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S1 Notation

Let N (µ, σ) denote a normal distribution with mean µ and standard devi-
ation σ. We say that X follows a folded-normal distribution, denoted by
N+(µ, σ), if X = |Y | and Y ∼ N (µ, σ). Let Unif(a, b) denote a continuous
uniform distribution on [a, b], let Γ(µ, ξ) denote a gamma distribution with
mean µ and coefficient of variation ξ, and let Exp(λ) be the exponential dis-

tribution with mean 1/λ. Using NegBin(µ, µ + µ2

φ
) we denote the negative

binomial distribution with mean µ and variance µ + µ2

φ
. If h is the density

of a positive random variable, then {hs}∞s=1 denotes its discretization via

h1 =

∫ 1.5

0

h(t)dt, hs =

∫ s+0.5

s−0.5
h(t)dt for s = 2, 3, . . . (1)

S2 Modeling infections

In this section, we fill in the details for the part of the model used for modeling
infections which is presented in the paper.

Recall that

ct,m = Rt,m

t−1∑
k=0

ck,mgt−k. (2)
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Generation interval distribution g is distributed as g ∼ Γ(µG, ξG). We use as
in Flaxman et al. [1] and Manevski et al. [2] µG = 6.5 and ξG = 0.62 (see also
Figure S1 for graphical presentation). Furthermore, gs is the discretization
of g via (1).

Figure S1: Assumed generation interval distribution (g - upper left) and
assumed distributions of various times πX (see Section S3) used in the model;
note different scales.
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Recall that we model the reproduction number as

Rt,m =

(
1−

∑t−1
k=1 ck,m
Nm

)
R0,m

[
2f

(
−

3∑
k=1

βkzk,t,m

)
exp

(
L∑
l=1

αl,msk,t,m

)
exp (γmIt,m)

]
.

(3)
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The basic reproduction number R0,m has a prior distribution (as in [1] and
[2])

R0,m ∼ N+(3.28, 0.25). (4)

Note that the term 2f in (3) ensures that the multiplicative effect of the
mobility on the basic reproduction number R0,m is between 0 and 2, where 1
represents no effect. We assume that the effects of interest when modelling
Rt,m are independent with prior distributions

βk ∼ N (0, 0.5), k = 1, 2, 3,

γm ∼ N (0, 0.5), m = 1, 2.
(5)

On the other hand, all αl,m have a prior distribution with a common hyper-
parameter κ:

αl,m ∼ N (0, κ), l = 1, . . . , L, m = 1, 2,

κ ∼ N+(0, 0.5).
(6)

As in [1] and [2], we assume that seeding of new infections begins 30 days
before observing 10 cumulative deaths. From this date, we seed the models
with six sequential days c1,m, . . . , c6,m where we chose

c1,m = · · · = c6,m ∼ Exp(1/ν), ν ∼ Exp(0.03). (7)

S3 Modeling disease progression

Here we thoroughly present the part of the model for disease progression,
which was only intuitively summarised in the paper. We used the same
techniques as in [2], but we adapted them for modeling two waves where
some parameters are wave specific and others are not.

The number of confirmed cases is modeled via

Pt,m ∼ NegBin

(
pt,m, pt,m +

p2t,m
φP

)
, (8)

where pt is the expected number of confirmed cases that is modeled mecha-
nistically from cases ct as

pt,m = τP∗,m

t−1∑
k=1

ck,mπ
P
t−k. (9)
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Parameter φP is common throughout all times and both waves, it de-
termines the amount of over-dispersion (i.e. the additional variance of the
negative binomial distribution above that of the Poisson distribution), and
has prior distributions

φP ∼ N+(0, ψP), ψP ∼ N+(8, 2). (10)

The ratio of cases that are being tested is represented by τP∗,m, so it varies
between the waves. We model it as

τP∗,m = τPηPm, (11)

where τP is fixed (represents a guess for the ratio of cases being tested, chosen
in exploratory fashion as reported in Table S2) and ηPm is noise around it (the
data inform this part which is allowed to change between the waves) with
prior distribution

ηPm ∼ N+(1, 0.5). (12)

Finally, πPs is discretized distribution for time from infection to a positive
test πP . It is deterministic and the same for both waves as it is disease
specific. We assume that it is a sum of two independent times: infection to
onset Γ(µO, ξO) and onset to positive test Γ(µP , ξP), where the parameters
of gamma distributions are deterministic and chosen as reported in Table S2
(parameters for infection to onset are set as in [1, 2], while others depend on
testing strategies and were therefore chosen in exploratory fashion).

To sum up, the number of confirmed cases during the m-th wave pt,m is
the sum of the past infections ck,m weighted by their probability of transition
from ck,m to pt,m.

The rest of the data are incorporated in the model following the same
logic as Pt,m, where we assume the conditional independence of different
data sources and waves given the model parameters (for more details see
Section S4). The formulas for expected number of individuals at a specific
state can be unified through

τX∗,m

t−1∑
k=1

xk,mπ
X
t−k, (13)

where xk,m is an appropriate expected number of individuals at a previous
state (as in the schematic presentation of the model in the paper), τX∗,m rep-
resents the ratio of people moving from one state to another, and πX is the
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Table S1: Modeling the expected number of individuals at a specific state
(first column) from the expected number of individuals at a previous state
xk,m (third column, see also figure of the model from the paper) via formula
(13).
quantity notation xk,m πX τX∗,m
positive cases pk,m ck,m Γ(µO, ξO) + Γ(µP , ξP) τPηPm
hospital in hIk,m ck,m Γ(µO, ξO) + Γ(µH

I
, ξH

I
) τH

I
ηH

I
m

hospital out hOk,m hIk,m Γ(µH
O
, ξH

O
) 1

ICU in uIk,m hIk,m Γ(µU
I
, ξU

I
) τU

I
ηU

I
m

ICU out uOk,m uIk,m Γ(µU
O
, ξU

O
) 1

death in hospitals dHk,m hIk,m Γ(µD
H
, ξD

H
) τD

H
ηD

H
m

death outside the hospitals dCk,m ck,m Γ(µO, ξO) + Γ(µD
C
, ξD

C
) τD

C
ηD

C
m

time from the previous state to the next one. We model each τX∗,m as in (11)

and (12) with the exception of τH
O

∗,m = τU
O

∗,m = 1, since in our data HO
t,m is just

time-lagged HI
t,m (this data source does not separate deceased patients from

cured). If the previous state xt,m = ct,m, then πX ∼ Γ(µO, ξO) + Γ(µX , ξX ),
where the second one is the distribution of the time from onset to state X .
Otherwise, πX ∼ Γ(µX , ξX ) is the time from the previous state to state X .
See Table S1 for explicit definitions of all the elements of the different versions
of formula (13). In Table S2, chosen values for the deterministic parameters
of the model are given. In Figure S1, we give the graphical presentation of
the assumed distributions of times.

We model the expected number of hospitalized patients ht,m and number
of patients in ICUs ut,m differently:

h1,m = hI1,m − hO1,m, ht,m = ht−1,m + hIt,m − hOt,m, t = 2, . . . , n, (14)

and similarly for ut,m. We use data on Ht,m in addition to HI
t,m and HO

t,m

due to some inconsistencies in our data sources between the three and we
did similar for ICU. This additional modeling was not necessary for deaths
as Dt,m = DC

t,m +DH
t,m holds for all t and m in our data, so daily number of

deaths was forecasted using dt,m = dCt,m + dHt,m.
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Table S2: Chosen values for deterministic parameters, defined in Table S1,
where O parameters were taken as in Flaxman et al. [1, 2] and others were
chosen in exploratory fashion.

X µX ξX τX

O 5.1 0.86
P 6 0.25 0.2
HI 7 0.45 0.2
HO 14 0.45
U I 4 0.45 0.2
UO 11 0.45
DH 7 0.45 0.2
DC 17 0.45 0.01

S4 Model specification

According to Bayes theorem, the joint posterior distribution p(θ|D) is pro-
portional to p(D|θ)p(θ) where p(D|θ) is the likelihood of the data D and
p(θ) is the joint prior distribution for all the model parameters θ. Specifi-
cally, the vector of parameters is

θ = ({{ct,m, Rt,m}nm
t=1}2m=1, {R0,m}2m=1, {βk}3k=1, {γm}2m=1, {{αl,m}Ll=1}2m=1, κ, ν,

{{pt,m, ht,m, hIt,m, hOt,m, ut,m, uIt,m, uOt,m, dHt,m, dCt,m}nm
t=1}2m=1,

{φX , ψX , {τX∗,m, ηXm}2m=1}X ),

where X goes through all data sources, i.e. P (positive cases), H (hospital),
HI (hospital in), HO (hospital out), U (ICU), U I (ICU in), UO (ICU out),
DH (death in hospitals), DC (death outside hospitals). The data are

D =
(
{{Pt,m, Ht,m, H

I
t,m, H

O
t,m, Ut,m, U

I
t,m, U

O
t,m, D

H
t,m, D

C
t,m}nm

t=1}2m=1

)
.

We assume conditional independence of different data sources and waves
given the model parameters, so the likelihood can be expressed as

p(D|θ) =
2∏

m=1

(
nm∏
t=1

p(Pt,m|pt,m, φP) · . . . ·
nm∏
t=1

p(DC
t,m|dCt,m, φD

C

)

)
,

where p(Pt,m|pt,m, φP) is the probability density function of NegBin(pt,m, pt,m+
p2t,m/φ

P) as specified in (8), similarly for others.
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We assume independent prior distributions if not stated otherwise in the
previous subsections. In particular, the joint prior distribution is

p(θ) =

(
2∏

m=1

p(R0,m)p(γm)

(
L∏
l=1

p(αl,m|κ)

)
p(c1,m|ν)

)
p(κ)p(ν)

(
3∏

k=1

p(βk)

)
(∏
X

p(φX |ψX )p(ψX )
2∏

m=1

p(ηXm)

)

where the distributions of priors are specified in (4), (5), (6), (7), (10) and
(12), whereas all other parameters of θ that are not specified in the above
joint prior are transformed parameters via (2), (3), (9), (11), (13) and (14).

In addition to the posterior distributions for all the parameters, including
the expected numbers of individuals at all states (xt,m), the outputs of our
model are also their forecasts for a specified number of days based on the
posterior predictive distribution (the reliability of forecasts is validated using
methods presented in section Computational aspects and model validation
in the paper).
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