Supplementary materials

Calculation of the energy deposition by ion tracks outside the
target

Ianik Plante, Floriane Poignant and Tony Slaba

1. The amorphous track model
Many amorphous track models assume that the radial dose has a 1/r2 dependency in the penumbra region (Elsdsser et

al. N. J. Phys. 10, 075005). For example, the dose used in the Local Effect Model (LEM) is
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where X is a normalization constant, equal to,
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B T[p[l + 210g (Tmax/rmin)].

Furthermore, 7,,,;;, = 0.0003 um. The maximum radius 7,4, is determined by the electrons with the highest energy. It

A

is given as T4, = 0.062 X EX7, where 7,4, is in um, and E is the energy in MeV/n. The density p =1 g/cm3 = 1015
kg/um3. Since the distances are given in um, and the LET is usually given in units of keV/um, the energy should be
converted to J to get the dose in Gy. Therefore, the calculated result should be multiplied by frey ;=
1,000 x 1.6 x 10719 = 1.6 x 10716 (J/keV).

To ensure that the dose is properly calculated, the LEM track model was compared to the radial dose for a carbon ion,
290 MeV/n, calculated by RITRACKS. Results are shown in Figure 7a of the main article.

2. Calculation of the energy deposited in the sphere by one track
We would like to calculate the energy deposited in a spherical volume entirely located in the penumbra. This is

illustrated in Figure Supp.1.
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Figure S1. 3D view of an ion track and a spherical target.

The center of the track is located at (x, ¥,), outside the sphere, and assumed to be parallel to the Z axis. R is the target

radius. For any point (x,y,z) in the target, we have,

1 2w R /R2-r2
D = —f f f (x,y,2) rdzdrdd,
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R2-r2
where f(x,y,z) isthe dose at point (x,y,z). In the case of a radial dose and assuming the track is oriented along the Z
axis, for any coordinate z we have,
Dy
(x = x0)? + (y — y0)*
with Dy = ALET in the LEM framework. As illustrated in Figure Supp.2, d is the distance between the track of

D,
f(x;y,Z) =f(d) =d—2=

coordinates (xo,yo) in the plan XY and the point (x,y). R, = VR? — z2 is the radius of the target in the given plane.
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Figure S2. View of the plan XY of an ion track and a spherical target.

Using cylindrical coordinates x = rcos6, y = rsinf, x, = rycos8y, y, = 1y5infy, we get
Dy
(rcosf — 1yc0s0,)? + (rsind — rysinfy)?

fl,y,z) =

which simplifies to
Dy
T2+ 12 — 2r15c0s (6 — 0,

fl,y,z) =

Since the problem is symmetric, we chose 6, = 0 to further simplify. Hence, the integral to evaluate is

2m JRZ =12 D,
D = r dzdrd6 .
PRETE Y ohere f f f\/ﬁr + 1 — 2rrycosf

Integrating over z, we find,
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Using the Mathematica© software, we have:

fZ" do _2m
o T2 +72—2rrycos® rE—r1?

Therefore,

D sphere —

41D, er VR2 —r2 d
= r.
Vsphere 0 roz —r?

This can also be integrated analytically:

A\ 4
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4nD, . (R
Dsphere = —Vsphe‘re {R - \/roz — R%sin™?! (a)}

Replacing Viypere = 4mR3/3 and D, = ALET, we have,

3 X freyoy ALET o (R
Dsphere(G}’) = e;:.;] {R - roz — R%sin™! (T_)}’
0

where 1, and R arein um, LET is in keV/um, 2 isin pm¥kg, and fyey -, ; = 1.6 X 1071 J/keV. Or equivalently

~ 3 X freyoy LET \/—2 . (R
Dspnere(6Y) = R5r s 2log (rpafrme] LT N0 RS &)

Calculations of the dose to sphere as a function of the impact parameters comparing the results of stochastic track

calculations by RITRACKS and the last equation are shown in Figure 7b of the main article.

3. Calculation of dose to the target from a uniform track field

Now that the contribution of one track has been calculated, we assume that the radiation tracks are uniformly
distributed around the target.
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Figure S3. Dose to target by multiple tracks.

We now need to calculate the contribution of all tracks surrounding the target. Assuming a fluence of tracks ¢, the
number of tracks between 1, and 1, + dry (with ry > R) is (Figure Supp.3):

[m(ry + dry)? — mrélp = Pp2nrydry.
The dose deposited by tracks between 7, and 1, + drp (in Gy) is the number of tracks multiplied by the dose per track,

that is:
4D, 5 .4 (R
¢27T7'0dr0Dsphere (ro) = (l)ZT[’I"OdTO R — TO — stln_l <_) .
Vsphere To

To calculate the contribution from tracks up to 7,, where R < 1y, < 73,44, We integrate the latter:

m ¢8m2D, [Tm ] R
Ding = f $2110Dgppere (ro)dry = —f TR — |1¢ — R2sin™?! (—) dry,.

R Vsphere R To

Using the Mathematica© software, we obtained an analytical result,
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{R(r,?l — R?) + R®log(n,,/R) — (12 — RZ)%sin_1 (;)}

Dipng =
3Vsphere m

Let now consider the factor before the parenthesis. By the LEM,
Do(Gy) = AGum? [kg) LET (keV /um) frey—; (J/keV).
Besides, the dose D(Gy) is related to the fluence and LET as follows:

¢(um2)LET (keV /um)f oy, (J/keV)
p(kg/um3) '

D(Gy) =

So that ¢D, = D(Gy) A(um3/kg) p(kg/um?). Therefore,
8n’¢pD,  8m’¢pD,  2mPpDy 2m D pl

3Viphere 3(4/3mR3)  R3 ~  R3
So we get the final result
Ding = %{R(nﬁ —R?) + R3log(r,/R) — (2 — RZ)%sin‘1 (%)}
Or, using the definition of A:
2D

D; =
nd = Rs [1 + 2log (Tnax/Tmin)]

{R(r,?l —R?) + R®log(r;,/R) — (12 — Rz)%sin‘1 <r£)}

Figure 7c of the main article shows comparison with the simulation results. One can note that the contribution is

proportional to the dose D, but not to the LET of the tracks.



