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Abstract: The core antigen of hepatitis B virus (HBcAg) is capable of self-assembly into virus-like
particles (VLPs) when expressed in a number of heterologous systems. Such VLPs are potential
carriers of foreign antigenic sequences for vaccine design. In this study, we evaluated the production
of chimeric HBcAg VLPs presenting a foreign epitope on their surface, the 551–607 amino acids (aa)
immunological epitope of the ORF2 capsid protein of hepatitis E virus. A chimeric construct was
made by the insertion of 56 aa into the immunodominant loop of the HBcAg. The sequences encoding
the chimera were inserted into the pEAQ-HT vector and infiltrated into Nicotiana benthamiana leaves.
The plant-expressed chimeric HBcHEV ORF2 551–607 protein was recognized by an anti-HBcAg
mAb and anti-HEV IgG positive swine serum. Electron microscopy showed that plant-produced
chimeric protein spontaneously assembled into “knobbly” ~34 nm diameter VLPs. This study shows
that HBcAg is a promising carrier platform for the neutralizing epitopes of hepatitis E virus (HEV)
and the chimeric HBcAg/HEV VLPs could be a candidate for a bivalent vaccine.

Keywords: hepatitis B capsid antigen; hepatitis E capsid protein; virus-like particles; chimeric
HBcHEV VLPs; plant transient expression

1. Introduction

Every year according to the World Health Organization, hepatitis E virus (HEV) causes
approximately 20 million infections worldwide and 44,000 deaths related to hepatitis E.
HEV infection is a self-limiting disease but can progress to chronic hepatitis. Pregnant
women, as well as immunocompromised and immunosuppressed patients, are the high-
risk groups with higher mortality rates and susceptibility to chronic HEV infection [1]. The
mortality rate has been found to be around 20% in pregnant women, and up to 4% in the
general population [2]. HEV is mainly transmitted by the fecal-oral route. Contaminated
drinking water has been associated with several outbreaks in developing counties [3]. In
developed counties, in the past decade, a number of autochthonous cases of HEV infection
has been reported, and evidence for zoonotic transmission has been discovered [4]. The
main HEV reservoirs are domestic pigs and wild boar [5,6]. Occupational exposure, as
well as consumption of undercooked pork meat, are key factors for the spread of HEV in
Europe [7,8]. A vaccine against the hepatitis E virus infection has been reported in China
but is not yet available elsewhere [9].

HEV is a single-stranded, positive-sense RNA virus that belongs to the Hepeviridae
family [10]. Seven mammalian genotypes have been identified (HEV 1–7) [11]. All seven
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genotypes of HEV are recognized as one serotype, making the development of a universal
hepatitis E vaccine feasible. The HEV virion is small, non-enveloped with icosahedral
symmetry and a size of 27–34 nm. The RNA genome contains three open reading frames
(ORFs) [10]. ORF1 encodes the viral nonstructural polyprotein [12], ORF2 encodes the viral
capsid protein [13], and ORF3 encodes a multifunctional protein [14]. All efforts aimed at
the development of a hepatitis E vaccine have been focused on the ORF2 capsid protein [15].
The viral capsid protein consists of 660 amino acids and has the following three domains: S
(shell, amino acids 112–319); M (middle, amino acids 320–455); and P (protruding, amino
acids 456–606 [16]. The S domain assembles into a stable icosahedral shell, while the P
domain protruding as a surface spike that is involved in host interactions and contains
neutralization epitopes [17]. The immunodominant epitopes of ORF2 protein are located
on the P domain and conserved among all HEV genotypes. The major anti-HEV antibody
responses are against epitopes located at 459–606 aa of HEV ORF2 [18] and are mainly
conformational [19]. Full-length and partially truncated versions of the capsid protein
have been expressed in different systems (bacteria, yeast, insect cells, mammalian cells,
and plants) to generate virus-like particles (VLPs) for vaccine design [20–26]. However,
there can be issues of yield and product heterogeneity using this approach and alternatives
are required.

VLPs are highly immunogenic structures and can induce protective immunity. The
hepatitis B capsid protein (HBcAg) has been shown to be capable of self-assembly into VLPs
when expressed in a number of eukaryotic heterologous systems including mammalian
cells [27], plants [28–30], yeast [31], insect cells [32], and Xenopus oocytes [33]. VLPs
composed of HBcAg are safe and potent vaccine delivery systems [34,35]. HBcAg consists
of 183 amino acids with an N-terminal assembly domain (1–149 aa) and a C-terminal
arginine-rich domain (34 aa) required for the packaging of nucleic acid [36]. HBcAg
is a homodimer that can self-assemble into icosahedral capsid with T = 4 (120 dimers)
and T = 3 (90 dimers) symmetry and a size of 34 nm and 30 nm [37]. The HBcAg VLPs
are very strong immunogens and give both a T-cell dependent and a T-cell independent
antibody response [38]. Insertion of foreign sequences into the immunodominant c/e1 B
cell epitope, a surface-exposed loop on the HBV capsid protein, results in particles that
have the antigenic characteristics of HBcAg and the immunogenicity of the inserted foreign
epitope which is considerably enhanced. These make HBcAg one of the most promising
delivery vehicles for delivering specific epitopes, such as those from HEV, to the immune
system for potent vaccine production [39–41].

Amino acids 551–607 from HEV ORF2 are immunogenic epitopes from the main
immunogenic region of the ORF2. To improve the immunogenicity of this sequence, HBcAg
VLPs have been used as particulate carriers. Here, we describe the efficient expression in
Nicotiana benthamiana plants of chimeric HBcAg VLPs carrying this epitope and evaluate
the particles as candidate HEV vaccines. Transient expression with the pEAQ-HT vector of
a HBcHEV ORF2 551–607 construct led to the production of chimeric VLPs. We examined
the ultrastructure of the particles by electron microscopy and showed that they consisted
of particles 28–38 nm in diameter, typical of HBcAg VLPs, with a “ragged” surface, which
was most likely due to the location of the HEV ORF2 56 aa on the top of the HBc spikes.
Furthermore, the chimeric protein was recognized by an anti-HEV IgG positive swine
serum and retained HBcAg reactivity. From this study, we believe that HBcHEV ORF2
551–607 protein could be used for future immunological studies.

2. Materials and Methods
2.1. Gene Cloning and Plasmids Construction

The 56 amino acid residues of HEV ORF 2 551–607 consensus sequences were based on
HEV genotype 3 nucleoprotein HEV ORF2 1–660 (GenBank accession number DQ079627.1).
Amplification of DNA fragment for the production of the HEV ORF2 501–607, was carried
out by PCR. The target HEV ORF2 551–607 sequences were amplified using the synthetic
master gene HEV ORF2 1–660 [25]. The PCR fragment was flanked by SalI and AseI
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restriction sites (New England Biolabs, Ipswich, MA, USA), which were used for sub-
cloning of the PCR fragment. The HEV ORF2 551–607 peptide was cloned into the MIR
of the monomeric HBcAg construct in the previously described pEAQ-mEL [42]. The
resulted vector was named pEAQ-HT:HBcHEV ORF2 551–607. Following the heat-shock
transformation of competent Escherichia coli XL1-Blue, putative clones harboring the ex-
pression vector (pEAQ-HT:HBcHEV ORF2 551–607) were verified by sequencing (Eurofins,
Hamburg, Germany).

2.2. Agrobacterium tumefaciens Transformation and Nicotiana benthamiana Agroinfiltration

The recombinant vector pEAQ-HT:HBcHEV ORF2 551–607 was transformed into
the electrocompetent A. tumefaciens strain LBA4404. Then, transformed colonies were
selected from agar plates containing 50 µg/mL kanamycin and 50 µg/mL rifampicin.
Agrobacterial suspensions were cultured at 28 ◦C and shook (200 rpm) for 48 h. The
agrobacterial cells were pelleted by centrifugation (4000× g centrifugation for 10 min.).
Following resuspension in 10 mM MES 2-(N-morpholino) ethansulfonic acid, pH 5.6,
10 mM MgCl2 and 100 µM acetosyringone to an OD600 of 0.4 and incubation of 3 h at room
temperature, bacterial suspensions were syringe-infiltrated into the leaves of 5–6-week-old
N. benthamiana plants. Leaf tissue was harvested 7 days post infiltration (dpi). Control
agrobacterial suspensions containing the empty pEAQ-HT vector [43] without a gene insert
and with pEAQ-HT:HBcAg were included to compare with pEAQ-HT:HBcHEV ORF2
551–607 for observation of protein expression and VLPs formation.

2.3. Protein Extractions, SDS-PAGE, and Western Blot Analyses

Small-scale protein extraction was conducted to test for HBcHEV ORF2 551–610, and
mHBAg expression and accumulation. Approximately 90 mg of the infiltrated leaf was
harvested at 7 dpi and homogenized with a ceramic bead for 30 s at speed 4 (MP Biomedi-
cals, Irvine, CA, USA) in 3× volume of extraction buffer (100 mM sodium phosphate at
pH 6.8, 150 mM NaCl, 0.1% Triton-X and protease inhibitors (Roche, Basel, Switzerland)).
Then, samples were centrifuged at 13,000× g for 10 min and the supernatant was kept as
soluble protein fraction. Nevertheless, the insoluble protein (IP) fraction could be extracted
from the pellet through boiling with protein denaturing buffer (NuPAGE LDS buffer (Life
Technologies, Carlsbad, CA, USA) mixed 3:1 with 2-mercaptoethanol) and centrifuged at
13,000× g for 10 min. Proteins were analyzed by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) on 12.5% (w/v) polyacrylamide-SDS or NuPAGE Bis-Tris
gels (Life Technologies, Carlsbad, CA, USA) and the gels stained with InstantBlue (Merck,
St. Louis, MO, USA). For Western blot analysis, the electrophoresed proteins were elec-
troblotted onto a nitrocellulose membrane (GE Healthcare, Chicago, IL, USA) via wet
transfer at 100 V for 1 h. Blotted membrane was blocked with 5% (w/v) milk powder in
phosphate-buffered saline (PBS) containing 0.05% (v/v) Tween 20 (PBST) for at least 1 h.
The membrane was subsequently incubated with either mouse anti-HBcAg monoclonal an-
tibody (10E11, Abcam, Cambridge, UK) (1:4000 dilution) or HEV immunoglobulin G (IgG)
positive swine serum (dilution 1:200) for 1 h. The membrane was washed three times with
PBST at 5 min intervals. Then, the membrane was incubated with a goat anti-mouse IgG
horseradish peroxidase (HRP)-conjugated secondary antibody (Thermo Fisher Scientific,
Waltham, MA, USA) diluted 1:30,000 for detection of 10E11, and secondary anti-pig IgG
antibody-HRP (Thermo Fisher Scientific, Waltham, MA, USA) diluted 1:8000 for detection
of swine serum, respectively. Washing steps were repeated three times before the blot was
soaked in SuperSignal™ West Dura Extended Duration Substrate (Thermo Fisher Scientific,
Waltham, MA, USA). The emitted luminescence was detected with the ImageQuant LAS
500 system (GE Healthcare, Chicago, IL, USA) and on X-ray film.

2.4. Indirect Enzyme-Linked Immunosorbent Assay (ELISA)

Microtiter plates (Greiner 96-well flat bottom) were coated with 100 µL/well of serial
dilutions of purified protein in duplicate wells (100 ng/well to 12.5 ng/well) in PBS (pH 7.4)
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and incubated overnight at 4 ◦C. After three washes with PBST, plates were incubated
with 200 µL/well of blocking solution (PBST 5% (w/v) dry milk) and incubated for 1 h at
room temperature. Then, 100 µL anti-HEV IgG positive and negative swine serum diluted
1:100 in blocking buffer was added and incubate for 1 h at 37 ◦C. Plates were washed again
with PBST before the addition of 100 µL/well of an HRP-conjugated anti-swine secondary
antibody 1:10,000 (Thermo Fisher Scientific, Waltham, MA, USA). After incubation with the
secondary antibody, plate wells were washed three times before adding 50 µL/well of the
substrate solution of OPD Substrate Tablets (Thermo Fisher Scientific, Waltham, MA, USA).
Plates were incubated, in the dark, at room temperature from 10 to 20 min, and then the
reaction was stopped by the addition of 50 µL/well of 1M H2SO4, and the plates were read
at 492 nm in a plate reader Epoch Microplate Spectrophotometer (BioTek Instruments Inc.,
Winooski, VT, USA). Previously characterized negative swine sera by using commercial
kits from PrioCheck HEV Ab (Thermo Fisher Scientific, Waltham, MA, USA) were used
as controls.

2.5. Purification of Virus-Like Particles (VLPs)

To purify assembled particles derived from constructs pEAQ-HT:HBcHEV ORF2
551–607 and pEAQ-HT:HBcAg, leaf tissue was harvested at 7 dpi and homogenized in
three volumes of the same extraction buffer. Crude extracts were filtered through a layer of
Miracloth before subjecting to centrifugation (20,000× g) at 4 ◦C for 20 min using an SS34
rotor (Thermo Fisher Scientific, Waltham, MA, USA). The clarified supernatant was filtered
over 0.45 µm syringe filters. The VLP samples were subjected to a two-stage purification
process, as described by Peyret 2015 [44]. Firstly, clarified extracts were overlain above two
different concentrations of sucrose solution, 6 mL of 25% (w/v) and 2 mL of 70% (w/v).
The sucrose cushions were prepared in UltraClear ultracentrifuge tubes (Beckman Coulter,
Brea, CA, USA) and centrifuged in a Surespin 630/36 rotor (Thermo Fisher Scientific,
Waltham, MA, USA) at 167,000× g, 4 ◦C, for 2.5 h. The gradient was fractionated by
piercing the bottom of the tube with a needle and recovering the bottom and interface
fractions. Then, these fractions were dialyzed thoroughly against 200 mM ammonium
bicarbonate buffer (pH 8.0) overnight. The samples were concentrated using a SpeedVac
vacuum concentrator (Thermo Fisher Scientific, Waltham, MA, USA), and loaded onto a
Nycodenz step gradient (SERVA, Merelbeke, Belgium) extending from 60 to 20% (w/v),
with 2 mL of each concentration in UltraClear ultracentrifuge tubes (Beckman Coulter,
Brea, CA, USA). High-speed centrifugation was operated at 274,000× g using the TH-641
rotor (Thermo Fisher Scientific, Waltham, MA, USA) for 20 h, at 4 ◦C. The mHBcAg and
mHBcAg-HEV ORF2 551–607 proteins were dialyzed against PBS using a Float-A-Lyzer
(MilliporeSigma, St. Louis, MO, USA).

2.6. Agarose Gel Electrophoresis

To determine if particles incorporated RNA, equal protein amounts of purified mH-
BcAg VLPs and chimeric HBcHEV ORF2 551–607 VLPs were loaded on 1% of agarose gel.
The RNA content of the different protein fractions was analyzed on ethidium bromide-
stained 1% agarose gels followed by Coomassie blue staining.

2.7. Transmission Electron Microscopy (TEM) of Purified VLPs

Approximately 10 µL of the VLPs sample was adsorbed on copper-palladium grids,
washed with sterile distilled water, and negatively stained with 2% (w/v) uranyl acetate.
As an experimental control, the monomer HB core particles without a gene insert were
also examined. The grids were examined using an FEI Tecnai 20 transmission electron
microscope (FEI, Lausanne, Switzerland).
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3. Results
3.1. Gene Design

According to Peyret (2015) [45], we constructed a fusion protein by inserting 56 aa
of ORF2 551–6107 antigenic peptide from hepatitis E virus between amino acids 78 to
83 on the c/e1 immunogenic loop of HBcAg (Figure 1, panel b). In this construct, the
ORF2 551–6107 antigenic peptide is linked to HBcAg with three amino acid linkers
((GGS)4) on either side. The predicted three-dimensional (3D) structure of HBcHEV
ORF2 551–607 chimeric protein shows that the ORF2 56 aa is on the top of the HBc spikes
(Figure 1, panel d).

Figure 1. Structure of the chimeric HBcHEV ORF2 551–607 construct. (a) Amino acid sequences of
chimeric HBcHEV ORF2 551–607 construct; (b) Schematic representation of HBcAg with HEV ORF2
551–607 immunogenic epitope inserted between 78 aa and 83 aa, with a (GGS)4 linker at both ends;
(c) Predicted stucture of HBcAg; (d) Predicted structure of chimeric HBcAg presenting the HEV ORF2
551–607 epitope in the c/e1 immunodominant loop (MIR), as was done by SWISS_MODEL [46].

3.2. Gene Cloning

The nucleotide sequences of the whole HEV genotype 3 nucleoprotein (HEV ORF2
1–660) [25] codon-optimized for N. benthamiana were used as templates for PCR amplifica-
tion of HEV ORF2 551–607 to construct the pEAQ-HT:HBcHEV ORF2 551–607 (Figure 2).
Primers were designed to incorporate SalI and AseI restriction sites and long flexible linkers
((GGS)4) at 5’ and 3’ ends of the HEV ORF2 551–607 region. Then, the amplified HEV ORF2
551–607 fragment was cloned into the MIR region of the monomeric HBcAg construct in
the previously described pEAQ-mEL [42], referred to in this study as a pEAQ-HT:HBcAg.

3.3. Expression of Recombinant pEAQ-HT:HBcAg and pEAQ-HT:HBcHEV ORF2 551–607
Constructs in N. benthamiana

N. benthamiana leaves agroinfiltrated with the recombinant vector pEAQ-HT:HBcAg
and pEAQ-HT:HBcHEV ORF2 551–607 were harvested on the 7th day post infiltration
(dpi) and analyzed by SDS-PAGE and Western blot to check protein expression. Western
blot analysis with an anti-HBc mAb (10E11) (Figure 3, panel a.) confirmed that the HBcAg
and HBcHEV ORF2 551–607 proteins had been expressed well in N. benthamiana plants.
Expression of the pEAQ-HT:HBcAg in plants gave a monomeric form ~21 kDa protein,
and a ladder of further immunoreactive proteins, consistent with being dimers, tetramers,
and higher forms. The HBcHEV ORF2 551–607 protein was observed as a monomer
with size ~29 kDa and a dimer with size ~56 kDa (Figure 3, panel a, lane 5). From the
Western blot data (Figure 3, panel a), it appears that most of the HBcAg proteins are soluble.
Furthermore, the yield of soluble HBcHEV ORF2 551–607 (Figure 3, panel a, lane 4) was low
as compared with the insoluble fraction (Figure 3, panel a, lane 5). Immunoblot analyses
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with positive anti-HEV IgG swine sera showed that the antigenicity of the HEV ORF2
551–607 peptide was maintained and chimeric protein of HBcHEV ORF2 551–607 was
recognized by polyclonal anti-HEV IgG Ab in swine sera (Figure 3, panel b). The polyclonal
anti-HEV antibodies revealed the monomer form (~29 kDa) and the dimer form (~56 kDa)
of the recombinat HBcHEV ORF2 551–607. As a positive control (Figure 3, panel b, lane 3),
we used the rHEV 110–660 (~58 kDa) produced in plants from our previous study [25].

The constructs pEAQ-HT:HBcAg and pEAQ-HT:HBcHEV ORF2 551–607 were trans-
formed into A. tumefaciens and used for expression of the recombinant proteins in N. ben-
thamiana.

Figure 2. Illustrates the expression cassette and the corresponding recombinant vector used in
this study.

Figure 3. Western blot analysis of HBcAg and HBcHEV ORF2 551–607. (a) Western blot with mouse
anti-HBcAg monoclonal antibody (10E11, Abcam, UK). M, marker; 1, pEAQ-HT empty vector; 2,
HBcAg supernatant (SN) after extraction in 3x volume extraction buffer and 13k rpm; 3, HBcAg pellet;
4, HBcHEV ORF2 551–607 SN; 5, HBcHEV ORF2 551–607 pellet; (b) Western blot with polyclonal
anti-HEV IgG swine serum. M, marker; 1, pEAQ-HT empty vector; 2, HBcHEV ORF2 551–607 crude
extract; 3, positive control rHEV 110–660. Arrows indicate monomer, dimer, and tetramer. SeeBlue
Plus2 Pre-stained Protein Standard was used as a molecular marker.
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3.4. Purification of HBcAg VLPs and Chimeric mHBc VLPs Presenting the HEV ORF2
551–607 Epitope

For large-scale purification, five plants per construct were infiltrated with either
pEAQ-HT:HBcAg or pEAQ-HT:HBcHEV ORF2 551–607 and harvested at 7 dpi. The
first purification step via sucrose cushion yielded 70% sucrose and interface fractions,
which were collected for maximal recovery of VLPs present in the sample. The profiles
of fractionated HBcHEV ORF2 551–607 samples are shown in Figure 4. The presence of
HBcHEV ORF2 551–607 VLPs in both 70% sucrose and interface was confirmed via Western
blotting (Figure 4, panel b, lane 7).

Figure 4. Gradient purification and detection of HBcHEV ORF2 551–607 virus-like particles (VLPs).
(a) SDS-PAGE analysis of fractionated samples from the sucrose cushions, the gel was stained with
InstantBlue; (b) Western blot profiles showing that the VLPs were successfully detected in the 70%
sucrose and interface fractions using HBcAg monoclonal antibody 10E11. M, marker; 1, pEAQ-HT;
2, crude extract; 3, supernatant; 4, pellet; 5, ultracentrifugation supernatant; 6, 25% sucrose gradient
fraction; 7, interface and 70% sucrose gradient fraction; 8, positive control recombinant HBcAg (Jena
BioSsience, Germany); (c) SDS-PAGE of fractioned VLPs from the Nycodenz gradients. M, marker;
1, fractioned HBcAg VLPs; 2, fractined HBcHEV ORF2 551–607 VLPs. SeeBlue Plus2 Pre-stained
Protein Standard was used as a molecular marker.

These VLP-containing fractions were pooled and subjected to a Nycodenz gradient
for further purification. The Nycodenz gradient of HBcAg gave rise to two obvious bands
(Figure S1, panel a) and a single grayish band of HBcHEV ORF2 551–607 (Figure S2, panel a).
The bands were collected with a needle and syringe and subjected to SDS-PAGE analysis,
followed by staining with InstantBlue (Figure 4, panel c).

3.5. Transmission Electron Microscopy

Transmission electron microscopy revealed that plant produced native HBcAg pro-
tein and chimeric HBcHEV ORF2 551–607 protein had successfully assembled into VLPs
(Figure 5). Native HBcAg assembled into spherical particles with an average size of 29.6 nm
(+/− standard error 1.5) nm in diameter. The observed chimeric VLPs had an irregular
spherical morphology probably due to the insertion of a 56 aa from ORF2 protruding
peptide into the c/e1 loop. The diameters of chimeric VLPs ranged from 28 to 38 nm, the
average size of chimeric VLPs was ∼34.1 nm in diameter with a standard error (+/− 0.7).
As compared with the uniformly shaped HBcAg VLPs (Figure 5, panel a), the chimeric
HBcAg VLPs seemed to exhibit an uneven surface layer, known as “knobbly” VLPs due to
the protruding of ORF2 551–607 epitope from HBcAg spikes (Figure 5, panel b).
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Figure 5. Electron micrograph showing the purified HBcAg and HBcHEV ORF2 551–607 VLPs that
were negatively stained with 2% (v/v) uranyl acetate. (a) HBcAg VLPs; (b) HBcHEV ORF2 551–607.
Scale bar = 0.1 µm; The chimeric HBcAg VLPs with HEV ORF2 551–607 epitope had successfully
assembled into viral particles with “knobbly” structure. Arrows indicate “knobbly” VLPs.

3.6. Indirect ELISA for HBcHEV ORF2 551–607 VLPs Detection

Recognition of chimeric HBcHEV ORF2 551–607 VLPs from polyclonal anti-HEV Ig G
swine serum was demonstrated by an indirect ELISA using wells coated with the HBc HEV
chimeric particles. Anti-HEV IgG positive swine serum was used for detection of HBcHEV
ORF2 551–607 VLPs. The ELISA plate was coated with different concentrations of HBcHEV
ORF2 551–607 VLPs (100 ng/well, 50 ng/well, 25 ng/well, and 12.5 ng/well) or HBcAg at
the same concentrations as controls for specific interactions. An anti-HEV IgG negative
swine serum was used as a control for background signal. The anti-HEV Ig G positive
swine serum specifically binds the HBcHEV ORF2 551–607 VLPs, when the concentration
of the VLPs is 100 ng/well (Figure 6). The absorbance value of the positive serum is
0.558 (95% CI 0.517 to 0.599) as compared with the negative serum with OD 0.42 (95% CI
0.398 to 0.442), the p-value is 0.050004. Thus, the result is significant at p = 0.05.

Figure 6. Indirect ELISA based on the HBcHEV ORF2 551–607 VLPs as a coating protein and the
HBc VLPs as a control of specific binging of the positive anti-HEV Ig G swine serum. Previously
characterized negative swine sera were used as controls. On the x axis are the concentration of
the recombinant protein in the well, and on the y axis are the optical density 492 nm value. Data
are shown as absorbance values of the used serum samples, the bars refer to standard error. The
presented absorbance values are average values with standard errors calculated from four different
negative serums and four different positive serums, repeated in two independent experiments.
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3.7. Nucleic Acid Content Analysis of VLPs

A purified chimeric HBcHEV ORF2 551–607 VLPs and HBcAg VLPs fractions were
loaded on an agarose gel and after electrophoresis, the gel was stained with ethidium
bromide (EtBr) followed by staining with Coomassie blue for identification of nucleic acids
incorporation into VLPs. The VLP fractions migrated as a band that stained positive in
either EtBr (Figure 7, panel b) or Coomassie blue staining (Figure 7, panel a). As expected,
both wild-type and chimeric particles contained RNA/DNA. The RNA/DNA binding site
in the HBcAg and HBcHEV ORF2 551–607 was not modified and internal RNA/DNA was
confirmed by EtBr staining (Figure 7, panel b).

Figure 7. Agarose (1% w/v) gel electrophoresis of top and bottom band of gradient purified HBcAg
VLPs and chimeric HBcHEV ORF2 551–607 VLPs. (a) Coomassie blue staining; (b) ethidium bromide
(0.4 µg/mL) staining.

4. Discussion

The development of a recombinant vaccine against HEV, in which the ORF2 capsid
protein or neutralizing epitopes of ORF2 are presented as multimeric structures, is highly
desirable. Here, we present a strategy for vaccine design and characterization of the HEV
ORF2 551–607 epitopes that may be useful for further HEV vaccine design. The HEV
ORF2 551–607 peptide DNA sequences were synthesized by PCR and cloned into HBcAg
coding sequenced between amino acid 78 to 83. The HBcAg gene and HEV ORF2 551–
607 sequences expressed in this study were codon-optimized based on N. benthamiana
preference to boost translation by using codons preferred by the host expression system.
In addition, (GGS)4 linkers were inserted between HBcAg and HEV ORF2 551–607, to
stabilize the conformation of the chimeric VLPs and compose the multidomain protein.

The inserted HEV ORF2 551–607 sequences into HBc immunodominant loop (between
73 and 83 aa) is expected to be displayed on the HBcAg VLP surface. Protein modeling
analysis of the chimeric VLPs (Figure 1, panel d) showed that HEV ORF2 551–607 epitope
was exposed on the surface of the HBcAg. HEV positive swine serum recognized the
chimeric proteins (Figure 3, lane b and Figure 6) that showed recognition of HEV ORF2
551–607 peptide from polyclonal anti-HEV IgG antibodies. The resulting chimeric HBcAg
VLPs were expected to display a high density of HEV ORF2 551–607 epitopes on 90 or
120 copies of HBcAg protein dimers per particle.

In many cases, the immunogenicity of small synthetic peptides can be increased after
being attached to a carrier molecule such as VLPs. In a previous study, HBcAg carrying
linear epitope located at 423–437 aa could self-assemble into VLPs and these particles could
induce anti-ORF2 Abs, but the synthetic 423–437 aa peptide could not [18]. This study
supported our idea that the HBcHEV ORF2 551–607 could be a better antigen and could
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enhance the immunogenicity of ORF2 551–607 aa and induce a strong antibody response.
Moreover, a previous study [18] utilized a non-immunodominant linear neutralizing
epitope against the hepatitis E virus.

Because HBcAg is an immunodominant immunogen [47], and insertion into c/1e
epitope results in “inheritance“ of the immunodominance of the insertion, we inserted the
ORF2 551–607 aa peptide into the c/1e loop. Glycine/serine-rich linkers were included
between the HEV ORF2 551–607 aa and core protein to avoid a spurious interaction.
This assay resulted in a chimeric VLP antigen, which could be used to prove the ORF2
551–607 aa activity. These chimeric VLPs could mimic the neutralizing epitope of HEV
and provide a novel tool for subunit vaccine design. Expression of chimeric HBcHEV
ORF2 551–607 protein into N. benthamiana does not lead to necrosis or apoptosis (data
not shown) which allowed us to harvest the plants at the peak of recombinant protein
accumulation. In this case, the optimal harvest time for the chimeric HBcHEV ORF2
551–607 VLPs was determined to be around 7 dpi. During this study, a constant OD
600 of 0.4 for the agrobacteria infiltration suspension was used, as reported previously [48].
HBcAg construct and chimeric construct produced monomer, dimer, and tetramer forms of
the recombinant proteins during the expression in N. benthamiana (Figures 3 and 4, panel c),
we also observed multimers above that, classic with plant-produced HBcAg constructs [49].
A two-step protocol was used for VLP purification [44]. The first step was a discontinuous
20% and 70% sucrose cushion to enrich the isolation of VLPs, and the second step was
an additional isopycnic (Nycodenz) gradient which was applied for preparation of high
purity particles. The two-step protocol gave us a clear picture of HBcAg VLPs in two
visible bands on the Nycodenz gradient (Figure S1, panel a) and chimeric HBcHEV ORF2
551–607 VLPs in one visible band (Figure S2, panel a). Their lower density and the apparent
ability of stain to penetrate them suggests that VLPs from the upper band in Figure S1 may
contain less RNA than those from the lower band. The chimeric particle diameter ranged
from 28 to 38 nm, and the surface appeared to be rather “knobbly” (Figure 5, panel b).
The “knobbly” surface morphology is expected for HBcAg core particles displaying a
heterologous sequence on their surface [34,42]. This indicates that HEV ORF2 551–607 aa
were presented on the surface of HBcAg spikes. The chimeric particles appeared to be
larger than the HBcAg VLPs with diameters around 29 nm (Figure 5). The fact that the
anti-HEV IgG positive sera recognizes the HBcHEV ORF2 551–607 particles indicate that
the 56 aa from HEV is inserted on the surface of the particles, and therefore supports the
idea that HBcAg can be used as a platform for HEV vaccine production.

The VLPs of HBcAg produced in N. benthamiana plants have been reported to encapsi-
date random cellular nucleic acid [42]. The presence of Arg-rich C-terminal domain into the
chimeric HBcHEV ORF2 551–607 protein retains its ability for nucleic acid encapsulation
into VLPs (Figure 7). However, the encapsidated nucleic acids have the advantage of
producing a better antibody response against the insert as a result of the integral toll-like
receptors (TLR) signaling [27,50].

Transient expression of recombinant proteins in N. benthamiana plants has emerged as
an alternative to other expression systems such as yeast, bacterial, and mammalian cells.
Plant expression systems have many advantages in terms of safety as plant pathogens
do not infect humans and also owing to their scalability and their ability to perform a
eukaryotic post-translational modification [51]. Some limitations such as post-synthesis
instability, proteolytic degradation of the recombinant proteins, and product heterogenicity
must be overcome in plant expression systems [52]. In our previous study, we successfully
expressed modified versions of the ORF 2 capsid protein in N. benthamiana plants [25].
Plants expressed the HEV ORF2 proteins up to 10% of total soluble protein (TSP), but the
efficiency of VLPs isolation through gradient centrifugation was very low. In the present
study, the expression level of the recombinant HBcHEV ORF2 551–607 protein is lower,
but the efficiency of particle formation and purification is higher, and the recovery yields
of VLPs is approximately 10 mg/kg green leaf biomass. The recovered purified yield of
HBcAg was found to be five to ten times higher than the yield of HBcHEV ORF2 551–607.
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In order to deliver the ORF2 VLPs in sufficient amounts for them to be evaluated cost-
effectively in animal model trials, robust manufacturing strategies need to be put into place.
The HBcAg provides a flexible strategy for the design of chimeric particles, and the use of
the pEAQ vector based on genetic elements of CPMV genome expression system provides
efficient expression and particle formation [53].

Currently, three HEV vaccine candidates have been under evaluation in clinical trials.
Two of them have been produced in E. coli as VLPs, including p179 and p239 [15], the
third one was produced in insect cell as a 56 kDa recombinant protein [54]. Developing a
vaccine for HEV in plants, we are competing with E. coli and the baculovirus-insect cell
system. In our previous studies, we showed that the HEV ORF2 110–610 recombinant
protein formed unstable nanosized virus-like particles with non-uniform sizes ranging
from 10 to 100 nm [22,25]. The immunization of mice with plant-derived HEV 110–610 un-
stable VLPs induced high levels of HEV-specific serum antibodies [22] demonstrating the
immunogenicity of plant-derived recombinant proteins. However, it is necessary to look
for methods for obtaining stable HEV VLPs in plants, and the HBc HEV VLPs address
this need.

5. Conclusions

We report the expression and the self-assembly of chimeric HBcHEV ORF2 551–607
VLPs in the plants, representing the first report of the successful transient expression of
chimeric HBV/HEV VLPs in this expression system. Hence, plants may be a novel source
for the cost-effective production of multivalent vaccines. Currently, we do not know if the
HEV ORF2 551–607 epitope is a neutralizing epitope. Future studies of the immunogenicity
of chimeric HBV/HEV ORF2 VLPs in animal models and their ability to protect against
HEV infection are ongoing.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-1
729/11/1/64/s1, Figure S1: Nycodenz gradient purification and transmission electron microscopy
(TEM) for the detection of HBcAg VLPs. (a) Visualization of two bands in Nycodenz gradient by
downward illumination of the tube; (b) Negative stain TEM of the top band from Nycodenz gradient;
(c) Negative stain TEM of bottom band from Nycodenz gradient. Scale bar = 100 nm. Arrows indicate
smaller particles, Figure S2: Nycodenz gradient purification and transmission electron microscopy
(TEM) detection of HBcHEV ORF2 551–607 VLPs. (a) Visible single band of VLPs observed from
Nycodenz gradient; (b) TEM imaging of the collected single band. Particles were visualized by
negative staining with uranyl acetate. Scale bar = 100 nm.
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