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Abstract: Mitochondria are the central target of ischemic preconditioning and postconditioning car-
dioprotective strategies, which consist of either the application of brief intermittent ischemia/reperfusion
(I/R) cycles or the administration of pharmacological agents. Such strategies reduce cardiac I/R injury
by activating protective signaling pathways that prevent the exacerbated production of reactive
oxygen/nitrogen species, inhibit opening of mitochondrial permeability transition pore and reduce
apoptosis, maintaining normal mitochondrial function. Cardioprotection also involves the activation
of mitochondrial quality control (MQC) processes, which replace defective mitochondria or eliminate
mitochondrial debris, preserving the structure and function of the network of these organelles,
and consequently ensuring homeostasis and survival of cardiomyocytes. Such processes include
mitochondrial biogenesis, fission, fusion, mitophagy and mitochondrial-controlled cell death. This
review updates recent advances in MQC mechanisms that are activated in the protection conferred
by different cardiac conditioning interventions. Furthermore, the role of extracellular vesicles in
mitochondrial protection and turnover of these organelles will be discussed. It is concluded that
modulation of MQC mechanisms and recognition of mitochondrial targets could provide a potential
and selective therapeutic approach for I/R-induced mitochondrial dysfunction.

Keywords: myocardial infarction; ischemic preconditioning; ischemic postconditioning; cardioprotection;
mitochondrial biogenesis; mitochondrial dynamics; autophagy; mitophagy; apoptosis; exosomes

1. Introduction

Myocardial ischemia/reperfusion (I/R) injury is a clinical condition associated with
myocardial infarction that can cause ventricular arrhythmias, contractile dysfunction and
mortality [1]. Blockage of blood flow to the myocardium (ischemia) deprives cardiomy-
ocytes from oxygen and nutrient supplies necessary to oxidize energetic substrates, inhibit-
ing ATP synthesis by mitochondria and promoting cell death [2]. Paradoxically, crucial
restoration of blood flow (reperfusion) by primary percutaneous coronary intervention or
with thrombolytic drugs aggravates tissue damage due to many pathophysiological mech-
anisms [3], especially as a consequence of the exacerbated generation of reactive oxygen
and nitrogen species (ROS/RNS) that promote a highly oxidative cellular environment,
affecting redox-sensitive cellular components, inducing further cardiomyocyte death and
affecting other types of cells such as fibroblasts, endothelial cells or smooth muscle cells [4].

Mitochondria represent approximately one-third of cardiac mass and are responsible
for cellular energy production via oxidative phosphorylation (OXPHOS) [5]. Additionally,
these organelles exhibit great metabolic flexibility, regulating redox signaling, cytosolic
Ca2+ buffering capacity, immune responses, and programmed cell death, whose dynamic
regulation is essential under physiological conditions and is frequently altered in disease [6].
Mitochondria are very sensitive to low oxygen levels during ischemia, as well as ROS
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generated during reperfusion, which causes loss of mitochondrial function and makes
cardiomyocytes susceptible to the deleterious effects of I/R injury [7].

Therefore, mitochondrial damage and subsequent dysfunction have been charac-
terized as the hallmark of I/R injury and precursors of cell death caused by the irre-
versible opening of a nonspecific pore in the inner mitochondrial membrane (IMM), known
as the mitochondrial permeability transition pore (mPTP) (Figure 1) [8]. Opening of
mPTP leads to the loss of mitochondrial membrane potential (∆Ψm), disruption of OX-
PHOS and the consequent depletion of adenosine triphosphate (ATP), as well as osmotic
shock to the mitochondria, rupture of the outer mitochondrial membrane (OMM) and
cardiomyocyte death [9].

Figure 1. Ischemia/reperfusion-induced mitochondrial dysfunction is characterized by increased
generation of reactive oxygen and nitrogen species (ROS/RNS), oxidative stress, impaired oxidative
phosphorylation (OXPHOS), depolarization of the transmembrane potential, depletion of adenosine
triphosphate (ATP) reserves, mitochondrial Ca2+ overload, activation of the mitochondrial permeabil-
ity transition pore (mPTP) and the release of apoptotic factors. AIF, apoptosis-inducing factor; CI-CIV,
complexes I-IV; CK, creatine kinase; cyt C, cytochrome C; DIABLO, direct inhibitors of apoptosis
(IAP)-binding protein with low pI; HK, Hexokinase; SMAC, second mitochondria-derived activator
of caspase.

Given the relevance of mitochondria against I/R damage and the central role they
play in cell homeostasis, one of the main objectives of cardioprotective strategies should be
to limit or nullify I/R-induced mitochondrial alterations through the activation of quality
control mechanisms to obtain a greater survival of cardiomyocytes, avoid the progressive
decline of surviving myocytes and improve the functionality of the ischemic tissue. Thus,
this review describes the latest findings regarding the mitochondrial quality control (MQC)
mechanisms that are activated by cardiac conditioning strategies: ischemic preconditioning
(IPC) and ischemic postconditioning (iPostC), which activate endogenous mechanisms
that make the myocardium more tolerant against reperfusion injury [10]. Additionally,
extracellular vesicles (EVs) have been shown to contribute to the protection exerted by
these cardioprotective maneuvers [11]. For that reason, we will discuss the relevance of EVs
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and their emergence as critical actors for mitochondrial protection and/or mitochondrial
renewal in response to IPC and iPostC.

2. Protecting the Mitochondria: The Key Target in Myocardial Ischemic Conditioning

IPC and iPostC are two cardioprotective strategies that successfully reduce lethal I/R
injury [12,13]. IPC involves the mechanical application of brief episodes of ischemia and
reperfusion before sustained ischemia, whereas in iPostC these episodes are applied after
sustained ischemia and at the beginning of reperfusion [14]. Additionally, interventions
that mimic myocardial ischemic conditioning have been developed, including the use of
pharmacological agents (pharmacological conditioning) [15], mechanical and intermittent
interruptions in blood flow of a distant organ or tissue (remote ischemic conditioning,
RIC) [16], the periodic application of hypoxic gas mixtures or intermittent high altitude
hypoxia (hypoxic conditioning, HypC) [17,18], among others [19,20].

Several studies in animal models have demonstrated that IPC and iPostC limit cardiac
damage, reduce infarct size and promote recovery of cardiac mechanical function by
modulating pH and decreasing the amount of harmful ROS [21,22]. Both strategies activate
protective signal transduction pathways that converge in mitochondria [13,23], inhibiting
mPTP opening and promoting cardiomyocyte survival [24].

IPC elicits a bi-phasic pattern of cardioprotection. The first phase begins immediately
after the IPC and is extended for 1–2 h (early IPC), while the second phase appears
12–24 h later and lasts for 48–72 h (delayed or late IPC) [21]. In particular, IPC protects the
myocardium by inhibiting mPTP opening and activating mitochondrial ATP-sensitive K+

(mitoKATP) channels [25,26]. Moreover, IPC preserves mitochondrial respiratory function
and promotes mitochondrial hyperpolarization (increased ∆Ψm), which augments ATP
generation and respiratory capacities, improving energy production and counteracting the
loss of ATP induced by anoxia-reoxygenation [27]. Additionally, IPC prevents cytochrome
C release and apoptosis [28], whereas it preserves mitochondrial ultrastructure and reduces
mitochondrial protein oxidation in ex vivo and in vivo models [29]. In vitro studies have
contrasted and provided complementary information to that obtained in animal models.
For example, pharmacologic preconditioning in cardiomyocytes preserves cell viability,
maintains ∆Ψm, ATP synthesis and antioxidant response after hypoxia/reoxygenation
(H/R); conversely, ROS production, Ca2+ overload, cytochrome C release and apoptosis
are inhibited [30–32].

On the other hand, iPostC promotes acidosis and gradual oxygenation, which are nec-
essary to generate ROS signaling and interfere with mPTP formation and opening [22,33].
Notably, the opening of mitochondrial Ca2+-activated K+ (mitoKCa) and mitoKATP channels
was also related to the protective effects of iPostC in rabbit and rat hearts [34,35]. iPostC
preserves mitochondrial ultrastructure and cardioprotection has also been associated with
decreased mitochondrial oxidative stress and increased buffering capacity to overcome
Ca2+ overload and cytochrome C release in rat hearts subjected to I/R [24,36]. Sevoflu-
rane postconditioning (SPostC), a commonly used anesthetic, reproduces all of the above
effects in both ex vivo and in vivo models [12,37–41], and also maintains mitochondrial
morphology and preserves mitochondrial dynamics [42].

Currently, numerous studies are being conducted to understand how IPC and iPostC
promote mitochondrial turnover, which ensures cardiomyocyte homeostasis and sur-
vival [43,44], as will be reviewed below.

3. Mitochondrial Quality Control in Cardioprotection

Cells have developed protective quality control systems in response to different
stresses in order to maintain function [45], including self-regulating processes that detect
damaged or abnormal organelles/macromolecules and the activation of repair or degrada-
tion mechanisms [46]. The number, ultrastructure and location of mitochondria are critical
to satisfy the energetic and metabolic needs of the cell [47]. Therefore, these organelles are
subject to finely regulated MQC mechanisms, which respond to stress stimuli and activate
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a network of pathways that act dynamically to maintain a highly efficient population of
mitochondria [5]. MQC mechanisms include (i) mitochondrial biogenesis, which involves
the expansion of mitochondrial numbers; (ii) mitochondrial dynamics (fusion and fission),
which allows the redistribution and exchange of mitochondrial components among the mi-
tochondrial population; (iii) mitochondrial autophagy (mitophagy), related to the selective
degradation of mitochondria; and (iv) mitochondria-controlled cell death (Figure 2) [48,49].

Figure 2. Mitochondrial quality control (MQC) maintains a highly efficient population of mitochon-
dria and preserves cellular homeostasis through complex molecular machineries and regulatory
proteins. New mitochondria are created through the coordinated expression of genes on both nuclear
and mitochondrial genome to replace dysfunctional mitochondria. Mitochondrial fusion occurs when
the outer and inner mitochondrial membranes of two adjacent mitochondria fuse and share content,
improving mitochondrial function and facilitating communication, while mitochondrial fission splits
a mitochondrion into two daughter mitochondria, leading to cell removal of damaged mitochon-
dria. Mitophagy selectively removes depolarized mitochondria for lysosomal degradation. Finally,
mitochondria-dependent cell death involves interconnected processes that may occur simultaneously
to lead cell death, including necrosis, apoptosis, pyroptosis and necroptosis. A detailed description
of the pathways can be found throughout text. ∆Ψm, mitochondrial membrane potential; Apaf-1,
apoptosis protease-activating factor-1; ATP, adenosine triphosphate; BNIP3, BCL-2/adenovirus E1B
19 kDa protein-interacting protein 3; cyt C, cytochrome C; DIABLO, direct inhibitors of apoptosis
(IAP)-binding protein with low pI; DRP1, dynamin-related protein 1; FIS1, mitochondrial fission
1; LC3, microtubule-associated proteins 1A/1B light chain 3B; MFF, mitochondrial fission factor;
MFN, mitofusin; mPTP, mitochondrial permeability transition pore; mtDNA, mitochondrial DNA;
NIX/BNIP3L, BNIP3-like; NRF, nuclear respiratory factor; OMM, outer mitochondrial membrane;
OPA1, optic atrophy protein; OXPHOS, oxidative phosphorylation; p62, sequestosome 1; PGC-1α,
proliferator-activated receptor gamma coactivator-1alpha; PTEN-induced kinase 1 (PINK1), PTEN-
induced kinase 1; ROS, reactive oxygen species; SMAC, second mitochondria-derived activator of
caspase; TF, transcription factor; TFAM, mitochondrial transcription factor A.
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The imbalance between the processes that govern mitochondrial turnover results in
the accumulation of dysfunctional mitochondria, an aberrant cellular response, and leads
to pathologies, such as acute myocardial infarction and heart failure [50,51]. We refer the
reader to some of the more recent reviews that have focused in depth on the relevance of
MQC in cardiac health and disease [5,52–54].

4. Mitochondrial Biogenesis during Conditioning: It Is Not Too Late to Renew
4.1. Mitochondrial Biogenesis

Mitochondrial biogenesis is a highly regulated process by which new mitochondria are
produced from existing ones, leading to an increase in mitochondrial mass and maintenance
of population turnover and cellular energy [55]. This process requires the coordinated
expression of genes on both the nuclear and mitochondrial genomes, along with the de novo
synthesis of mitochondrial DNA (mtDNA) and lipid components of the membrane [56].

A murine cardiac proteomic study revealed that mitochondria contain about 4906 proteins
located in different mitochondrial compartments [57]. Most of these proteins are encoded
by the nuclear genome and are imported into the mitochondria through multi-subunit
protein complexes, named the translocase of the outer membrane (TOM), and the inner-
membrane translocases (TIM), e.g., TIM23 and TIM22 complexes [58]. Only 13 subunits of
respiratory complexes I, III, IV, and V, along with two ribosomal and 22 transfer RNAs, are
encoded by the circular and double-stranded mtDNA [59].

The nuclear-encoded peroxisome proliferator-activated receptor gamma (PPARγ)
coactivator-1alpha (PGC-1α) is the master regulator of mitochondrial biogenesis [60]. PGC-
1α is activated for its translocation to the nucleus via phosphorylation by AMP-activated
protein kinase (AMPK) or deacetylation mediated by NAD+-dependent protein deacetylase
sirtuin 1 (SIRT1) [61]. In the nucleus, PGC-1α binds and activates different transcription fac-
tors, including the nuclear respiratory factors 1 and 2 (NRF1 and NRF2) [62], the estrogen-
related receptors (ERRs) [63], the forkhead box class-O1 (FOXO1) [64], and PPARγ [65].
In turn, these factors stimulate the transcription of mitochondrial enzymes involved in
OXPHOS, fatty acid β-oxidation, mitochondrial import and export systems, antioxidant
defense and mtDNA synthesis. Some of them are assembled into larger complexes with
proteins encoded by mtDNA within the newly synthesized inner and outer mitochondrial
membranes [66]. Furthermore, NRF1 and NRF2 activate mitochondrial transcription factor
A (TFAM), which is a mtDNA-binding protein essential for genome maintenance and
responsible of mtDNA transcription, replication, repair and packaging [67].

4.2. Regulation of Mitochondrial Biogenesis by Cardiac Conditioning

Impaired mitochondrial biogenesis has been observed in myocardial infarction [68],
cardiac hypertrophy [69], dilated cardiomyopathy [70] and heart failure [71]. In hearts
subjected to I/R, the mtDNA copy number is drastically reduced, together with diminished
p-AMPK, PGC-1α, peroxisome proliferator-activated receptor alpha (PPARα) and TFAM
protein levels [72,73], as well as cytochrome C oxidase subunit 4 (COX4) and TOM70
mRNA levels [74]. Additionally, H/R inhibits the AMPK pathway and downregulates
PGC-1α, NRF1, TFAM, TOM20, TIM23, nuclear factor erythroid 2-related factor 2 (Nrf2)
and sirtuin 3 (SIRT3) levels, in association with altered mitochondrial biogenesis, mitochon-
drial dysfunction, augmented oxidative stress, and apoptosis in cardiomyocytes [75,76].
Similarly, mitochondrial biogenesis is disrupted in cardiac microvascular endothelial cells
after simulated I/R injury [77].

McLeod et al. (2004) reported the first evidence that delayed IPC modulates mitochon-
drial biogenesis after determining the upregulation of NRF1 and PGC-1α in parallel with
the activation of nuclear genes that encode mitochondrial proteins, i.e., succinate dehydro-
genase, cytochrome C oxidase, cytochrome C and adenine nucleotide translocase-1 (ANT1).
This effect was accompanied by preserved activities of the electron-transfer chain and
OXPHOS [27]. A newly described component of the IPC pathway that promotes mitochon-
drial biogenesis is the stress-response protein GJA1-20k, which was increased in both total
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heart lysates and in mitochondria from ex vivo mouse hearts subjected to this conditioning
maneuver [78]. GJA1-20k is an alternatively translated isoform of Connexin 43 (Cx43)
that acts as a Cx43 trafficking chaperone, promotes microtubule-dependent mitochondrial
transport and regulates gap junction formation and mitochondrial function [79,80]. Ad-
ministration of exogenous GJA1-20k via an AAV9 gene delivery system to mouse hearts
also activates transcriptional pathways that promote mitochondrial biogenesis, increasing
mtDNA copy number and enhancing the expression of PGC-1α and cytochrome C oxidase
subunit 2 (COX2) [78]. The GJA1-20k study is gaining relevance as a cardioprotective
target due to its potential to maintain the integrity of the mitochondrial network during
cellular stress.

Surprisingly, the effect of iPostC on the regulation of mitochondrial biogenesis is a
field that has received little attention and needs to be explored. However, some evidence
suggests a positive regulation of iPostC on mitochondrial biogenesis. For example, hy-
poxic postconditioning (Hyp-PostC) improves post-ischemic cardiac function, restores
ATP content, and increases PGC-1α mRNA levels in isolated perfused rat hearts [81].
Another novel cardioprotective strategy in rats called therapeutic hypercapnia, which
consists of the inhalation of 20% CO2 after ischemia, has been used in the rat model of
coronary artery ligation. It mimics iPostC acidosis, ameliorating mitochondrial morpho-
logical damage and dysfunction, along with PGC-1α and TFAM mitochondrial biogenesis
pathway upregulation [73].

Pharmacological conditioning has provided more information on the activation of
biogenesis pathways. In this regard, resveratrol preconditioning, a potent polyphenolic
antioxidant that protects the heart against I/R injury [82], regulates mitochondrial biogen-
esis, increasing PGC-1α activation and regulating upstream signaling pathways such as
SIRT1, nitric oxide (NO), AMPK or p38 mitogen-activated protein kinase (MAPK), among
others [83]. In addition, resveratrol promotes the expression of other genes involved in
mitochondrial biogenesis, such as NRF1, TFAM and COX4 [84,85]. Melatonin, another
molecule with antioxidant properties, promotes mitochondrial biogenesis by activating
the AMPK pathway and inducing PGC-1α, TFAM, TOM20, TIM23, Nrf2 and SIRT3 up-
regulation in cardiomyocytes subjected to H/R. Such activation was related to preserved
mitochondrial function and apoptosis inhibition. Conversely, cardiomyocytes transfected
with PGC-1α siRNA lose the protection induced by melatonin [75]. Thus, it is probable
that antioxidants capable of modulating PGC-1α during cardiac conditioning may have
important implications in the regulation of mitochondrial biogenesis.

On the other hand, preconditioning and postconditioning with the histone deacetylase
(HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA, Vorinostat) protects mouse
hearts and cardiomyocytes against I/R injury. SAHA stimulates mitochondrial biogen-
esis and promotes the elimination of damaged mitochondria, as well as the reduction
in ROS production and mtDNA damage. This compound increased mtDNA levels and
mitochondrial mass by inducing the expression of PGC-1α, an effect that was completely
abolished by knocking down PGC-1α [86]. Similarly, homoisoflavanone sappanone A
applied after ischemia protects rat hearts in an ex vivo reperfusion model and increases
mtDNA copy number and PGC-1α expression [43]. Additionally, SPostC upregulates the
expression levels of PGC-1α and NRF1 in a model of LAD occlusion, as a compensatory
response to I/R-induced mitochondrial dysfunction [12]. Importantly, the cardioprotective
neurotransmitter and pharmacological agent acetylcholine protects H9c2 cells against H/R
injury when cells are treated with this agent at the beginning of reperfusion. Acetylcholine
postconditioning prevents mitochondrial morphologic abnormalities and improves mi-
tochondrial density, mass and function. Moreover, acetylcholine increases mtDNA copy
number, activates the AMPK pathway and stimulates upregulation of genes involved in
mitochondrial biogenesis, such as PGC-1α, NRF and TFAM. Conversely, knockdown of
PGC-1α or AMPK blocks the effects of acetylcholine [87]. The pharmacological use of these
agents to prevent myocardial infarction by maintaining the mitochondrial population is a
goal for future translational research.
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5. Fusion and Fission: Two Dynamic Processes in Constant Equilibrium
5.1. Mitochondrial Dynamics

Mitochondria undergo coordinated cycles of fusion and fission to control their num-
ber, distribution and morphology [88]. These processes are important for mitochondrial
inheritance, cell cycle regulation, maintenance of mitochondrial functions, transmission of
energy status and are also involved in the control of cell quality [89]. Both processes are
governed by complex molecular machinery and are finely tuned by regulatory proteins or
posttranslational modifications [88].

5.1.1. Mitochondrial Fusion

Mitochondrial fusion is regulated by three GTPases of the dynamin-related family:
mitofusins 1 and 2 (MFN1 and MFN2), located in the OMM, catalyze the hydrolysis of
guanosine triphosphate (GTP) to guanosine diphosphate (GDP), and are necessary for the
fusion of the outer membrane with adjacent mitochondria, while the optic atrophy protein
(OPA1), located in the IMM, mediates the fusion of the inner membrane [90]. MFN1 controls
mitochondrial tethering more efficiently than MFN2; however, MFN2 is not only related
to mitochondrion–mitochondrion interactions, but also the juxtaposition of mitochondria
with the endoplasmic reticulum (ER) and other organelles [91]. Membrane tethering is
mediated by the formation of homodimers or heterodimers between two mitofusins in
adjacent mitochondria [92]. This association triggers GTP hydrolysis-induced conforma-
tional changes, which destabilize the lipid bilayer, facilitating mitochondrial docking, lipid
mixing and OMM fusion [93]. On the other hand, OPA1 undergoes constitutive proteolytic
processes in which the balanced ratio between the two resulting isoforms is required to
maintain normal mitochondrial morphology. Both the long N-terminal transmembrane
anchored isoform (L-OPA1) and the short form (S-OPA1) lacking the transmembrane an-
chors interact with cardiolipin. Using an in vitro membrane approach, it was demonstrated
that L-OPA1 binds directly to cardiolipin and GTP hydrolysis drives membrane fusion,
while S-OPA1 forms a bridge between the larger isoform and cardiolipin [94]. Under stress
conditions, mitochondrial depolarization induces total conversion to S-OPA1, inhibiting
fusion and causing mitochondrial fragmentation [95]. Thus, mitochondrial fusion generates
an elongated phenotype that helps to maintain mitochondrial respiration and facilitates
communication and exchange of contents between mitochondrial compartments, which
can buffer transient defects in mitochondrial function [96].

5.1.2. Mitochondrial Fission

This is a process coordinated by the GTPase dynamin-related protein 1 (DRP1), which
is recruited from the cytosol to mitochondrial fission sites on the OMM surface where it
binds to its receptors, i.e., mitochondrial fission factor (MFF), mitochondrial fission 1 (FIS1),
and mitochondrial dynamics protein MID49 and MID51 [97]. Recently, Kalia et al. (2018)
showed that GTP binding to DRP1/MID49/51 induces a conformational rearrangement
that exposes a network of receptor binding sites, initiating the polymerization of cofilaments
that surround the low-curvature mitochondrial tubules. After that, GTP hydrolysis induces
the dissociation of MID49/51 receptors, shortening of the filaments and curling of DRP1
oligomers into constricted and closed rings, which initiate the constriction of the inner and
outer membranes until mitochondrial division is complete [98]. In addition, DRP1-induced
constriction is regulated by the actin-nucleating proteins inverted formin 2 (INF2) and
formin-binding protein spire 1C (SPIRE1C), which mediates actin polymerization and
subsequent myosin recruitment to ER–mitochondria contact sites [99]. Finally, dynamin
2 (DNM2), a large GTPase, is recruited into the neck of DRP1-mediated mitochondrial
constriction where it assembles and terminates membrane scission [88]. Additionally,
Ca2+ influx initiates and potentiates IMM constriction by activating the mitochondrial big-
conductance Ca2+-dependent K+ channel (mitoBKCa) that mediates mitochondrial bulking
and depolarization. Synergistically, the cleavage of L-OPA1 to S-OPA1 and its accumulation
in the intermembrane space is required for the regulation of OMM-IMM tethering. These
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findings suggest that constriction of the internal mitochondrial compartment contributes
to efficient DRP1-mediated mitochondrial division [100]. In this way, mitochondrial fission
creates disconnected mitochondria that are required for cell division and/or removal of
damaged mitochondria through mitophagy during cellular stress conditions [52].

5.2. Regulation of Mitochondrial Dynamics by Cardiac Conditioning

Increasing evidence suggests that alterations in mitochondrial dynamics lead to car-
diac pathologies such as I/R injury [101], hypertrophy [102], heart failure [103], diabetic
cardiomyopathy [104] and cardiorenal syndrome [105]. Fusion and fission activate mor-
phological adaptive responses to stress, but mitochondria particularly undergo extensive
fission and reduced fusion during acute I/R injury, generating fragmented dysfunctional
mitochondria [106]. Mitochondrial fragmentation cleaves the elongated network of mi-
tochondria into small spheres or short rods, promoting mitochondrial swelling and de-
polarization, loss of ATP synthesis, respiratory defects, increased ROS production and
apoptosis, which contributes to cell death in other cell types and leads to tissue dam-
age [101]. In contrast, blocking the fission machinery protects cardiomyocytes from I/R
injury by preventing mitochondrial fragmentation, inducing mitochondrial fusion and au-
tophagy, improving mitochondrial function and decreasing susceptibility to mPTP opening
and cell death in different I/R models [107–109]. In the heart, simultaneous conditional
knockout of both mitofusins results in impaired respiration and abnormal mitochondrial
morphology, along with loss of contractile function [110]. Conversely, overexpression
of mitochondrial fusion proteins MFN1 or MFN2 augments mitochondrial fusion and
protects HL-1 cells against simulated I/R injury [107], whereas hearts deficient in both
MFN1 and MFN2 are also protected against acute myocardial infarction due to impaired
mitochondria/sarcoplasmic reticulum tethering [111]. In addition, DRP1 overexpression
causes mitochondrial fragmentations without cardiac pathology, and very interestingly,
MFN1/MFN2/DRP1 triple-knockout mice survive longer and manifest a unique patho-
logic form of cardiac hypertrophy [112]. In turn, mild overexpression of OPA1 protects
against cardiac and cerebral ischemia [113], while the metalloendopeptidase OMA1 (which
is activated in response to stress and mediates OPA1 proteolytic processing) plays a central
role in mediating ischemia-induced heart failure and cardiac hypertrophy [114]. There-
fore, preserving mitochondrial fusion will be essential in cardioprotection strategies to
counteract the imbalance in mitochondrial dynamics induced by I/R.

In addition, some posttranslational modifications of fusion proteins and their effects
on mitochondrial activity have been reported. For example, PINK1-dependent phosphory-
lation of MFN2 induces translocation of Parkin to OMM upon depolarization, promoting
Parkin-mediated ubiquitination of MFN2 in adult cardiomyocytes [115]. Interestingly, this
modification reduces the number of mitochondria and increases the distance between ER
and mitochondria [116]. Furthermore, in SIRT3 knockout mice, OPA1 hyperacetylation
and mitochondrial fragmentation occur, while its overexpression maintains mitochondrial
network and morphology, protecting from doxorubicin-mediated cell death [117], while
DRP1 activity increases after its phosphorylation at Ser616 and is reduced by phosphory-
lation at Ser637 [109]. In this sense, it has been described that Ca2+ accumulation during
myocardial I/R activates calcineurin, which in turn dephosphorylates DRP1 at Ser637,
preventing mitochondrial translocation of DRP1 and initiating fission [118].

In general, the study of proteins related to mitochondrial dynamics is still scarce
in cardiac conditioning strategies; however, we present the most relevant ones in the
field. For example, IPC has been documented to prevent dissociation of the mitochondria-
hexokinase 2 (HK2) complex that confers cardioprotection [119]. Recently, Pereira et al.
(2020) reported that the release of mitochondria-bound HK2 modulates the binding of
DRP1 and mitochondrial-associated DNM2 protein in mitochondria isolated from ani-
mals subjected to IPC [120]. In rats subjected to remote ischemic preconditioning (RIPC),
preserved mitochondrial morphology was observed due to increased OPA1 [121]. Fur-
thermore, Le Page et al. (2016) reported that the deficiency of this protein in mice is
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associated with increased sensitivity to I/R and an imbalance in dynamic mitochondrial
Ca2+ uptake [122]. Cellier et al. (2016) reported that animals subjected to limb ischemia
interspersed by hind limb RIPC show smaller infarct size and less accumulation of DRP1
in the mitochondrial fraction compared to I/R animals, emphasizing that RIPC inhibits
mitochondrial fragmentation [121].

On the other hand, SPostC increased the expression of MFN2 and OPA1 in association
with the inhibition of mPTP and the maintenance of ∆Ψm [42]. In addition, SPostC inhibits
DRP1 translocation to mitochondria and attenuates cardiac I/R through induction of
the provirus integration site for Moloney murine leukemia virus 1 (PIM-1) kinase that
activates DRP1, thus preventing excessive mitochondrial fission. Likewise, cardiomyocytes
undergoing the same treatment scheme showed enhanced mitochondrial interconnectivity
and elongation in the face of H/R [123]. Interestingly, when the cell is stimulated with high
glucose, Mdivi-1 (DRP1 inhibitor) reverses the negative effects of high glucose through
increased fusion [124]. Furthermore, pharmacological preconditioning with nitrite in H9c2
cells attenuates cell death after hypoxia due to the inhibition of mitochondrial DRP1 by its
phosphorylation through protein kinase A (PKA) [125].

In rats with myocardial I/R injury, preconditioning or postconditioning with the
acetylcholinesterase (AChE) inhibitor donepezil reduced infarct size and cardiac arrhyth-
mia [126]. Donepezil administrated before, during or after ischemia attenuated cardiac
mitochondrial dysfunction and mitochondrial dynamic imbalance by repressing mito-
chondrial fission protein DRP1 and enhancing the expression of mitochondrial fusion
proteins OPA1 and MFN2 [126]. Moreover, preconditioning with penehyclidine hydrochlo-
ride (PHC) protects against acute I/R damage in association with decreased DRP1 and
increased MFN1 and MFN2 expression. However, in the long term, changes in these
proteins did not correlate with the preservation of cardiac function [44]. On the other
hand, treatment with Mdivi-1 before myocardial ischemia results in the lengthening of
interfibrillary mitochondria and a reduction in the size of the infarct, which confirms that
by preventing mitochondrial fission, the induction of mitochondrial fusion is favored,
benefiting the survival of cardiomyocytes [107,127]. On the other hand, the administration
of hydralazine, an agent used in the treatment of hypertension and chronic heart failure,
not only protects the heart from acute I/R through its antioxidants and anti-apoptotic
effects, but if administered at the time of reperfusion, it decreases the size of the infarct by
inhibiting mitochondrial fission [128].

Additionally, pharmacological treatment of rat hearts with the mitochondrial fusion
promoter M1 prior to and during myocardial ischemia, as well as at the onset of reper-
fusion, results in cardioprotection, reestablishing mitochondrial dynamics balance and
enhancing mitochondrial function [101]. On the other hand, melatonin preconditioning
and postconditioning inhibits mitochondrial fission by blocking DRP1 activation and its
translocation from the cytosol to the mitochondria in Langendorff perfused rat hearts [129].
In addition, melatonin pretreatment and postconditioning inhibit mitochondrial fragmen-
tation and reestablish the balance of mitochondrial fission/fusion by downregulating
DRP1, MFF and FIS1, while MFN1, MFN2 are upregulated in a sirtuin 3 (SIRT3)-dependent
manner, or mediated by OPA1 expression in H9c2 cells exposed to anoxia and reoxy-
genation [130,131]. Finally, postconditioning with sappanone A balances mitochondrial
dynamics and enhances mitophagy in an AMPK-dependent manner [43].

Overall, and despite incredible advances in understanding mitochondrial dynamics,
we found limited animal studies linking I/R to the regulation of these important processes.

6. The Double-Edged Sword of Cardiac Conditioning: “Self-Eating”
6.1. Autophagy

Autophagy is a catabolic process mediated by the lysosome-dependent cellular degra-
dation system, which serves to remove non-essential components, excessive or damaged or-
ganelles, protein aggregates and other unwanted cytoplasmic elements, to recycle metabolic
substrates and maintain cellular homeostasis [132]. The autophagic process begins with the
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formation of a crescent-shaped double membrane called the phagophore, which requires
the recruitment of many autophagy-specific proteins to ER [133]. First, AMPK phosphory-
lates Unc-51-like autophagy activating kinase 1 (ULK1), while the serine/threonine-protein
kinase mammalian target of rapamycin (mTOR) inhibits ULK1 activation [134]. Next, the
ULK1 complex produces the nucleation of the phagophore by phosphorylating and activat-
ing the class III phosphatidylinositol 3-kinase (PI3KC3)/VPS34 lipid kinase complex, which
generates domains enriched in phosphatidylinositol 3-phosphate (PI3P), termed omega-
some [135]. These omegasomes function as membrane platforms where the autophagic
machinery is recruited for the manufacture of autophagosomes [136]. The autophagic
machinery encoded by autophagy-related genes (ATG) orchestrates the different steps of
autophagy, leading to phagophore nucleation followed by its expansion [137]. Then, the
pool of PI3P engages WD-repeat domain phosphoinositide-interacting proteins (WIPI),
which recovers ATG9-positive vesicles of membrane origin (plasma membrane, mitochon-
dria, recycling endosomes, or Golgi complex), and promotes its fusion with the phagophore
to initiate lipid transfer for lipidation of ATG8/LC3 (hereafter LC3) [138]. On the other
hand, ATG4B protease cleaves the small ubiquitin-like protein LC3 to LC3-I, which is
translocated to phagophores through the ubiquitin-activating-like enzymes E1 (ATG7), E2
(ATG3) and E3, where it is conjugated to phosphatidylethanolamine to form LC3-II, which
is commonly used as a marker for autophagy [139]. LC3 facilitates engulfment of cargo
in autophagosomes by directly binding to LIR-containing autophagy receptors, such as
p62, also called sequestosome 1 (SQSTM1) [140]. Moreover, the ATG5/ATG12-ATG16L
complex and lipidated LC3 facilitate the elongation of the phagophore membrane, which
engulfs the adaptor-mediated ubiquitinated substrates and eventually closes in on itself
and fuses to form the double-membrane structure called autophagosome [141]. Finally,
the autophagosome fuses with lysosomes to form autolysosomes, whose internal acidic
environment and hydrolytic content promote the disruption of the inner membrane and
the digestion of its contents for reuse by the cell [142].

6.2. Regulation of Autophagy by Cardiac Conditioning

Autophagy may be triggered by energy depletion, osmotic and oxidative stresses,
starvation, hibernation or ischemia [127,143]. In myocardial ischemia, autophagy is acti-
vated through the AMPK pathway to protect the heart from I/R injury and post-ischemia
cardiac remodeling [144]. However, excessive ROS production during reperfusion impairs
autophagy by upregulation of BECLIN-1 and depletion of lysosomal membrane protein
2 (LAMP2) [145]. BECLIN-1 is a core component of the lipid-kinase BECLIN-1-PI3KC3
complex that regulates autophagosome nucleation and maturation [146], while LAMP2
maintains lysosomal stability and promotes autophagic flux [147]. In such an unbalanced
condition, autophagy is not only ineffective, it promotes cardiomyocyte death and increases
cardiac injury [148].

Nowadays, it is clear that autophagy induced by IPC or iPostC is essential for cardio-
protection [149,150]. Of note, IPC upregulates autophagy in the myocardium by enhancing
the expression of the autophagosomal membrane-specific proteins LC3-II, BECLIN-1, and
B-cell lymphoma-2 (BCL-2)-associated athanogene (BAG-1), a multifunctional pro-survival
molecule that binds with BCL-2 and protects cells from apoptosis [151]. Huang et al.
(2010) observed that IPC increases the number of autophagosomes in the risk zone of
preconditioned hearts and upregulates the expression of the autophagy marker p62 in both
the mCherry-LC3 transgenic mice and in the Langendorff model [152], while Velez et al.
(2016) reported that IPC modulates autophagy by increasing the LC3-II/LC3-I ratio and
enhancing the degradation of p62 in autolysosomes, which is related to the maintenance of
the autophagic flux [29].

On the other hand, iPostC attenuates myocardial I/R injury by activating autophagy
via the AMPK/endothelial nitric oxide synthase (eNOS) signaling pathway in murine
models and in H9c2 cells exposed to H/R [153,154]. In particular, iPostC increases the
formation of autophagic vacuoles and triggers the expression of LC3-II, BECLIN-1, LAMP2
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and cathepsin D, while inhibiting the expression of p62 [153,154]. Remarkably, the study
by Gua et al. (2015) revealed that iPostC regulates autophagic activity in a time-dependent
manner; it is increased during the first hours and repressed from 12–24 h following iPostC
in rats subjected to coronary occlusion [155]. The dual effect of iPostC could be used
to propose novel therapeutic interventions that modulate autophagy as a function of
post-reperfusion time.

Other pharmacological approaches have been tested to determine the cardioprotective
role of autophagy. For example, the protection conferred by preconditioning with the
A1 adenosine receptor agonist, 2-chloro-N(6)-cyclopentyl-adenosine (CCPA) [156], sul-
faphenazole [157], is lost in the presence of the dominant-negative inhibitor of autophagy,
Tat-ATG5K130R. In particular, sulfaphenazole preconditioning triggers autophagy through
the activation of protein kinase C delta (PKCδ), and its autophagy-mediated protective
effects are abolished with chelerythrine, a PKC inhibitor [157]. Additionally, simvastatin
preconditioning, a lipid-lowering statin that inhibits 3-hydroxy- 3-methylglutaryl coen-
zyme A (HMG-CoA) reductase, induces autophagy in HL-1 cardiomyocytes and mice
subjected to I/R. This treatment enhanced LC3-II and p62 expression levels and increased
autophagic flux, along with the inhibition of the RAC-alpha serine/threonine-protein
kinase (AKT)/mTOR signaling [158]. Simvastatin treatment is known to prevent the ac-
tivation of AKT, mTOR, ULK and the ribosomal subunit protein S6. On the contrary,
supplementation with mevalonate, the HMG-CoA reductase product, or the knockdown of
ULK1 inhibits, statin-mediated attenuation of AKT/mTOR signaling and blocks autophagy
induction [158]. On the other hand, berbamine postconditioning improves myocardial
performance and cell survival through regulation of autophagy by preventing I/R-induced
impairment of autophagosome processing and recovering autophagic flux in perfused rat
hearts and isolated cardiomyocytes. Mechanistically, berbamine postconditioning reduced
the expression of LC3-II, p62 and BECLIN-1 through activation of the phosphatidylinositol
3-kinase (PI3K)/AKT signaling pathway [150].

Sevoflurane has been widely explored as a cardioprotective molecule and recent
data place it at the forefront of regulatory MQC mechanisms, particularly autophagy and
mitophagy. In this respect, sevoflurane preconditioning (SPC) confers delayed cardiopro-
tection against myocardial infarction in rats and isolated guinea pig hearts. SPC attenuates
the inflammatory response and apoptosis [159–161] and promotes autophagosome forma-
tion, restores impaired autophagic flux and upregulates LC3-II, LAMP2 and cathepsin B
(a lysosomal cysteine peptidase required for autolysosome maturation), while it down-
regulates p62 and BECLIN-1 in rat and guinea pig hearts. Conversely, SPostC reduces
excessive autophagic activation and restores autophagic flux by downregulating PI3KC3
VPS34, reducing the interaction of VPS34 with BECLIN-1 and preventing the formation
of BECLIN-1/VPS34 complex that is required for the induction of PI3KC3 activity and
activation of autophagy [12,37–40]. In contrast, this anesthetic upregulates BCL-2 levels to
promote the formation of the BCL-2/BECLIN-1 complex, which modulates the crosstalk
between autophagy and apoptosis. In addition, SPostC decreases the number of autophagic
vacuoles and promotes clearance of the autophagosome by inhibiting the I/R-induced
elevated expressions of LC3-II/I, BECLIN-1, p62, ATG5 and ATG7, as well as by promoting
lysosomal function through increased expression and activity of cathepsin B [12,37–40]. As
the effects of SPostC on autophagy are blocked by the lysosomotropic agent chloroquine or
the non-specific nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester
(L-NAME), it follows that activation of NOS and the production of NO are indispensable
in the regulation of autophagy by SPostC [37].

Moreover, a recent study demonstrated that the combination of SPostC, micro-RNA
(miR)-206 (miR-206) inhibitor, AMPK activator AICAR suppresses oxidative stress, au-
tophagy and apoptosis in rats with I/R myocardial lesions. The inhibition of miR-206
activates the AMPK pathway, modulates the expression of apoptotic proteins BCL-2 and
BCL-2-associated X protein (BAX) and restrains autophagy. mir-206 together with SPostC
and AICAR decrease the size of myocardial infarction and cardiac muscle fiber disor-
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ders [40]. On the other hand, SPostC prevents H/R-induced apoptosis of cardiomyocytes
by inhibiting autophagy in human-induced pluripotent stem cell-derived cardiomyocytes
by inactivating PI3KC3, which limits the formation of BECLIN-1/PI3KC3 complex that is
essential for autophagosome formation [162], while in a simulated I/R model, SPostC pro-
tects neonatal rat cardiomyocytes by reducing apoptosis and autophagy via the PI3K/AKT
signaling pathway. Finally, SPostC combined with miR-208a inhibitor or the PI3K/AKT
pathway activator improves cardiomyocyte cell viability [163].

7. Mitophagy: The Selective Pathway to Remove Dysfunctional Mitochondria
7.1. Mitophagy

Mitochondrial autophagy, so-called mitophagy, is a key cellular process that selectively
removes damaged mitochondria or unwanted mitochondria for subsequent lysosomal
degradation, limiting ROS production and preventing the spread of damage to neigh-
boring mitochondria and the opening of mPTP [8]. In addition, this process regulates
mitochondrial homeostasis and maintains an appropriate number of healthy organelles in
the mitochondrial pool [164].

Mitophagy activation depends on the processes regulated by: (1) PINK1/Parkin
and (2) BCL-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)/BNIP3-like
(BNIP3L, also called NIX). The first pathway involves dimerization and auto-phosphorylation
of the serine/threonine kinase PINK1 on the OMM upon ∆Ψm disruption [165]. Its activa-
tion promotes the recruitment and phosphorylation of the E3 ubiquitin ligase Parkin, and
subsequent Parkin-mediated ubiquitination of OMM proteins, such as voltage-dependent
anion channel 1 (VDAC1), to form poly-ubiquitin chains that are phosphorylated by
PINK1 [166]. At the same time, Parkin recruits p62 to the poly-ubiquitinated chain to
bridge both proteins with the mitochondrial ubiquitin and the LC3 on the phagophore
to initiate mitophagosome formation [167]. On the other hand, loss of ∆Ψm and ROS
production triggers mitophagy by the BNIP3/NIX pathway [168]. In such conditions,
dimerization of the mitophagy receptors BNIP3 and NIX are essential for the recruitment
of autophagic machinery into the OMM [169], allowing their interaction with LC3 to engulf
damaged mitochondria into mitophagosomes [170]. In addition to BNIP3 and NIX, several
autophagy receptors direct programmed mitochondrial elimination in the OMM, such as
FUN14 domain containing 1 (FUNDC1) [171], optineurin (OPTN), and nuclear dot protein
52 kDa (NDP52) [172], as well as prohibitin 2 (PHB2) found in the inner mitochondrial
membrane, which is required for PINK1/Parkin-induced mitophagy [173,174].

7.2. Regulation of Mitophagy by Cardiac Conditioning

Mitophagy is activated in cardiomyocytes subjected to H/R as a cardioprotective
defense, but it also constitutes a double-edged sword driving cardiomyocytes to cell
death [175,176]. In fact, growing evidence establishes that mitophagy deregulation induces
mitochondrial damage, resulting in mitochondrial genome collapse, electron transport
chain complex inhibition, mitochondrial biogenesis arrest, cardiolipin oxidation, oxidative
stress, mPTP opening, mitochondrial debris accumulation and eventually mitochondrial
apoptosis [8]. In this regard, PINK1 or Parkin overexpression protects cardiomyocytes
against simulated I/R injury by decreasing their susceptibility to mPTP opening [177,178],
while the deficiency of PINK1 or Parkin in knockout models makes hearts more vulnerable
to I/R injury, reducing survival and developing larger infarcts associated with reduced
mitophagy and increment of dysfunctional mitochondria [177,178]. Conversely, BNIP3
activation enhances myocardial I/R injury, promotes mitochondrial fragmentation and
mediates mitochondrial permeabilization favoring apoptosis, but at the same time, it
upregulates mitophagy, promoting the conversion of LC3-I to LC3-II and the accumulation
of autophagosomes containing mitochondria [179,180].

Ma et al. (2012) demonstrated that the stimulation of mitophagy through the forced ex-
pression of transcription factor EB (TFEB), a lysosomal biogenesis factor, increases lysosome
numbers, restores autophagosome processing and attenuates BNIP3-induced cardiomy-
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ocyte death [181]. Additionally, the antiapoptotic dual-specificity protein phosphatase
1 (DUSP1) provides protective effects against I/R injury by preventing mitochondrial
damage and cellular apoptosis via the suppression of the MFF-required mitochondrial
fission and inhibiting excessive BNIP3-related mitophagy through the inactivation of the
c-Jun N-terminal kinase (JNK) pathway. In contrast, DUSP1 ablation contributes to cardiac
dysfunction [182]. Alternatively, overexpression of polo-like kinase 1 (PLK1) alleviates H/R-
induced apoptosis and promotes the expression of mitophagy-related proteins by inducing
the AMPK/FUNDC1 pathway in H9c2 cells, while the inhibition of FUNDC1 abolishes the
protection [183]. On the contrary, mammalian STE20-like kinase 1 (MST1) is upregulated in
response to I/R injury, repressing the MAPK/extracellular signal-regulated kinase (ERK)-
cAMP-response element binding protein (CREB) pathway and consequently inhibiting
cardioprotective FUNDC1-mediated mitophagy. Thus, MST1 reduces the LC3-II expression
and increases the LC3-I content, as a result of faulty mitophagosome synthesis that con-
tributes to cell death, myocardial inflammation and contractile dysfunction in mouse hearts
subjected to LAD occlusion [51]. It has also been described that the MAPK/ERK-CREB
pathway preferentially activates mitophagy in various disease models, such as cerebral
I/R injury [184]. Likewise, MST1 repressed the expression of mitochondrial LC3-II, ATG5,
BECLIN-1, VPS34 and FUNDC1 in cardiomyocytes after H/R stress. Nevertheless, the
genetic ablation of MST1 in mice and cardiomyocytes sustains cardiac function, prevents
mitochondrial dysfunction, ameliorates apoptosis and supports mitophagy, whereas the
knockdown of FUNDC1 blocks mitophagy [51].Additionally, mitochondrial protein WD
repeat-containing protein 26 (WDR26) is induced by both ischemia and hypoxia. Interest-
ingly, WDR26 overexpression protects H9c2 cells by promoting Parkin translocation to
mitochondria and facilitating hypoxia-mediated mitophagy [185].

On the other hand, mitochondrial aldehyde dehydrogenase 2 (ALDH2), a protec-
tive enzyme that metabolizes acetaldehydes, toxic aldehydes and ROS, also regulates
mitophagy by suppressing the activation of the PINK1/Parkin pathway and prevent-
ing oxidative stress in H/R-treated H9c2 cells [186]. Moreover, the glycolytic enzyme
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) regulates the balance between cell
survival by mitophagy and cell death in response to H/R. Inactive GAPDH associates with
mitochondria and promotes the direct uptake of damaged mitochondria into lysosomal-like
structures for elimination. GAPDH activation by PKCδ prevents its association with mito-
chondria, favoring the accumulation of damaged mitochondria and apoptosis. Accordingly,
PKCδ inhibition or GAPDH mutation at its phosphorylation site rescues mitophagy [187].

IPC induces the selective degradation of mitochondria by mitophagy [188]. IPC pro-
motes the translocation of Parkin to depolarized mitochondria in isolated perfused hearts
and in vivo in mice. Moreover, Parkin is essential for IPC-induced p62 recruitment to
mitochondria, since p62 translocation is absent in Parkin knockout mice. What is more,
Parkin protein deficiency eliminates the cardioprotection by IPC, and results in increased
susceptibility to myocardial infarction [178,188]. Interestingly, uncoupling protein 2 (UCP2),
which is an IMM protein involved in uncoupling OXPHOS from ATP synthesis, contributes
to the cardioprotective effects of IPC by enhancing I/R-activated mitophagy [189]. Further-
more, UCP2 overexpression mimicked IPC-induced protection, in association with LC3-II
overexpression and downregulation of p62, TIM23 and TOM20 via the PINK1/Parkin
signaling pathway. As expected, the knockdown of UCP2 nullifies the cardioprotection
and mitophagy induced by IPC [189]. It is predictable that iPostC regulates mitophagy,
but the mechanisms involved are unknown. Some evidence supporting this argument
comes from studies where remote ischemic postconditioning (RIPostC) inhibits the over-
activation of mitophagy [190,191], or those in which Hyp-PostC and RIPostC promote
mitophagy through the PINK1/Parkin pathway [192], providing neuroprotective effects
against ischemia and hypoxia.

Pharmacologic preconditioning with simvastatin confers cardioprotection to I/R
through induction of mitophagy in HL-1 cells and mice hearts with LAD occlusion [158].
In particular, simvastatin inhibits the synthesis of ubiquinone, coenzyme Q (CoQ), which
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is required for transferring electrons from complex I to complex III. In consequence, it
reduces ROS production, impairs OXPHOS, decreases mitochondrial membrane potential,
enhances fission, and triggers the translocation of Parkin and p62 to the mitochondria.
However, simvastatin cardioprotection via Parkin-mediated mitophagy is blocked by the
administration of CoQ [158]. Notably, donepezil pre- and postconditioning improves
autophagic and mitophagic processes by restoring LC3-II, PINK1 and Parkin expression,
which results in reduced apoptosis [126]. Melatonin pretreatment induces mitophagy by
upregulating LC3-II, BECLIN-1, VPS34 and TIM23, as well as promoting the interaction
between LC3-II and mitochondria, as was observed by immunofluorescence [131]. Con-
versely, melatonin postconditioning inhibits excessive mitophagy in H9c2 cells subjected
to anoxia/reoxygenation [130].

On the other hand, triiodothyronine (T3) postconditioning (THPostC) ameliorates
the I/R-induced loss of ∆Ψm and exacerbates cell death in rat hearts and cardiomyocytes
by stimulating mitophagy through the PINK1/Parkin pathway. THPostC increased the
expression of LC3-II, PINK1 and PARKIN and repressed the protein levels of p62, TOM20
and TIM23. That the cardioprotective effects of thyroid hormone depend on mitophagy
regulation was demonstrated by inhibiting autophagy with Mdivi-1 or silencing PINK1 and
Parkin [193]. No less interesting are the results obtained by enhancing the secretion of the
endogenous opioid peptide enkephalin through plasmid vectors in hearts subjected to I/R
injury. It was reported that overexpression of preproenkephalin reduces myocardial I/R
injury in rats, diminishes mitochondrial damages, improves mitochondria ultrastructure
and enhances mitophagy by upregulating PINK1, Parkin and LC3 [194].

Finally, SPostC protects against I/R injury by attenuating mitochondrial fragmenta-
tion and inhibiting the consequent mitophagy through the increment of OPA1 expression
and decreasing DRP1 and Parkin levels. Interestingly, autophagosomes containing mi-
tochondria were observed by transmission electron microscopy in the myocardial tissue
of I/R rats; however, SPostC stimulated autophagic clearance by decreasing the number
of autophagosomes [12]. In contrast, Yang et al. (2019) identified that SPostC promotes
mitophagy through the hypoxia-inducible factor-1 (HIF-1)/BNIP3 signaling pathway to
attenuate H/R injury in H9c2 cardiomyocytes, since the inhibition of HIF-1 or silencing
BNIP3 increase mitochondrial damage, swelling and apoptosis, along with the accumula-
tion of autophagosomes [195].

Conditioning strategies must maintain an adequate balance between the activa-
tion/inhibition of mitophagy to avoid eliminating healthy mitochondria and preventing
energy imbalance, as well as the death of the cardiomyocyte. Therefore, it will be interesting
to evaluate the progression of mitophagy over time in response to myocardial conditioning.

8. Mitochondria-Dependent Cell Death: A Team Work Sacrifice

Cardiomyocyte death during I/R is driven by the mitochondrial-dependent processes
of necrosis, apoptosis, pyroptosis and necroptosis. The molecular entities or signaling
components activated in many of these pathways are intercommunicated and although it is
generally thought that membrane permeabilization characteristic of necrotic death occurs
subsequently to the activation of other types of cell death, it is nowadays recognized that
various cell death types occur simultaneously.

The distinctive features of necrosis, e.g., oxidative stress, Ca2+ overload and conse-
quent mPTP opening contribute to apoptosis through membrane permeabilization and
cytochrome C release in reperfused hearts [196]. For a long time, necrosis has been consid-
ered a passive and unregulated type of cellular death, constituting the major contributor
for cardiomyocyte loss in reperfused myocardium; however, cell suicide programs, col-
lectively defined as regulated cell death pathways, also contribute to cardiac damage and
dysfunction [197]. Among them, apoptosis has been envisioned as a possible target for
therapeutic manipulation, as it is a tightly regulated pathway. However, controversy on its
actual participation in cardiomyocyte cell death during I/R has persisted until now [198].
A clear example of such doubt are the results obtained with the selective inhibitor of
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caspase-3, (S)-(+)-5-(1-(2-methoxymethyl-pyrrolidinyl)sulfonyl)isatin, which diminishes
infarct size and apoptotic cell death in isolated rabbit hearts [199], while other groups
described that the same compound improves cardiac function in rats independently of
the regulation of apoptosis [200,201]. In between, a relatively new emergent route has
been described that shares characteristics of both types of cell death called “programmed
necrosis” or “necroptosis” [202] that could be as relevant as the cellular quality control
processes in which organelles, proteins and lipids are recycled. Necrosis is mainly related to
ischemic damage in cardiomyocytes, whereas apoptosis coexists with necrosis [203], necrop-
tosis, and other mechanisms of cell death during reperfusion in other cardiac cells [204].
Fibroblasts, endothelial cells, and leucocytes outnumber cardiomyocytes in the heart, af-
fecting cardiomyocyte survival and contractile performance [205]. Therefore, apoptosis
and other regulated cell death pathways still can be regarded as possible targets in car-
dioprotection. In this sense, it has been proposed that the modification of redox-sensitive
cysteine residues in members of the caspase family might be considered as a point of
apoptosis regulation [206].

8.1. Necrosis, Apoptosis, Necroptosis and Pyroptosis Mechanisms
8.1.1. Necrosis

This irreversible cell death process is accompanied by loss of cellular membrane
potential, cell swelling, rupture and inflammation. Mitochondrial Ca2+ overload triggers
mPTP opening, which causes extensive dissipation of the proton gradient across the inner
membrane, inhibiting ATP synthesis and producing electron transport chain dysfunction.

mPTP, first described in the 1990s, was depicted to be composed of ANT and some-
times the mitochondrial phosphate carrier (PiC), VDAC and cyclophilin D (CypD) in the
matrix [207]. However, controversy on its molecular composition persists to date. For
example, even for the notion that ANT is capable of forming pores in artificial mem-
branes [208] and that its specific ligands, bongkrekic acid and atractyloside, regulate mPTP
opening [209], knockout/knockdown studies have challenged this assumption, as mi-
tochondria from ANT1/2 double null mouse liver still had mPTP activity [210]. Other
mitochondrial proteins, including some F1-F0 ATPase subunits, have been pointed out
as the pore-forming core of the mPTP as determined from RNA interference-mediated
depletion of the oligomycin sensitivity-conferring protein (OSCP) and isoforms of the
c-subunit of the F0 [211]. However, ANT, PiC and CypD have not been discarded as critical
inducers of Ca2+-induced mPTP opening.

8.1.2. Apoptosis

Mitochondria-driven apoptosis or intrinsic apoptosis is related to the activation
and translocation of the pore-forming proteins BCL-2 antagonist/killer (BAK) and BAX
to the OMM, favoring the release of pro-apoptotic factors, e.g., cytochrome C, second
mitochondria-derived activator of caspase (SMAC)/direct inhibitors of apoptosis (IAP)-
binding protein with low pI (DIABLO), endonucleases, apoptosis inductor factor (AIF) and
OMI/HtrA2 to the cytosol [212]. Cytochrome C is bound to the apoptotic protease activat-
ing factor-1 (Apaf-1) that binds procaspase-9 through their CARD (caspase recruitment
domain) forming the apoptosome, in which the zymogen is autocleavaged to the active
form caspase-9, which finally activates the executioner caspase-3. Once released from
mitochondria, the proteins SMAC/DIABLO and HtrA2/Omi bind to IAPs, eliminating
their suppressive effects on caspase activity and promoting apoptosis [213]. Finally, AIF
is translocated to the nucleus, causing DNA fragmentation and chromatin condensation.
Among the new players in the apoptotic pathway is the novel caspase recruitment domain
protein 9 (CARD9), which inhibits cardiomyocyte apoptosis by interacting with Apaf-1 and
blocks apoptosome formation in conditions of oxidative stress. Additionally, CARD9−/−
mice have increased apoptosis after I/R [214].
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8.1.3. Necroptosis

Necroptosis was defined as a pathway that resembles necrosis and is an alternative
to apoptosis, based on evidence that death receptor activation in the presence of caspase
inhibitors conduce to cell death [215]. Necroptosis has morphological characteristics of
oncosis, with intact nuclei and plasmatic membrane permeabilization. In response to ligand
binding, tumor necrosis factor receptor 1 (TNRF-1) trimerizes and binds to the TNFR1-
associated death domain protein (TRADD) along with other cytosolic proteins, such as the
receptor interaction protein kinase-1 (RIPK1) and proteins that inhibit apoptosis, forming an
assembly called complex I [216]. Complex I, without TNRF-1 but containing caspase-8 and
adaptor Fas-associated death domain (FADD) protein, constitutes complex IIa, which could
drive cell death to apoptosis or to necrosis if caspase-8 is inhibited [217]. Next, RIPK1 binds
and activates the receptor interacting protein kinase-3 (RIPK3) comprising the necrosome,
which in turn phosphorylates the mixed lineage kinase domain-like pseudokinase (MLKL),
leading to downstream signaling events of programmed necrosis [218]. Phosphoglycerate
mutase 5 (PGAM5) is a serine/threonine-protein phosphatase located in the OMM, which
has been thought to be a necroptotic regulatory factor that favors the assembly of RIPK3-
MLKL [219]. The idea that necroptosis is a mechanism related to ROS production [220]
and mitochondrial transition pore activation [221,222] has been maintained since this term
was first used. A discussion of early studies that sustain this hypothesis can be found in
other reviews [223].

More recent evidence has been obtained from mouse microvascular endothelial cells in
which necroptosis linked to RIPK1/RIPK3 activation was partially inhibited by cyclosporin
A (CsA), a well-known inhibitor of mPTP opening [222]. Additionally, in a cardiomy-
ocyte model that mimics animal reperfusion, the contribution of the mitochondrial mPTP
opening rate as an upstream trigger of cellular necroptosis was evaluated, and it was
demonstrated that RIPK3 produces ER stress, Ca2+ overload, xanthine oxidase activation,
ROS production and consequently mPTP opening [224]. The regulatory action of the pro-
tein sarcoendoplasmic reticulum calcium transport ATPase (SERCA) and the mitochondrial
Ca2+ homeostasis on necroptosis has also been evaluated using spermine, a mitochondrial
Ca2+ uniporter agonist in cardiac microvascular endothelial cells subjected to H/R. SERCA
overexpression prevented both RIPK3 and mitochondrial phosphatase PGAM5 upregu-
lation, whereas spermine suppresses this effect, promoting mitochondrial Ca2+ overload
and opening of the mPTP [225]. However, other authors have shown that necroptosis is
not a mitochondrial-dependent pathway and that ROS-dependent opening of the mPTP is
not directly related to cell death [224]. A recent report shows that cardiomyocyte-restricted
ablation of Cops8, an essential subunit of the ubiquitination regulator of necroptosis, causes
increased RIPK1-RIPK3 interaction along with oxidative stress. Nevertheless, ablation of
CypD (the mPTP inhibitory regulator) did not decrease, but rather augmented necrosis
and premature death in Cops8CKO mice, indicating that necroptosis was independent of
mPTP opening [226]. It remains to be answered whether mitochondrial components or
ROS derivatives are executors of the necroptosis program, and to discard whether it is a
problem of a particular cell type or experimental conditions, and such information should
be obtained from more complex systems.

8.1.4. Pyroptosis

This is a pro-inflammatory cell death program activated after the interaction of pro-
teins with damage-associated molecular patterns (DAMPs) that lead to the formation of the
intracellular NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome
complex, which promotes autoproteolytic cleavage and consequent activation of caspase-
1 [227]. This protease activates gasdermin D (GSDMD) that forms plasmatic membrane
pores, cell lysis and the so-called pyroptotic death [228,229]. Following inflammasome acti-
vation, NLRP3 is recruited to mitochondria by its interaction with an OMM adaptor named
mitochondrial anti-viral signaling protein (MAVS) and with cardiolipin [230]. Thereby,
although pyroptosis ultimately causes cell death from creating pores in the plasmatic
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membrane, dysfunctional mitochondria could contribute to the assembly and activation of
the NLRP3 inflammasome through ROS-mediated processes, involving the binding of oxi-
dized mtDNA to NLRP3 and subsequent activation of caspase-1. Such findings have been
reported mainly in immune cells, whereas in cardiac cells and particularly in reperfusion
damage, this issue remains unclear and requires further experimental support. In this sense,
a recent report showed that myocardial infarct size, cardiac function, and mitochondrial
morphology were significantly improved in a rat model of I/R after hydrogen inhalation,
along with diminution of 8-hydroxydeoxyguanosine (8-OHdG), ROS and NLRP3 [231].

8.2. Regulation of Mitochondrial-Dependent Cell Death by Cardiac Conditioning
8.2.1. The Main Target of Reperfusion Damage: The mPTP

The clear relationship between necrotic death in reperfusion damage and the opening
of the mPTP has been envisioned for a long time as a main target in cardioprotection. To
date, due to the recently reported changes in the molecular identity of the pore and the
relatively new discovery of the Ca2+ uniporter structure, which together with ROS are the
main regulators of the opening of this pore, novel inhibitors are currently being tested.

One of the most studied targets in the mPTP is the prolyl isomerase CypD, the mPTP
regulator located in the matrix. CsA is considered a bona fide CypD ligand [232]; in vitro
it inhibits mitochondrial swelling and increases mitochondrial Ca2+ retention capacity,
in vivo it reduces infarct size in preclinical studies, but its translation into clinical trials has
failed [233]. However, this has not been the end of the story, as the post-translational regu-
lation of mPTP by phosphorylation and S-acylation of CsA is receiving special attention.
Preventing CypD phosphorylation at S191 by inhibiting the glycogen synthase kinase-3β
(GSK3β) reduces the translocation and binding of CypD to OSCP, avoiding increased ROS
production, mPTP opening and subsequent cell death at reperfusion [234]. Moreover, it has
been demonstrated that C202 in CypD is S-acylated and that ischemia induces deacylation
and Ca2+ overload. Additionally, this cysteine is S-nitrosylated in IPC [235]; therefore,
when C202 was mutated into C202S, which cannot undergo post-translational modifi-
cations, mice subjected to I/R showed less injury and resistance to mPTP opening and
diminished binding to the ATP synthase, suggesting that a free cysteine is needed to target
CypD to the mPTP [236].

HK2 is also a well-known regulator of mPTP opening. Accordingly, the cell-permeable
cAMP analog 8-Br has recently been shown to protect the heart against regional I/R injury
at the onset of reperfusion by promoting the binding of HK2 to mitochondria and inhibiting
mPTP, as measured by the reduction in Ca2+-induced mitochondria swelling [237]. This
study contrasts with the one reported by Pereira et al. (2020), in which in vitro dissoci-
ation of mt-HK2 from mitochondria has no effect on mPTP opening in postconditioned
hearts [120]. This group concluded that mt-HK2 inhibition of the pore is not directly associ-
ated with HK2 binding and that it could rather be related to the binding of KH-II to the
mitochondrial fission proteins, DRP1 and DRP2. Therefore, the observed changes in cristae
structure and mitochondrial morphology might destabilize contact points in mitochondria
promoting cytochrome C release and sensitizing mPTP to Ca2+ overload. Once the identity
of the mPTP can be fully established, there is no doubt that a huge step would be made to
prevent necrotic death; meanwhile, the search for new CypD inhibitors continues.

8.2.2. Inhibiting the Mitochondrial Apoptotic Program

A hallmark of the mitochondrial apoptotic pathway is cytochrome C release, which
may occur in combination with necrosis due to mitochondrial swelling or after the for-
mation of BAX/BAK pores. Both pharmacological strategies [238] and mechanical ma-
neuvers [239] have shown to diminish apoptotic cell death in correlation with increased
BCL-2/BAX ratios and diminished extramitochondrial cytochrome C levels. The up-
stream regulation of this pathway involves dephosphorylation of VDAC1 through the
PI3K-AKT-GSK3β pathway. Antioxidants [240], α2-adrenergic receptor agonists [241] and
volatile anesthetics have strong cardioprotective effects, which are related to PI3K-AKT
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signaling [242]. Phospho-AKT inactivates GSK3β, reducing VDAC1 phosphorylation,
favoring BAX dissociation from mitochondrial membranes, and inducing VDAC1/HK2
binding, resulting in reduced ROS generation, inhibition of cytochrome C release and
reduced apoptosis. For example, resveratrol preconditioning activates and promotes
the translocation of GSK-3β from the cytosol to mitochondria, where it interacts with
CypD and prevents mPTP opening [243]. Additionally, long-term nutritional precon-
ditioning with resveratrol inhibited VDAC1 expression induced by I/R and attenuated
mitochondria-mediated apoptosis [244].

Crosstalk between apoptotic and mitophagy regulatory elements has been described.
The cellular location where such interactions occur determines whether the fate of the
cells will progress to one or the other process. BNIP3, FUNDC1 and NIX, are expressed
in the OMM, while PARKIN translocates to mitochondria in response to low membrane
potential [245]. Additionally, the mitochondrial anti-apoptotic protein BCL-2 regulates
the autophagic process by interacting with BECLIN-1 at the OMM. Protection against
I/R damage by the phenolic compound Paenol is related not only carried out with its
antioxidant and anti-inflammatory properties, but with increased expression of BCL-
2 and downregulation of BECLIN-1, BAX, LC3, and p62, sustaining the hypothesis of
crosstalk between apoptosis and autophagy [246]. Additionally, it has been shown that
vitamin D, MitoTEMPO or Mdivi-1 treatments reduced COX4 colocalization with LC3
(autophagosomes) in cardiomyocytes subjected to H/R [179].

The role of mitophagy in reperfusion injury is paradoxical, as the opposite to apoptosis
is considered cardioprotective in I/R injury; however, excessive mitochondrial clearance
might also reduce healthy mitochondrial number, unbalancing cellular energy production
and promoting ROS production and cardiac damage.

8.2.3. Controlling Necroptosis and Pyroptosis

In 2005, Degterev et al. described a potent and selective necroptosis inhibitor named
necrostatin-1 (Nec-1) that targets RIPK1 and stabilizes its inactive conformation [215]; very
soon after, this and other groups confirmed the cardioprotective effect of the tryptophan-
based small molecule in several models of myocardial I/R damage [247]. Nec-1 also
inhibits MLKL recruitment into the necroptosome, reduces RIPK3 and PGAM5, decreases
mitochondrial fission and maintains ∆Ψm [248]. The excitement around Nec-1 has been
hampered by reports showing that intracoronary injection of the compound produced a
positive inotropic effect, but did not reduced infarct size [249] and also that at certain doses
it produces cardiotoxicity [250].

The RIPK3–MLKL axis is fundamental for the execution of necroptosis in the plasma
membrane and, consequently, is a plausible target in cardioprotection. However, its
role in mitochondria is not that clear and has become a controversial issue. It has been
reported that neither the canonical RIPK3–MLKL pathway nor the proposed non-canonical
molecular axis, PGAM5–DRP1 and JNK–BNIP3, are activated in an ex vivo model of
reperfusion damage. Even then, RIPK3 inhibition with GSK’872 or HS-1371 prevented
plasma membrane rupture and delayed mPTP opening; the association found with this
effect was an increase in manganese superoxide dismutase (MnSOD) expression, suggesting
that RIPK3 modulates oxidative stress [251]. On the other hand, SPostC has been shown to
reduce RIPK1/RIPK3/MLKL-mediated necroptosis, increase RIPK3 O-GlcNAcylation and
diminish necroptosis both in an in vivo model and in isolated hearts subjected to I/R [252].

There are scarce data on cardioprotective strategies directed to regulate pyroptosis
during reperfusion damage. FK866, a nicotinamide phosphoribosyltransferase inhibitor,
which binds to Toll-like receptor 4 (TLR4) and activates the inflammasome [253], was evalu-
ated to determine its efficacy against brain reperfusion damage in rats subjected to cardiac
arrest/cardiopulmonary resuscitation. FK866 inhibited the activation of NLRP3, downregu-
lated the expression of NLRP3, interleukin-1 beta (IL-1β), GSDMD and p-DRP1, improving
mitochondrial morphology [254]. More recently, it has been reported that hydrogen gas
inhalation after 24 h after reperfusion in an in vivo rat model inhibits oxidative stress
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and decreases NLRP3 expression [231]. There are no experimental reports that attempt to
inhibit the association of oxidized mtDNA with the inflammasome in order to demonstrate
mitochondrial participation in the pyroptotic pathway; however, indirect evidence exists,
as such interactions activate downstream caspase-1, placing it at a critical point of regu-
lation. A recent example is the utilization of the compound VX-765 that reduced infarct
size, lactate dehydrogenase release and preserved mitochondrial complex I activity [254], a
response mainly driven by fibroblasts that express the inflammasome-caspase-1 axis [255].

To date, the extent to which these pathways actually contribute to myocardial death
during reperfusion damage has not been fully determined. What is clear is that necroptosis
and apoptosis, activated by different stimuli, are cell death pathways specifically dependent
on mitochondria.

9. The Role of EVs in Cardiac Conditioning and MQC Mechanisms
9.1. EVs: Microvesicles, Exosomes and Apoptotic Bodies

EVs, including microvesicles, exosomes and apoptotic bodies, are lipid membrane-
enclosed vesicular structures secreted by cells into the extracellular space under cellu-
lar activation or stress, which are present in biological fluids, such as blood, urine and
saliva [256]. Microvesicles are ∼100–1000 nm in diameter and are formed directly from the
outward budding of the plasma membrane [257]; exosomes are formed by the endosomal
route and are the smallest of the vesicles, measuring ∼30–150 nm [258], whereas apoptotic
bodies range from 100–5000 nm and are produced from cells undergoing apoptosis [259].
EVs act as biological carriers and mediators of intercellular communications by delivering
their content and surface proteins to different types of cells [260]. In this manner, uptake
of EVs can modulate the function and phenotype of target cells [261]. These vesicles
carry a variety of cargo, including RNAs, genomic DNA, proteins, free fatty acids and
lipids [262]. Interestingly, exosomes, regardless of their small size, can incorporate intact
mitochondria [263] and deliver cardiolipin, mtDNA and some mitochondrial proteins [264].

Circulating EVs have been related to cardiovascular diseases as well as with cardiac
protection [265,266], constituting potential diagnostic biomarkers. Therefore, EVs have
drawn attention in recent years to establish novel strategies to prevent heart damage after
myocardial infarction.

9.2. Exosomes-Delivery to Protect Heart against Reperfusion Injury

Plasma exosomes isolated from the blood of rats and humans promote cardiopro-
tection in different experimental models of I/R injury [267]. For example, HL-1 cells
pretreated with rat exosomes and exposed to H/R showed resistance to mitochondrial
depolarization and cell death. Similar results were obtained in ex vivo and in vivo models,
in which the infusion of plasma exosomes decreased infarct size following I/R. It has been
demonstrated that heat shock protein 70 (HSP70) located on the exosome surface mediates
cardioprotection by activating pro-survival signaling pathways, including TLR4, ERK1/2
and p38 MAPK, which phosphorylate HSP27. They confirmed that neutralization of HSP70
or TLR4 and kinases inhibition avoids cardiac protection [267]. Remarkably, HSP70 is a
key component of mitochondrial import, translocation and protein folding [268], which are
essential functions for mitochondrial biogenesis.

Mesenchymal stem cells (MSCs) are multipotent stromal cells that can differentiate into
a variety of cell types, improving ischemic heart function due to their potent regenerative
effects [269]. MSCs can differentiate into cardiomyocytes, endothelial cells, pericytes,
and vascular smooth muscle cells, restoring the damaged myocardium [270]. Specifically,
MSCs-derived exosomes have been suggested to act as cell-free vectors that show low
immunogenicity, high biocompatibility and are capable of conferring cardioprotection
and promoting revascularization and regeneration in target cardiac cells, contributing to
survival and a reduction in myocardial fibrosis [271,272]. Bone marrow-MSCs-derived
exosomes overexpressing the proinflammatory cytokine macrophage migration inhibitory
factor (MIF) restored cardiac function, and reduced heart remodeling, mitochondrial
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fragmentation, ROS generation and apoptosis in a rat model of myocardial injury [273].
Experimental studies of myocardial infarction have described that after IPC application,
MSCs can excrete miR-22-enriched exosomes, which are transferred to cardiomyocytes,
reducing myocardial apoptosis [274], and additionally, such particles prevent mitochondrial
fission through AMPK signaling [273]. Another interesting piece of information found in
the scientific literature revealed that MSCs-derived EVs protect kidneys from I/R injury by
restoring mitochondrial dynamic balance, inhibiting fission and reducing apoptosis [275].

A recent study in vitro determined that miR-210 loaded on endothelial progenitor
cells (EPCs)-derived exosomes protects endothelial cells from H/R damage [276]. In partic-
ular, miR-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating
BNIP3 [277]; therefore, EPCs exosomes overexpressing miR-210 attenuate angiogenic dys-
function, decrease apoptosis and mitochondrial fragmentation, increase ∆Ψm and ATP
levels, as well as regulate mitochondrial dynamics [276]. Additionally, exosomes from
adipose-derived stromal cells (ADSCs) enriched with miR-93-5p attenuate inflammation,
preventing cardiac injury caused by myocardial infarction [278]. miRNAs contained in
ADSCs-derived exosomes promote angiogenesis and decrease apoptosis, inflammation,
and fibrosis after an ischemic insult [279], while miR-146a-containing exosomes alleviated
fibrosis, inflammation, and apoptosis after myocardial ischemia by downregulating the
transcription factor early growth response factor 1 (EGR1) [280]. At this point, it is worth
mentioning that a single injection of small EVs of energetically stressed adipocytes limits
cardiac I/R injury in mice, introducing oxidatively damaged mitochondria, which enter
circulation and are taken up by cardiomyocytes, inducing a burst of ROS in cardiac tis-
sue. This pro-oxidant signal resembles IPC conditions that promote protection against
oxidative stress [281].

On the other hand, cardiosphere-derived cells (CDCs) possess cardiac regenerative
properties and improve function in the infarcted rat heart [282]. Remarkably, CDCs-secreted
exosomes delivered to infarcted pig hearts reduce scarring, attenuate adverse remodeling,
and improve function after myocardial infarction [283]. Furthermore, CDCs-derived exo-
somes increase cardiomyocyte survival by preventing hypoxia-induced apoptosis [284].
These reports highlight the relevance of exosomes as potential cardioprotective agents.
However, the clinical application of stem cell-derived exosomes must overcome technical
challenges, such as the mode of delivery and a detailed content characterization [265]. In
addition, the fact that EVs diminish atherosclerosis [285] and consequently lower the prob-
ability of myocardial infarction constitutes an exciting therapeutic possibility. Additionally,
EVs per se can induce protective responses as their loaded cargo could induce survival
signals and prevent mitochondrial dysfunction, triggering a conditioning-like response.

9.3. Pre- and Postconditioning and EVs in Cardiac Protection

IPC and iPostC strategies regulate miRs related to cardiac conduction. A reduction
in miR-1, miR-208, and miR-328 levels in iPostC animals has been reported, explaining
at least in part the antiarrhythmic effect of this maneuver [286]. On the other hand,
human umbilical vein endothelial cells (HUVEC) subjected to IPC release exosomes to
protect cardiomyocytes against H/R via the ERK1/2 signaling pathway, thus preventing
cell death [11,287]. Of note, ERK1/2 activation is associated with the inhibition of mPTP
opening and maintenance of mitochondrial function during reperfusion [288]. Furthermore,
intramyocardial injection immediately after coronary occlusion of serum exosomes from
rats that underwent cardiac IPC into infarcted naïve rat hearts induced cardiac protection
and limited the infarct size by decreasing inflammation and apoptosis via the activation of
the BCL-2 and PI3K/AKT pathway, along with downregulation of caspase-3 and BAX [289].
Similarly, IPC microvesicles were collected and applied via the femoral vein to naïve rats
subjected to coronary occlusion. IPC microvesicles decreased infarct size, improved cardiac
function, reduced apoptosis and inhibited ER stress. Mechanistically, IPC microvesicles
upregulate BCL-2, inhibit cleavage of caspase-3, as well as downregulate BAX and the ER
stress sensors, glucose regulatory protein 78 (GRP78), C/EBP homologous protein (CHOP)
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and caspase-12 [290,291]. In this regard, it is well recognized the role of BCL-2/BAX
ratio and caspase-3 in the intrinsic apoptosis pathway, whereas BCL-2 is also involved in
mitochondrial dynamics [292].

Long non-coding RNA (lncRNA) contained in exosomes also participates in cardiopro-
tection. For example, the urothelial carcinoma-associated 1 (lncRNA-UCA1) was detected
in exosomes obtained after applying HypC in human MSCs (HypC-MSCs). Such exo-
somes were delivered into infarcted rat hearts, conferring cardioprotection and predictably,
lncRNA-UCA1 has been pointed out as a key protective mediator and biomarker in heart
diseases [293]. In another study, exosomes enriched with miR-125b also obtained from
HypC-MSCs triggered heart protection in a mouse model of myocardial infarction [294],
whereas exosomes/microvesicles from cardiac fibroblasts exerted protection in cardiomy-
ocytes subjected to H/R. Hyp-PostC enhanced protection via miR-423-3p upregulation in
the vesicles [295].

Mitochondrial dysfunction is tightly associated with myocardial reperfusion injury.
Up to now, we have found data that EVs are implicated indirectly in the maintenance of
mitochondrial function and MQC mechanisms in hearts following myocardial infarction.
Intercellular communication provided by EVs could allow proper signaling to prevent
mitochondrial dysfunction for cardiac healing after myocardial infarction. However, there
is still a need to study the role of mitochondria in the delivery of cardiac EVs in condi-
tioning strategies. In this regard, a recent study showed that intramyocardial injection of
mitochondria-enriched EVs after myocardial infarction was able to improve heart function
in mice, suggesting that mitochondrial transfer or bioenergetic cargo can contribute to
maintain the endogenous mitochondrial network and contribute to alleviate heart damage
in a conditioning-like effect [263].

9.4. Remote Conditioning and EVs in Cardiac Protection

RIC-derived EVs are also a promising therapeutic strategy to improve cardiac cell
remodeling and function after myocardial infarction. In this respect, Jeanneteau et al.
(2012) suggested that “circulating microparticles” link RIC and cardioprotection [296].
Previously, Giricz et al. (2014) suggested that EVs released from the heart after IPC were
necessary to transfer RIPC cardioprotective signaling [297]. Later, exosomes isolated from
RIC rats were shown to promote cardiac cell remodeling and angiogenesis following artery
occlusion by targeting HSP70. This finding supports the results obtained by RIPC and
RIPostC on cardiac function after myocardial infarction and confirms the importance of
vesicular transfer mechanisms in remote cardioprotection [298]. In addition, RIC-derived
EVs from human plasma transferred cardioprotection and reduced infarct size when
EVs were perfused in rat hearts subjected to I/R injury ex vivo. These benefits were
associated with the upregulation of miRNAs that target the mTOR pathway, including
miR-16-5p, miR-144-3p and miR-451a [299]. Additionally, RIC-derived EVs from serum
of patients under isoflurane anesthesia protected H9c2 cardiomyoblasts against hypoxia-
evoked apoptosis [300].

Likewise, RIC application in a rat model inhibits cardiac dysfunction, oxidative stress,
and maladaptive remodeling through exosome-transmitting signals that included the an-
tifibrotic factor miR-29, contributing to heart failure prevention [301]. Conversely, RIPC
upregulates miR-144 in the mouse myocardium and increases miR-144 levels in plasma ex-
osomes of mice and humans, protecting the heart and augmenting cardiomyocyte survival
in response to I/R injury by activating AKT, GSK3β, and ERK1/2 signaling, as well as
decreasing mTOR level and autophagy [302]. Although these data do not have direct effects
on mitochondria, they certainly have indirect implications. For instance, miR-144 overex-
pression stimulated mitochondrial biogenesis via AMPK activation and deacetylation of
PGC-1α to finally attenuate apoptosis, protecting the heart from hyperglycemia-induced
injury [303]. In addition, the elevated expression of the anti-apoptotic miR-24 was iden-
tified in plasma exosomes from rats subjected to RIPC. More important, RIPC exosomes
transport miR-24 to protect naïve rat hearts and H9c2 cardiomyocytes from myocardial I/R
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injury, decreasing myocardial apoptosis by downregulating the expression of pro-apoptotic
protein BIM [304]. On the other hand, transfusion of platelet-derived microvesicles from
rats that underwent RIPC to open chest-operated rats undergoing I/R, attenuates heart
infarction and improves cardiac function [305].

10. Conclusions and Future Directions

Cardioprotective strategies effectively modulate MQC mechanisms and counteract
alterations caused by I/R injury. Pre- and postconditioning strategies positively regulate
mitochondrial biogenesis by activating AMPK and inducing PGC-1α upregulation, leading
to the replacement of damaged mitochondria. Moreover, both strategies reestablish the
balance in mitochondrial dynamics by positively regulating fusion through the activation
of OPA1 and MFN2, whereas they negatively regulate fission by inhibiting DRP1, prevent-
ing mitochondrial fragmentation. Autophagy and mitophagy are triggered by pre- and
postconditioning strategies. In particular, mitophagy is activated via the PINK1/Parkin
pathway to eliminate depolarized mitochondria. Nonetheless, postconditioning also in-
hibits excessive autophagy and mitophagy in order to prevent cell death. Consequently,
both strategies negatively regulate mitochondria-dependent cell death (Figure 3). Despite
the growing interest in MQC mechanisms, the role of IPC and IPostC in the regulation
of mitochondrial biogenesis, dynamics, mitophagy, necroptosis and pyroptosis remains
poorly understood and requires more exploration. Finally, the modulation of MQC mecha-
nisms and the recognition of potential mitochondrial targets that are susceptible to being
regulated by conditioning strategies could provide potential and selective therapeutic
approaches for I/R-induced mitochondrial dysfunction.

On the other hand, it is increasingly evident that EVs play a key role in cardiac
conditioning. EVs protect the heart against I/R injury by transferring cardioprotective
molecules to cardiomyocytes. However, few data correlate EV delivery with cardiac MQC
mechanisms and mitochondrial protection; therefore, it will be relevant to delve into this
topic. In association, mitochondria-derived vesicles (MDVs) have emerged as another
means of interorganellar communication and their relationship to cardiac MQC processes
has only recently been revealed [306]. Although limited, the evidence indicates that MDVs
could constitute a defense mechanism against cardiac damage, making it mandatory to
propose new research which recognizes their relevance for cardioprotection during I/R
injury and their potential modulation by conditioning strategies.

Additionally, a quite new mechanism of intermitochondrial communication has been
described, which involves the formation of specialized double-membrane protrusions,
termed mitochondrial nanotunnels; moreover, it was suggested that such structures pro-
vide a means of matrix content exchange and functional complementation similar to that
achieved by mitochondrial fusion [307]. However, the role of mitochondrial nanotunnels
in MQC has not been explored in depth, much less its involvement in cardioprotection;
therefore, it will be crucial to analyze these mechanisms in future studies.

On the other hand, mitochondrial transfer from cell to cell through EVs, Cx43 gap
junctions or tunneling nanotubes can provide a mitochondrial source for replenishing
dysfunctional mitochondria [308], and it should be included as a prospective MQC mech-
anism. Further studies are required to identify whether cardioprotective strategies can
trigger the transfer of mitochondrial content between cells of cardiac tissue in response to
myocardial infarction.
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Figure 3. Myocardial conditioning regulates mitochondrial quality control (MQC) processes disturbed by is-
chemia/reperfusion (I/R) injury. In general, myocardial preconditioning (PreC) strategies promote mitochondrial biogenesis,
fusion and mitophagy, while inhibiting fission and mitochondria-controlled cell death. On the other hand, myocardial
postconditioning (PostC) strategies induce mitochondrial biogenesis and fusion; while attenuate fission, mitophagy and
mitochondria-controlled cell death. TFAM, mitochondrial transcription factor A; mPTP, mitochondrial permeability transi-
tion pore.
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