128021 [20], GSE43950 [21] and
GSE43600 [22]—from the National Center for Biotechnology Information (NCBI) GEO2R
database, as shown in Table 1. Dataset GSE58430 was produced by using human transcrip-
tomic profiling of peripheral blood CD4+ T-lymphocyte cells. There were four groups:
nondepressive asthma, depressive asthma, depression and healthy controls. We compared
depressed patients with the healthy controls. The obesity dataset GSE128021 was generated
from gene expression differences in omental mesothelial cells from the lean and obese
human donors with a cross-sectional case–control study with two different cohorts of
lean and obese patients with varying different degrees of obesity. The diabetes dataset
GSE43950 was produced by gene expression profiling in endothelial precursor cells of
patients protected from microvascular complications by modulating the TGF-β/PAI-1
axis in CD34+ cells from diabetic patients and controls. The sample of the dataset was
constructed with peripheral blood from healthy controls, and from patients with long-
standing, poorly controlled diabetes with severe microvascular complications blood and
CD34+ cells were obtained. RNA extraction was followed by AffyNugen amplification,
and the cDNA was probed to the Human RSTA Affymetrix 2.0 chip. The NASH dataset
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GSE43600 was constructed with liver samples from patients with varying severities of
steatosis. The summarized description of the datasets is shown in Table 1.

Table 1. Summarized description of the datasets used for experimental analysis.

SL Disease Name GEO Accession
Sample

Platform
Healthy Disease

1 Depression GSE58430 6 6 GPL14550
3 Obesity GSE128021 3 3 GPL10558
2 Diabetes GSE43950 5 4 GPL10379
4 NASH GSE43600 8 10 GPL10558

2.3. Differential Gene Expression Analysis and Validation with Random Unrelated Diseases

Each dataset was normalized by quantile normalization, and the R package limma
was used to identify the DEGs between depression and related metabolic disease datasets.
The batch effects from each dataset were removed by ComBat method [23]. To determine
the upregulated and downregulated genes, the threshold values were set to log FC > 1
p value < 0.05. The Venn diagram was also constructed using the Venn Diagram package
in R. All significant DEGs are presented in volcano plots generated using R software.

To validate the datasets adopted, we have compared selected diseases in the present
study with an unrelated, random infectious disease, influenza, shown in Table 2. Inter-
estingly, we found that below 2% of the upregulated and 1% of the downregulated genes
were observed in the datasets for unrelated diseases. Altogether, these findings suggest
that the observed common DEGs were not found by chance, but the relatedness of the
diseases caused higher chances of their occurrence; hence the rationale of this study is to
find the DEGs expressed commonly between depression and metabolic disorders.

Table 2. Validation of the common DEGs used for experimental analysis with related and unrelated diseases.

Disease Name GEO Accession Disease Name GEO Accession % of Upregulated
Common DEGs

% of Down
Regulated

Common DEGs

Depression GSE58430
Obesity GSE128021 3.5 4.6
Diabetes GSE43950 5.1 3.9
NASH GSE43600 3.4 2.8

Influenza GSE111449
Obesity GSE128021 1.2 1.0
Diabetes GSE43950 0.7 0.6
NASH GSE46300 1.6 0.9

2.4. Gene Set Enrichment Analysis

Pathway-based analysis reveals the molecular crosstalk in the progression of complex
diseases networks. We analyzed pathways of the commonly altered DEGs in depression
and related metabolic diseases datasets using Enrichr [24], a comprehensive web-based
gene-set enrichment tool, to construct KEGG pathways. Enrich R implements the Fisher ex-
act test, in which a binomial distribution and independence are assumed for the probability
of any gene belonging to any set from the random input gene list, in order to create the
mean rank and standard deviation from the expected rank. It is followed by the correction
to the next Fisher exact test, which calculates a Z score for the standard deviation. This
is considered as a new, corrected score. Alternatively, a p-value obtained from the Fisher
exact test can be combined with the Z score of the deviation. Hence, we combined the
p-value obtained from the Fisher exact test and combined with the z-score of the deviation
from the expected rank by multiplying these two numbers as follows:

c = log(p)·zc = log(p)·z
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where c is the combined score, p is the p-value computed using the Fisher exact test, and z
is the z-score computed by assessing the deviation from the expected rank.

The clustering level z-scores and p-values are highlighted in red if the clustering is
significant (p-value < 0.1). This clustering indicator provides an additional assessment of
related genes and measures their relevance in the specific gene-set libraries from the input
list of genes. The observation of one or two clusters on the grid suggests that a gene-set
library is relevant to the input list. It also indicates that the terms in the clusters are relevant
to the input list. We considered significant signaling pathways after applying several
statistical analyses in R packages, such as fgsea and MSigDB to access the KEGG gene sets,
and clusterprofiler where we used hypergeometric tests to find out the statistically enriched
KEGG pathways. To prevent a high false-discovery rate (FDR < 0.05) in multiple testing,
q values were also estimated. We performed gene-set enrichment analysis for KEGG
pathways significantly associated with upregulated and downregulated DEGs which were
identified from the employed datasets (p value < 0.05)

2.5. Ontology Pathway

To analyze the ontology pathway significantly, potential biological process (BP), molec-
ular function (MF) and cellular components (CC) involved in overlapping DEGs among
depression and other metabolic diseases, we used the online database Enrichr to conduct
the ontology-pathway enrichment analysis.

2.6. Protein–Protein Interaction (PPI) Network and Hub-Gene Identification

The protein–protein interactions of overlapping DEGs with a combined score > 0.4
were identified with systematic approaches in the STRING database [25], and we mapped
the protein functional associations and protein–protein interactions (PPI). We use Cytoscape
software [26] (http://www.cytoscape.org/, (accessed on 20 June 2021), version 3.7.1; Insti-
tute for Systems Biology, Seattle, WA, USA software plugin) to visualize and construct the
transcriptional regulatory network of common DEGs among the metabolic disease and de-
pression database. After overlaying DEGs on networks in CytoHubba plugin in Cytoscape,
hub genes with >10 degree were identified among all the modules from different datasets.

Molecular complex detection was used to find the most significant functional interac-
tions between proteins’ modular clusters from dense PPI network regions [27]. Module
identification criteria were included with a degree cut-off of 2, node score cut-off of 0.2,
k- core of 2 and the maximum depth of 100. Significant modules were identified with
MCODE score > 3 and nodes > 3. The cluster networks were visualized with Cytoscape
3.7.1 software plug-ins.

2.7. Prediction of the Master Transcription Factors (TFs)

To predict master TFs that significantly regulate the DEGs, we have utilized the
iRegulon plugin of Cytoscape software (version 3.8.0) to detect regulons from all DEGs [28].
The iRegulon method is determined by a ranking-and-recovery system. In this method,
all genes of the human genome are scored by a motif discovery step which connects the
cluster binding sites within cis-regulatory modules (CRMs) and the potential distal location
of CRMs of the transcription start site (TSS ± 10 kb) in both upstream and downstream.
The normalized enrichment score (NES) is computed at the recovery step for TFs of each
set of genes. The prediction of the TFs is based on NES and their putative target genes
directly from the input lists. The association of TFs to motifs using both explicit annotations
and predictions of TF orthologs and motif similarity is optimized by this method. A
transcription factor normalized enrichment score was computed for each group, where
a normalized enrichment score > 4.0 is considered significant, and the maximum false-
discovery rate (FDR) for motif similarity was set as 0.001.

http://www.cytoscape.org/
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2.8. OMIM Disease and OMIM Expanded Database

In order to validate the results obtained from various analyses, we selected the OMIM
database [29] and the dbGap benchmark database [30] to verify the significantly expressed
genes from co-expression analysis in depression and other metabolic disease datasets.

2.9. Validation of the Common DEGs with other Depression-Related Datasets

To compare the DEGs commonly expressed on each disease-related dataset, we com-
pared the expression in other datasets related to depression and depression-induced carci-
noma. GSE 14922 [31] is produced by transcriptional profiling of human adrenocortical
tumors in which we compared primary adrenocortical cancer tissues with the normal
adrenal cortex. GSE109857 [32] is composed of WHO-classified grade-III glioma with the
healthy controls. In GSE114852 [33], prenatal exposure to maternal stress and depression
has been considered as the risk factor for depression, and we compared healthy mothers
with those with depression. In GSE32280 [33], we compared the whole-genome microarray
expression profile of leucocytes with SSD (somatic symptom disorder) and MDD patients.

2.10. Statistical Analysis

Statistical analysis was performed using the Origin 8 software (version 8.6, OriginLab
Corporation, Massachusetts, MA, USA) and Graphpad Prism 8 (GraphPad, San Diego,
CA, USA). The unpaired Student’s t-test (two-tailed) and one-way ANOVA followed by
Fisher’s least significant difference (LSD) post hoc test were performed to analyze the data,
where appropriate. A value of p < 0.05 was considered as statistically significant. N.S.: not
significant (p > 0.05).

To avoid complications arising from the different experimental systems, compound
traits or ethnicity used in the original datasets, we normalized the gene expression data by
using Z-score transformation (Zij) for each type of tissue gene expression profile

Zij = (gij− mean g)/(SD(gi))

where SD represents the standard deviation, gij denotes the value of the gene expression i
in sample j. Transformed gene expression values using the Z score of different diseases at
different platforms can be compared according to a previous study [34].

3. Results
3.1. Identification of DEGs

We studied selected, independent, microarray datasets, and after normalization of
the dataset GSE58430 (depression) showed 1092 DEGs (345 up,747 down), the dataset for
obesity, GSE128021, contained 2422 DEGs (1190 up and 1230 down), the dataset for diabetes,
GSE43950, showed 1179 DEGs (848 up, 331 down), the dataset for NASH, GSE46300,
showed 1577 DEGs (1227 up, 350 down), which are listed in Supplementary Data S1–S4,
respectively. Significantly expressed upregulated and downregulated DEGs for individual
datasets were plotted in volcano plots as shown in Figure 1. In Figure 2, the Venn diagram
made in R represents the number of co-expressed DEGs among the individual datasets.
We found that depression datasets share a number of differentially expressed genes with
the datasets of obesity (113 genes), diabetes (83 genes) and NASH (71 genes). We tried to
emphasize the co-expressed genes among the associated disease between depression and
metabolic disease groups. Comprehensive bioinformatics was performed to determine
the independent DEGs across all the datasets. Enrichment pathway analysis was also
performed to identify the pathways between the co-expressed DEGs. Notably we found
five genes to be dysregulated among all the selected datasets namely, PRDM2, CXCL1,
PHLDA1, DIDO1, CDA. Figure 3A–C represents the heatmaps of commonly altered genes
among depression and obesity, diabetes and NASH, respectively to identify the expression
pattern according to their changes in log fold values.
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Figure 1. (A–D) volcano plots showing the significantly up- and down-regulated differentially
expressed genes from depression, obesity, diabetes and NASH datasets.
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3.2. KEGG Pathway Analysis

Enriched pathways are a series of molecular mechanisms and their interconnections.
To identify a disease network pathway that plays an important role we employed commonly
altered DEGs in depression and three other metabolic diseases to identify the biologically
active pathways. After applying several statistical analyses, the ten most significantly
enriched pathways in KEGG are shown in Figure 4. KEGG pathways associated with
depression and diabetes or NASH are mostly related to infectious diseases including
legionellosis, hepatitis C tuberculosis, measles, and salmonellosis. Notably, some of the
pathways affect TNF and IL–17 signaling pathways, phospholipase D signaling pathways,
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protein digestion and absorption, and glycophospholipid metabolism. Among all the
significantly enriched pathways, the TNF signaling pathway is commonly found in obesity
and diabetes, whereas the IL–17 signaling pathway and sulfur relay system are common in
both obesity and NASH.
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3.3. Gene Ontological Pathway Analysis

Ontology pathways includes all the altered biological and disease pathways and their
relationship in the disease domain. We utilized the commonly altered genes associated with
depression and three other metabolic disease-related datasets and found the significantly
enriched ontology pathways in the DAVID database [35]. Tables 3–5 showed the ten most
significant ontology pathways linked with biological pathways, molecular functions and
cellular components, respectively, in obesity, diabetes and NASH.

The significant pathways associated with the common DEGs in depression and obesity
are the type I interferon signaling pathway, cytokine-mediated signaling pathway, and
insulin secretion involved in the cellular response to glucose stimulus. For common
DEGs in depression and diabetes, we found interleukin-1 receptor binding, peptidoglycan
binding, phosphatidylinositol-4,5-bisphosphate 3-kinase activity, phosphatidylinositol
bisphosphate kinase activity, chemokine receptor activity, inflammatory response, and
cytokine-mediated signaling pathway. For common DEGs in depression and NASH, we
found the cardiolipin biosynthetic pathway, phosphatidylglycerol biosynthetic pathway,
thyroid hormone pathway and cardiolipin metabolic pathway. Mostly, these pathways are
associated with lipid biosynthetic pathways and inflammation pathways.
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Table 3. GO pathways associated with significantly common DEGs in depression and obesity.

GO Pathways Adj p-Value Genes

Molecular
functions

RNA polymerase II regulatory-region
sequence-specific DNA binding (GO:0000977) 0.000059725 ELK4;CUX1;MAX;DEAF1;MAZ;TFEC;

HSF1;MXI1;PRDM2;NKX2-5;JUNB
alpha-(1->3)-fucosyltransferase

activity (GO:0046920) 0.000866475 FUT7;FUT4

G-protein-activated inward rectifier
potassium channel activity (GO:0015467) 0.001382294 KCNJ15;KCNJ2

fucosyltransferase activity (GO:0008417) 0.002369586 FUT7;FUT4
titin binding (GO:0031432) 0.002754338 CAMK2D;OBSCN

Biological
pathways

cellular response to type I interferon (GO:0071357) 0.000033205 RSAD2;OAS1;IFIT1;XAF1;IFIT3
type I interferon signaling pathway (GO:0060337) 0.000033205 RSAD2;OAS1;IFIT1;XAF1;IFIT3

cytokine-mediated signaling pathway (GO:0019221) 0.000244271
CAMK2D;RSAD2;OAS1;IRAK2;

TNFRSF10C;CXCL1;IFIT1;XAF1;SOS1;
PTGS2;JUNB;IFIT3

insulin secretion involved in cellular
response to glucose stimulus (GO:0035773) 0.000467629 PTPRN;RAB11B

L-fucose metabolic process (GO:0042354) 0.001109929 FUT7;FUT4

Cellular
components

Golgi subcompartment (GO:0098791) 0.001591532 SLC35A2;FUT7;CUX1;CDH1;B3GNT5;
RAB12;AP1B1;MAN1C1;FUT4

spindle pole (GO:0000922) 0.003189301 SGO1;STAG2;HSF1;CEP128
tertiary granule lumen (GO:1904724) 0.003721186 CDA;CXCL1;PTX3

nuclear transcription-factor complex (GO:0044798) 0.007595372 MAX;MXI1;NKX2-5
mitotic spindle pole (GO:0097431) 0.008720051 STAG2;HSF1

Table 4. GO pathways associated with significantly common DEGs in depression and diabetes.

GO Pathways Adj p-Value Genes

Molecular
functions

interleukin-1 receptor binding (GO:0005149) 0.001725028 IL1RN;IL1B
peptidoglycan binding (GO:0042834) 0.001966159 NOD2;TLR2

phosphatidylinositol-4,5-
bisphosphate 3-kinase

activity
(GO:0046934) 0.002844067 PIK3CD;HBEGF;PIK3R5

phosphatidylinositol bisphosphate
kinase activity (GO:0052813) 0.00321474 PIK3CD;HBEGF;PIK3R5

chemokine receptor activity (GO:0004950) 0.003394807 CXCR1;CXCR2

Biological
pathways

neutrophil degranulation (GO:0043312) 0.0000000834
CDA;TNFAIP6;MME;FPR1;CXCL1;

CXCR1;ALOX5;QPCT;CXCR2;CYSTM1;
PTX3;S100A11;TLR2

neutrophil activation involved in
immune response (GO:0002283) 0.0000000918

CDA;TNFAIP6;MME;FPR1;CXCL1;
CXCR1;ALOX5;QPCT;CXCR2;CYSTM1;

PTX3;S100A11;TLR2

neutrophil-mediated immunity (GO:0002446) 0.0000001009
CDA;TNFAIP6;MME;FPR1;CXCL1;

CXCR1;ALOX5;QPCT;CXCR2;CYSTM1;
PTX3;S100A11;TLR2

inflammatory response (GO:0006954) 0.000001012 TNFAIP6;IL1B;PTGER2;CXCR2;FPR1;
PIK3CD;CXCL1;PTX3;NOD2

cytokine-mediated signaling pathway (GO:0019221) 0.0000113203
IL1RN;IRAK2;IL1B;ALOX5;FPR1;

PIK3CD;CXCL1;NOD2;XAF1;JUNB;
IFIT2;BCL2L1

Cellular
components

tertiary granule lumen (GO:1904724) 0.00000322 CDA;TNFAIP6;QPCT;CXCL1;PTX3

tertiary granule (GO:0070820) 0.00000540 CDA;TNFAIP6;QPCT;FPR1;CXCL1;
CYSTM1;PTX3

ficolin-1-rich granule (GO:0101002) 0.001014794 CDA;TNFAIP6;ALOX5;QPCT;FPR1
ficolin-1-rich granule lumen (GO:1904813) 0.001721089 CDA;TNFAIP6;ALOX5;QPCT

secretory granule lumen (GO:0034774) 0.002052377 CDA;ALOX5;QPCT;CXCL1;PTX3;
S100A11
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Table 5. GO pathways associated with significantly common DEGs in depression and NASH.

GO Pathways Adj p-Value Genes

Molecular
functions

ATP-dependent helicase activity (GO:0008026) 0.003438361 MCM7;DDX51;DDX52
RNA polymerase II

transcription-factor binding (GO:0001085) 0.009156092 EOMES;STAT3;CTNNB1

RNA polymerase II activating
transcription-factor binding (GO:0001102) 0.012116708 EOMES;CTNNB1

inorganic anion transmembrane
transporter activity (GO:0015103) 0.012614773 SLC22A4;SLC1A1

small GTPase binding (GO:0031267) 0.021109349 ACAP1;FLNA

Biological
Pathways

cardiolipin biosynthetic process (GO:0032049) 3.43 × 10−4

0.000343
PGS1;PLA2G6

phosphatidylglycerol
biosynthetic process (GO:0006655) 5.49 × 10−4

0.000549
PGS1;PLA2G6

thyroid-hormone generation (GO:0006590) 5.49 × 10−4

0.000549
DUOX1;DIDO1

cardiolipin metabolic process (GO:0032048) 9.45 × 10−4

0.000945
PGS1;PLA2G6

cytoplasmic sequestering of protein (GO:0051220) 0.00126624 MXI1;FLNA

Cellular
functions

nucleolus (GO:0005730) 0.010004394 C1D;MXI1;FLNA;DDX51;RGS12;
DDX52;PHLDA1

RNA polymerase II
transcription-factor complex (GO:0090575) 0.015449845 MXI1;STAT3;CTNNB1

tertiary granule lumen (GO:1904724) 0.016344963 CDA;CXCL1
tertiary granule (GO:0070820) 0.020605435 CDA;CXCL1;CD59

THO complex part of transcription
export complex (GO:0000445) 0.021114315 THOC3

3.4. PPI Interactions

A protein–protein interaction helps to establish the connection between two specific
proteins to build up functional biochemical networks for biological functions in the cells. We
constructed protein–protein interaction networks with commonly altered genes associated
with depression and the other three metabolic diseases with the STRING database [25],
and visualized clusters consisting of hub genes discovered in each experimental dataset
using the cytoscape software, as shown in Figure 5. In the CytoHubba plugin of cytoscape
software altogether 29 hub genes were discovered, having >10 degrees and maximum nodes
and neighborhood components. Among the 29 hub genes, 5 hub genes were differentially
expressed across all the experimental datasets including depression, obesity, diabetes
and NASH.

3.5. MCODE

Molecular complex detection was used to find the most significant functional interac-
tions between proteins modular clusters from the dense PPI network region. PPI networks
in obesity and depression datasets showed two clusters, as shown in Figure 6. Cluster 1
contains four nodes with PTGS2, PTX3, CDA, CXCL1 genes and cluster 2 contains three
nodes with FUT4, MME and CD2 genes. Simultaneously, two clusters were obtained
from the PPI interactions for depression and NASH datasets, and both contain only three
nodes. One contains CUX1, STAT3, EOMES and the other one contains ACTA2, FLNA
and WDR1. For diabetes and depression datasets there are three clusters with multiple
nodes. Cluster 1 contains six nodes with CXCR1, IL1RN, CXCR2, IL1B, FPR1, CLEC4E,
with 10 edges and four density nodes. Cluster 2 contains NOD2, CXCL1, QPCT, CDA,
PTX3, TLR2 with ten edges and four density nodes. Cluster 3 has only three nodes, with
XAF1, IFIT2, SAMD9L genes.
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Figure 6. (A) depicts two clusters among the common DEGs in obesity and depression datasets;
(B) shows two clusters with 3 nodes each among the common DEGs in NASH and depression
datasets, and (C) shows three clusters with multiple nodes among the common DEGs in diabetes
and depression datasets.

3.6. TFs Prediction by iRegulon

To identify gene regulatory networks we used iRegulon, a computational method used
to discover various transcription factors and their target genes, which in turn can identify a
set of co-expressed genes. In the common genes between depression and obesity, we found
five TFs. Among them FOXN4, SPDEF, NKX2-1 have 12, 10 and 9 targets, respectively, and
MECOM and HDAC2 have 7 targets. MECOM is identified as an oncogene, stimulating cell
proliferation and development, whereas HDAC2 is an important gene that belongs to the
histone acetylase family and plays a major part in cell-cycle progression and developmental
events. Among the common genes of depression and diabetes, there are four TFs, namely,
BCL3, MXI1, GMEB2, NFKB1. BCL3 and GMEB2 have 31 targets. BCL3 is a proto-oncogene,
and it acts as a transcription coactivator and activates GMEB2 through NFKB dimers, which
increases sensitivity to lower the concentrations of glucocorticoids. The common DEGs of
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depression and NASH have four TFs, i.e., ATF, SRF, SREBF1, SCRT2. SREBF1 and SRF have
the highest targets with 18 and 14, respectively. SREBF1 promotes cholesterol biosynthesis
and lipid homeostasis. On the other hand, the SRF transcription factor is identified as a
novel upstream mediator of stress.

3.7. Validation by OMIM Disease and dbGap

For validation of the DEGs obtained from PPI interactions and significantly enriched
pathways in the depression dataset, we compared all the associated genes with the dbGaP,
OMIM Disease and OMIM Expanded databases using only differentially expressed genes
of depression so that we could potentiate the association between metabolic diseases and
depression. After the analysis of all the related diseases, we found our selected three
diseases, i.e., obesity, diabetes and NASH, among the list of all metabolic diseases which
are associated with depression, as depicted in Figure 7.
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3.8. Validation of the Commonly Expressed DEGs with Other Depression-Related Datasets

Our results show that PRDM2 is upregulated in two other datasets while it is down-
regulated in another. CXCL1 is downregulated in all other datasets including the dataset
we analyzed. PHLDA1 is upregulated in all the datasets, which is inconsistent with our
result. Both DIDO1 and CDA are upregulated in our dataset which is consistent with two
other datasets, but downregulated in the other two, as referred to in Table 6.

Table 6. Expression of the commonly expressed DEGs with other depression-related GEO datasets.

GEO Accession Sample Type PRDM2 CXCL1 PHLDA1 DIDO1 CDA

GSE14922
Control vs.

cortisol secreting
adenoma

Down regulated Down regulated Down regulated Up regulated Up regulated

GSE109857 Control vs.
glioma Up regulated Down regulated Down regulated Down regulated Down regulated

GSE114852 Control vs.
depression absent Down regulated Down regulated Up regulated Down regulated

GSE32280 Control vs.
depression Up regulated Down regulated Down regulated Down regulated Up regulated

GSE58430 Control vs.
depression Down regulated Down regulated Up regulated Down regulated Up regulated
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4. Discussion

In our study, all the disease conditions selected are interconnected. We first hypothe-
sized that the occurrence of one disease type may increase the chance of occurrence of the
remaining three. The cellular origins of microarray datasets compared in our analysis are
very diverse. Therefore, it cannot be ruled out that the expression values of a specific gene
could be influenced by heterogeneous cell lines. The effect of these diseases is tissue-specific
and dominant in those specific cell lines, hence, to mask the complications arising from
the different experimental systems, compound traits or ethnicity employed in the original
datasets, we normalized the gene expression data using Z-score transformation.

In this study, we investigated the effect of depression on its comorbidity in three
metabolic diseases, i.e., obesity, diabetes and NASH. Hence, we compared the co-expression
of the up- and down-regulated genes on MDD patients with that of obese, diabetic and
NASH patients. To identify the commonly altered genes and their significantly enriched
signaling pathways between depression and metabolic diseases, our study aimed to analyze
the GEO microarray datasets on patients with depression, obesity, diabetes and NASH and
their control datasets.

Our gene expression analysis suggested that depression and these metabolic diseases
share a good number of commonly dysregulated genes. This indicates that depression has
a strong influence on metabolic diseases [36]. The HPA axis is affected in depression, as a
result it promotes hyperphagia which has a direct effect on metabolism. On the contrary,
metabolic diseases cannot affect the HPA axis, so we cannot conclude that depression has a
strong influence on metabolic disease or vice versa. To elucidate the molecular aspects of
the regulatory network, we focused on pathway-based analysis, which is considered a new
approach, to elucidate the molecular disease-network complexities related to the onset of
depression. We found significantly enriched KEGG pathways for commonly dysregulated
genes in depression related to each metabolic disease. These identified pathways strongly
suggest that depression acts as a pivotal risk factor aggravating several metabolic disorders.
Notably, gene expression ontologies and protein–protein interactions of commonly altered
genes in depression and metabolic diseases revealed that depression plays a vital role in
the prognosis of several metabolic diseases. We obtained two clusters among the common
DEGs of both depression and obesity, and depression and diabetes, whereas three clusters
were obtained in depression and NASH. PTX, CDA, and CXCL were present in the clusters
among depression and obesity, and depression and NASH.

We verified our results with the gold benchmark database and found several genes
play significant roles in both depression and other metabolic diseases. We collected disease
names from the OMIM diseases, OMIM expanded, dbGap database using the commonly
expressed dysregulated gene sets obtained from co-expression results in depression and
metabolic diseases. Interestingly we identified the three metabolic diseases in the OMIM
disease databases which coincide with the metabolic diseases we selected for the anal-
yses. Moreover, the identified genes were significantly matched with the data found in
these datasets.

Additionally, we investigated five genes, PRDM2, CXCL1, PHLDA1, DIDO1, CDA,
which were commonly expressed in all datasets including depression, obesity, diabetes, and
NASH. In our results, we found that PRDM2 is downregulated in NASH and depression
datasets whereas it is upregulated in diabetes and obesity. On the other hand, except
for obesity, all other datasets showed upregulation of CXCL1. PHLDA1 is upregulated
in all the datasets except obesity. DIDO1 is only upregulated in the NASH dataset, and
lastly, CDA is downregulated in obesity and NASH and upregulated in the other two
datasets. Supplementary Data S5 shows the expression levels of these five commonly
altered genes in each experimental dataset. To validate these commonly expressed DEGs
among our experimental datasets, we compared their expression with other microarray
GEO datasets related to depression in humans to ensure that the expression of these five
genes were significantly related to the onset of depression. The expression level of these
DEGs varied in all datasets related to depression due to the variation in the diverse cellular
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origins and the sample sizes. Our results are also in accordance with previously reported
studies that suggest the same physiological role of these genes regarding depression and
the metabolic diseases which we have obtained from our result. W. Fang et al. suggested
that chromosomal deletion in the RIZ locus in PRDM2 may contribute to hepatocellular
carcinoma which concomitantly can affect the progression of NASH [37,38]. The role of
PRDM2 in high-fat induced obesity has been reported by Xie et al. via AKT transcription
and AKT phosphorylation pathways [39]. Another chemokine ligand, CXCL1, plays a
pivotal role in the pathogenesis of depressive disorder via inflammatory cytokines, as
suggested by Hui et al. and Ślusarczyk et al. [40,41]. The CXCL1 chemokine gradient is
also considered as a key factor to mediate obesity-dependent tumor-growth promotion
according to the study by Zhang et al. [42]. In another study, CXCL1 was identified as
one of the important markers of islets dysfunction and failure in T2DM [43]. CXCL1 is
also elevated in NASH due to neutrophil infiltration [44]. Another important commonly
dysregulated gene in our study, PHLDA1, is responsible for postpartum depression [45].
Loss of PHLDA1 also causes obesity, insulin resistance and NASH, while regulating
lipogenesis, as suggested by Basseri et al. [46]. On the other hand, DIDO1 is associated
with depression by affecting thyroid hormone levels [47]. Lastly, another co-expressed
gene we found in our study was CDA, whose gene deficiency can lead to replicative stress
as suggested by Farnces et al. [48].

It should be noted as a limitation of our study was that our report analyzed publicly
available independent datasets which contain different types of cells and sample sizes.
Consequently, it should also be considered that different cell lines have different expression
values for a specific gene. Hence, this area should be further explored with in vivo and
in vitro analysis for depression-related dysfunction, particularly with the brain region,
which may strengthen the conclusion.

5. Conclusions

In this study, we considered gene expression (GEO) microarray data from depression
and obesity, diabetes, NASH and control datasets to analyze and investigate the genetic
links between depression and its effects on metabolic disorders. We analyzed gene expres-
sion, constructed gene–disease association networks, identified signaling and ontological
pathways, analyzed protein–protein interaction networks, validated our results from the
OMIM disease database, and finally compared the differentially co-expressed genes’ ex-
pression with other GEO datasets. The outcome of our study confirmed that depression
may exert a strong influence on metabolic disorders. Moreover, we identified five potential
DEGs that are co-expressed in all the experimental datasets in depression and metabolic
diseases. We believe our study will be useful for making more accurate disease predictions
and identifying potentially better therapeutic approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11111203/s1, Supplementary Data S1. Upregulated and downregulated DEGs from dataset
GSE58430; Supplementary Data S2. Upregulated and downregulated DEGs from dataset GSE128021;
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Data S5. Expression level of these five commonly altered genes in each experimental dataset.

Author Contributions: Conceptualization, funding acquisition and supervision C.L. and S.C. Writing,
analysis and original draft preparation S.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by grants from the National Natural Science Foundation of China
(92057112 and 31771298 to CL, 31800992 to SYC), the Natural Science Foundation of Jiangsu Province
(BK20180554 to SYC) the Project of State Key Laboratory of Natural Medicines, China Pharmaceutical
University grant number SKLNMZZRC201803, and the “Double First-Class” University Project grant
number CPU2018GY17, CPU2018GY18.

Institutional Review Board Statement: Not applicable.

https://www.mdpi.com/article/10.3390/life11111203/s1
https://www.mdpi.com/article/10.3390/life11111203/s1


Life 2021, 11, 1203 15 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support this study are available within the reference and
its supplementary data files or available from the authors upon request.

Acknowledgments: For this article all kinds of administrative support were received by China
Pharmaceutical University.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

DEGs Differentially Expressed Genes
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DAVID Database for Annotation, Visualization, and Integrated Discovery
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