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Abstract: Biological differences between sexes should be considered in all stages of research, as 

sexual dimorphism starts in utero leading to sex-specific fetal programming. In numerous bio-

medical fields, there is still a lack of stratification by sex despite primary cultured cells retaining 

memory of the sex and of the donor. The sex of donors in biological research must be known be-

cause variations in cells and cellular components can be used as endpoints, biomarkers and/or 

targets of pharmacological studies. This selective review focuses on the current findings regarding 

sex differences observed in the umbilical cord, a widely used source of research samples, both in 

the blood and in the circulating cells, as well as in the different cellular models obtainable from it. 

Moreover, an overview on sex differences in fetal programming is reported. As it emerges that the 

sex variable is still often forgotten in experimental models, we suggest that it should be mandatory 

to adopt sex-oriented research, because only awareness of these issues can lead to innovative re-

search. 
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1. Introduction 

Several diseases (cardiovascular, inflammatory and autoimmune diseases, diabetes 

mellitus, cancer, depression and brain disorders, and infections) are affected by sex dif-

ferences in their diffusion, progression, and treatment [1–3]. Therefore, biological dif-

ferences between sexes should be taken into account in all stages of research, from the 

pre-analytic conditions to genetics, epigenetics [4,5], developmental biology, biochemis-

try, physiology, pharmacology, toxicology, and epidemiology as well as social sciences, 

using all new technologies including omics [4]. 

Sexual dimorphism starts in utero and seems to occur at a pre-gonadal stage [6–8]. 

Moreover, fetal programming, which predispose developing organism to increased risk 

for future diseases appears to be strongly influenced by the fetus sex [9,10]. 

Although sex-specific differences depend on animal species and strains, in most 

biomedical research, almost all cellular studies [11] do not differentiate between genetic 

male or female cells, and a high proportion of preclinical studies (68–76%) use only males 

or do not report the sex of the animals [12,13]. Sex, in fact, should be considered in all cell 

studies, as it is now evident that different primary cells from males and females behave 

differently [14–22]. The stratification of cells according to the sex of donors become fun-

damental, because organelles and cells have memory of their sex [15–19,23] and differ-
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ences encountered in cellular compartments can be used as end points, biomarkers 

and/or targets of pharmacological studies [2]. 

The human umbilical cord has no particular ethical impediments, is 

non-tumorigenic, and less immunogenic, representing an advantageous experimental 

source over other cell sources [24,25]. Moreover, it seems a good experimental model for 

studying and understanding sex differences that characterize the cardiovascular system 

[1]. This selective review focuses on the current findings regarding sex differences ob-

served in the umbilical cord, both in the blood and in the circulating cells, as well as in the 

different cellular models obtainable from it (Figure 1). 

 

Figure 1. Schematic representation of human cord compartments. 

2. Strategy Search 

Literature analysis was performed using PubMed and Google as research tools us-

ing the following key-words and their combination: gender differences, sex differences, 

males, females, biomarkers, umbilical cord, cord blood, placenta, serum, plasma, pro-

genitor cells, mononuclear cells, human umbilical vein endothelial cells (HUVECs), hu-

man umbilical artery endothelial cells (HUAECs), human umbilical artery smooth mus-

cle cells (HUASMCs), Wharton Jelly (WJ), mesenchymal stem cells (MSCs), and fetal 

programming. 

3. Sex Differences in Fetal Growth and Placenta 

Sex determination occurs in two stages: in the first, sex chromosomes guide the dif-

ferentiation of bipotential gonadal crests in the testis or ovary [26]. In the second stage, 

gonadal sex hormones drive the creation of a number of anatomical and physiological 

features known as phenotypic sex [27]. The inactivation of the X chromosome is an im-

portant epigenetic process that occurs in mammalian females to correct the imbalance of 

the X chromosome genes between the sexes, a phenomenon that determines a transcrip-

tional silencing aimed at obtaining an equal gene dosage; however, the silencing is often 

not complete [28,29]. In fact, 15-30% of human X-linked genes may escape this process, 

creating protein level differences between male and female individuals and making fe-

males more susceptible to certain diseases than males (such as autoimmune diseases), or 

protect them from other conditions such as cancer [29–32]. 

The upregulation/downregulation of transcription factors should initiate the dif-

ferences in development, and the observation that sex-determining region Y (SRY) factor 

induces cell proliferation in the fetal mouse gonads [33] further emphasizes the im-

portance of differential growth in sex determination and differentiation. SRY factor is an 

additional growth promoter gene that allows the XY embryo to differentiate into the fe-

male hormonal environment of the uterus. It is noteworthy that XX mice carrying a 

SRY-box transcription factor 9 (SOX9) transgene were found to develop as males [34], 

and that the importance of transcription factors is also reported by Colvin et al. [35] 

which showed that most XY mice lacking fibroblast growth factor 9 (FGF9) developed as 

females.  



Life 2021, 11, 52 3 of 16 
 

 

Female fetuses had smaller cord areas and less WJ than male fetuses, and male and 

female fetuses develop their length of the cord and relative placental weight differently 

from each other under the influence of umbilical ring constriction. Sex-specific differ-

ences in fetus growth appear early in the pregnancy and have long been recognized [36]. 

Cell division is more rapid in male embryos than in female ones [37], and male fetuses 

growth seems to be greater than the female ones. Crown-rump length and biparietal 

diameter (BPD) in human male fetuses are, on average, larger than in females from the 

first trimester until 15th week of gestation [38–40]. Moore described significant differ-

ences in head growth trajectories between male and female fetuses, showing that the 

head and abdominal circumferences were higher in male fetuses starting in the second 

trimester [41]. Moreover, Galjaard and colleagues observed that BPD and head circum-

ference were significantly larger in males than in females from 20 weeks of gestation 

onwards [42]. These observations suggest that males may be both more responsive to 

growth promoting influences, and more susceptible to supply disturbances. Moreover, 

male fetuses are more active than female fetuses [43–45]. 

Anti-Müllerian hormone (AMH), a member of the transforming growth factor-β 

(TGF-β) super-family, is produced by Sertoli cells from the onset of testicular differentia-

tion and by granulosa cells after birth in mammals [46], which play a role in sexual dif-

ferentiation and recruitment. It binds to a serine-threonine kinase receptor complex con-

sisting of ligand-specific type II receptors (AMHRII), recruiting and phosphorylating 

more general type I receptors also known as activin receptor-like protein kinases (ALKs). 

It plays key roles in the regression of the Müllerian duct in the male embryo. Indeed, 

gonadal sex steroids are necessary for the sexual differentiation of the fetus and for sex-

ual maturation during prepubertal to pubertal age. In the stages of sexual maturation 

Sertoli and granulosa cells develop from a common precursor: the somatic cells ex-

pressing SRY differentiate into Sertoli cells and Leyding cells (testis), while somatic cells 

in which SRY is not expressed differentiate into granulosa cells and theca cells (ovary). 

The two groups of somatic cells subsequently acquire sex-specific functions, including 

the synthesis of sex steroids. AMH is at the crossroads of sexual determination and dif-

ferentiation, and, after SRY and SOX9, it is the first product identified that characterizes 

Sertoli cells in mammals [46]. Human placenta and fetal membranes also express and 

co-localize AMH and AMHRII. Although no sex-related difference was found in their 

gene expression in both placenta and fetal membranes, intense staining for AMH in male 

fetal membranes supports AMH as a sex-specific hormone [47]. 

Sex differences in the placenta are also described: globally males have larger and 

heavier placenta, and birth weight/placental weight ratio than females [48–50]. The exact 

mechanism for these differences is unknown: some authors attribute it to sex differences 

in proliferation and metabolism at the earliest stages of blastocyst development [51–53], 

other reported males prioritize body growth, thus making them more vulnerable to 

sudden changes in fetal nutrition supply if they occur [48]. 

Moreover, placenta-associated pathologies are sexually divergent: chronic villitis 

and fetal thrombosis are more frequent in male placentas [54,55], while villous infarction 

is more common in females [54]. In addition, several sex differences are described in 

placenta gene expression, in hormonal asset, in immune response and hemodynamics 

[56–62], but this goes beyond the aims of this work and, therefore, will not be described 

in detail. As general examples, female placentas display higher expression of immune 

regulation genes, endocrine functions and placental growth [63,64], while male ones have 

more inflammatory profiles [65]. 

4. Fetal Programming and Sex 

Fetal programming is the result of epigenetic changes that occurs in response to 

various stimuli that come from the environment that can affect the life and health of the 

baby even in adulthood [66]. According to Barker’s hypothesis (thrifty phenotype hy-

pothesis) intrauterine growth retardation, low birth weight, premature birth and a low 
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availability of nutrients during the prenatal stage may increase the risk of metabolic dis-

orders, including Type II diabetes, hypertension, and coronary heart disease in middle 

age [66]. There are several factors involved in fetal programming: maternal smoking, 

malnutrition, stress, hormones, physical and psychological violence suffered by the 

mother and the fetus sex [9,10].  

Fetal sex may affect the outcome of pregnancies: male sex is a risk factor for adverse 

pregnancy outcome, including preterm birth, premature rupture of membranes, gesta-

tional diabetes and macrosomia, motor and cognitive outcomes, and a lower likelihood 

of survival in intensive care [48,67,68]. 

Many mechanisms, processes, and systems that are activated during fetal develop-

mental programming, such as gene expression, DNA methylation, telomere and mito-

chondrial biology, the sympathetic nervous system, the renin angiotensin system, oxida-

tive stress, and inflammation, act in a sex-specific way [69–72]. 

Moreover, male fetuses are heavier than female ones at birth, and therefore they 

invest more energy in growth, adapting less to maternal conditions, while the female 

fetus conserves more energy during growth and this allows it to adapt better to maternal 

conditions in multiple ways [73]. The male fetus of mothers with severe asthma, for ex-

ample, shows signs of impairment including intrauterine growth restriction (IUGR), 

preterm labor and stillbirth [74,75]. Females, on the other hand, adapt to the maternal 

condition of chronic asthma by reducing their growth, resulting in smaller but not 

non-IUGR. It has also been reported that the presence of a male fetus is associated with a 

maternal microvascular constriction in pre-eclamptic women. In pregnant women of a 

female fetus, maternal microvascular function was not significantly different between 

normotensive and hypertensive women [76,77]. 

Consequently, for example, male fetuses have less probability of survival than fe-

males when faced with adversity, as females react to adversities with a variety of strate-

gies, avoiding the risk of early mortality or morbidity but paying the price of increased 

vulnerability expressed later in the development and during the lifetime [78]. Male fe-

tuses in fact, invest resources in growth, and this strategy can contribute to their greater 

size at birth, but also to a relative poverty of resources to respond to subsequent exposure 

to stress and adversity. Because the male fetus has not conserved its resources, it has a 

limited ability to adapt to adversity and a greater risk of morbidity and mortality. By 

contrast, the female fetus does not invest so much in growth but conserves resources and 

adapts to maternal conditions in different ways [73,79,80]. 

5. Umbilical Cord 

The umbilical cord contains two arteries that carry deoxygenated, nutrient-depleted 

blood away, and a vein, which carries oxygenated, nutrient-rich blood to the fetus [81,82].  

The umbilical artery is made up of two main layers: an outer layer of muscle cells is 

found in a circular fashion and an inner layer with more irregularly available cells. The 

smooth muscle cells of the layer are poorly differentiated, containing only myofilaments 

[82].  

Moreover, the umbilical cord contains WJ, a gelatinous substance made largely from 

mucopolysaccharides, which protects the blood vessels inside. WJ is enveloped in amni-

otic epithelium or, at the fetal end, a Malpighian keratinized epithelium, and it is a tissue 

that is active metabolically, involved in fluid exchange between umbilical vessels and 

amniotic fluid [83]. WJ is the primitive connective tissue of the human umbilical cord, 

described for the first time by Thomas Wharton in 1656 [84]. Subsequently, research ef-

forts have attempted to optimize the isolation and differentiation of these cells from WJ 

[85,86]. 

An umbilical abnormality is represented by the presence of a single umbilical artery 

(SUA), a malformation that occurs when only one artery instead of two is present. In 

most cases, the baby is completely normal and healthy, but in a small percentage of ba-

bies the presence of a 2-vessel cord could indicate the presence of other abnormalities, 
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sometimes life-threatening [87]. In fact, this condition may be associated with fetal 

growth restriction and increased perinatal mortality [87–89] and other birth defects, such 

as spina bifida associated with hydrocephalus [90]. Several studies reported that SUA is 

more common in female than male babies and is associated with multiparity and ad-

vanced maternal age [88,91–93]. Only one study describes a greater frequency of SUA in 

male than in female babies with an association with multiparity and advanced maternal 

age [90]. 

Moreover, the umbilical coiling index (number of 360-degree spiral course of um-

bilical vessels, and predictor of pregnancy outcome and risk of low birth weight [94]) is 

reported to be significantly higher in female than in male newborns, due to higher 

number of cord coils, without any difference in cord length [95]. 

Morphology of the umbilical cord may be dependent on the mother’s condition 

during pregnancy. It has been reported that in pre-eclamptic women there was an in-

crease in the total area of the vessel, the total area of the vein, the total luminal area of the 

vein and the thickness of the wall of the arteries; the jelly area and the thickness of the 

vein wall decreased compared to the disease-free group [96]. In smoking pregnant 

women, umbilical arteries shows a thicker endothelial tissue with a different cell dis-

placement [97]. Moreover, umbilical cord from smokers suffering of IUGR display a 

higher content of WJ and a decreased area of the umbilical vessels in comparison with 

healthy samples [98]. In addition, A recent systematic review and meta-analysis aimed to 

assess the association of fetal sex with multiple maternal complications; on 74 studies 

selected, the occurrence of pregnancy complications differed according to fetal sex with a 

higher cardiovascular and metabolic load for the mother in the presence of a male fetus. 

All pregnancy complications (i.e., gestational hypertension, total pre-eclampsia, eclamp-

sia, placental abruption, and post-partum hemorrhage) tended to be associated with male 

fetal sex, except for preterm pre-eclampsia, which was more associated with female fetal 

sex [99]. 

6. Sex Differences in Cord Blood Cells, Plasma and Serum 

Numerous biomarkers are influenced by sex [2,100–105], and this is true also for 

cord blood, plasma and serum biomarkers (Table 1). 

It has been reported that in serum from vein of male umbilical cord the concentra-

tion of total testosterone, free testosterone, and estradiol, and inhibin (an inhibitor of 

FSH) are higher than in females [106]. Moreover, the authors reported that dehydroepi-

androsterone sulfate from arterial serum was higher than that from veins only in female 

samples [106], confirming that biochemical parameters may also depend on the site of 

blood sampling in a sex-specific way [5]. 

Umbilical cord concentrations of cortisol and corticosterone are higher in the female 

fetus [107,108], while growth hormone (GH) is higher in male cords [109]. 

Some authors observed that cord plasma insulin and C-peptide concentrations were 

higher in female fetuses than in male ones, assuming a possible insulin resistance in fe-

males [110,111]. Moreover, umbilical cord concentrations of leptin are significantly in-

creased in female fetuses, and it is associated with a higher placental weight only in fe-

males [112]. 

Some inflammatory and oxidative stress markers display a sexual dimorphism. For 

example, in plasma collected from premature twins the levels of 15-F(2t)-isoprostane 

(prostaglandin-like compounds formed in vivo from the free radical-catalyzed peroxida-

tion of essential fatty acids) was higher in premature males than in premature females, 

and this sex differences in vulnerability to lipid oxidants that occurs early in life could 

represent a biological mechanism contributing to sex disparity later in life [113]. Moreo-

ver, glutathione levels are higher in segments of male umbilical cord vein perfused with 

tert-butylhydroperoxide, an inducer of oxidative stress [114]. It has been reported also 

that high prenatal exposure to carbon monoxide as air pollutant is associated with a 
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significant reduction in cord blood mononuclear cell mitochondrial DNA copies, an ox-

idative stress biomarker, only in males [115]. 

Differences in DNA methylation are reported: cord blood from females have twice 

the number of methylated CpGs sites than males, which are associated with gene ex-

pression differences in many tissues such as brain, musculoskeletal, endocrinological and 

genitourinary [116]. 

Sex significantly affects cord blood complete blood count: male neonates have 

higher red blood cells, hemoglobin, hematocrit, and mean corpuscular hemoglobin con-

centration, and lower mean corpuscular volume, platelet and white blood cells counts 

than female neonates [117,118]. They also have higher lymphocyte, monocyte, eosinophil, 

basophil and lower neutrophil, metamyelocyte, myelocyte, and promyelocyte ratios than 

females [118]. Cord blood mononuclear cells are reported to be lower in males than in 

females. Moreover, CD34+ progenitor cells from male cord blood are significantly higher 

than those of female ones, and have higher capacity to produce colonies [119,120]. 

Moreover, a lower proportion of ILC2s (a type of innate lymphoid cell) are present in 

cord blood of human female neonates compared to males [121]. 

Fadini and colleagues reported that female newborns had a higher number of 

CD34+KDR+ endothelial progenitor cells than males [122]. Interestingly, progenitor cells 

from male and female cord blood display different gene expression: 1205 genes are up-

regulated in males and are related with sister chromatid segregation, chromosome seg-

regation, neural precursor cell proliferation, mitotic sister chromatid segregation and 

positive regulation of cell proliferation. By contrast, 1313 genes related to platelet activa-

tion, response to wounding, wound healing, cell activation and blood coagulation are 

upregulated in females [119]. These differences are also associated with sexually different 

signaling pathway: males have high expression of CD5, CD8B, CD20, CD21, CD24, 

CD126, CD127 and interleukin-7, mainly associated with lymphocyte function, while 

high expression of CD41, CD42, CD61 and thrombopoietin, associated with platelet 

function characterized females [119]. 

Table 1. Sex differences in cord blood, plasma and serum. 

Parameters Source M vs. F Comments Reference 

Total and free testosterone serum (venous) M > F 
Dehydroepiandrosterone sulfate from arterial 

serum > than that from vein only in F 
[86] 

Estradiol serum (venous) M > F  [86] 

Inhibin  serum (venous) M > F  [86] 

Cortisol and corticosterone 
serum (arterial 

and venous) 
M < F  [107,108] 

Growth hormone serum (venous) M > F  [109] 

Leptin 
serum (arterial 

and venous) 
M < F  [92] 

Insulin and C-peptide plasma M < F  [110,111] 

15-F(2t)-isoprostane plasma M > F Premature twins  [93] 

Gluthatione 
umbilical cord 

vein 
M > F 

Segments of umbilical cord vein perfused 

with tert-butylhydroperoxide  
[94] 

Mononuclear cell mitochon-

drial DNA copies 
cord blood M < F 

After prenatal exposure to carbon monoxide 

as air pollutant  
[95] 

DNA methylation cord blood M < F Number of methylated CpGs sites  [116] 

Red blood cells cord blood M > F  [117,118] 

Hematocrit cord blood M > F  [117,118] 

Hemoglobin cord blood M > F  [117,118] 

Mean corpuscular hemoglo-

bin concentration 
cord blood M > F  [117,118] 
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Mean corpuscular volume cord blood M < F  [117,118] 

Platelets cord blood M < F  [117,118] 

White blood cells cord blood M < F 

Lymphocyte, monocyte, eosinophil, baso-

phil > M, neutrophil, metamyelocyte, myelo-

cyte, and promyelocyte ratios > F 

[118] 

CD34+ progenitor cells cord blood M > F M have higher capacity to produce colonies  [119,120] 

ILC2s cord blood M > F  [121] 

CD34 + KDR + progenitor 

cells 
cord blood M < F  [122] 

M = males; F = females. 

7. Sex differences in -HUVECs and HUAECs 

HUVECs are a widely used in vitro model for the study of endothelium physiology 

and pathology [123,124]. Endothelial function and dysfunction display sex differences 

[125–127], but, although this aspect is clear, many authors still use HUVECs without re-

porting the donor sex. However, when male and female HUVECs were separately stud-

ied many differences emerged. Firstly, it is possible to observe male and female pheno-

types: a higher rate of proliferation and migration, and higher levels of both the gene and 

protein for nitric oxide synthase 3 are observed in female cells than in male ones [15,128]. 

By contrast male HUVECs seems to have a higher degree of constitutive autophagy (an 

homeostatic mechanism, which maintain also normal cardiovascular function and mor-

phology, through the lysosomal apparatus [129,130]): beclin-1 and the ratio LC3-II/LC3-I 

(the hallmark of the degree of autophagy activation), molecules involved in the different 

stages of autophagy, are significantly higher in male HUVECs, while some autophagy 

regulators, such as the mammalian target of rapamycin (mTOR) and the protein kinase B 

(AKT) are similar [15].  

Moreover, HUVECs from males resulted in being more apoptotic than female ones 

after serum starvation, while no significant sex differences were observed in the per-

centage of necrotic cells [131]. 

The gene and protein expression of estrogen receptors (ERα, ERβ and GPER) and 

androgen receptor (AR) are not different between sexes [15], but no consensus exist on 

this aspect: some authors report that male and female HUVECs do not express ERα, 

while ERβ and AR expression is similar [132], while others show that HUVECs of un-

known sex lack ERα and progesterone receptor (PR) type B (PRB) but express ERβ and 

PRA [133]. 

The vasoconstrictor thrombin is more efficient in female HUVECs than in male ones, 

in stimulating prostacyclin and prostaglandin E2 synthesis [134], and RLIP76, a Ral ef-

fector GTPase-activating protein, significantly altered the percentage of apoptosis only in 

female cells [135]. 

Many sex differences are reported with respect to tolerance to hypoxia, mRNA ex-

pression, and responses to shear stress [132,136,137]. Lorenz et al. demonstrate that 70 

genes are differentially expressed between the sexes: female HUVECs have a larger levels 

of genes related to the immune response and some genes involved in metabolism (for 

example, leptin, insulin receptors and some apolipoproteins), and that they also have a 

greater capacity to form tubes and tolerate the stress of serum deprivation better than 

their male counterparts [136]. These results indicate that there are some sex differences in 

autosomal genes, common to both sexes, rather than through expression of sex chromo-

some genes or sex hormones [138], and these sex-associated differences in gene expres-

sion may strongly affect the risk, incidence, prevalence, severity and age-of-onset of 

many diseases [139,140]. 

Moreover, a higher number of genes are up- or down-regulated in female HUVECs 

than in male ones, after shear stress induction: vascular cell adhesion protein 1 expres-

sion is down-regulated almost 22 times in female HUVECs and only 3.5 times in male 
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HUVECs [136]. Finally, unstimulated male HUVECs release more monocyte chemoat-

tractant protein 1 (MCP1) and interleukin 8 than female HUVECs [141]. A brief exposure 

to tert-butylhydroperoxide induces a higher mortality in male HUVECs than in female 

ones [142]. More recently it has been reported that male and female HUVECs diverged in 

their secretome: 20 proteins (mostly related to responses to stress, cytokine stimulus, and 

apoptosis) are more abundant in male cells, while only 3 proteins are more present in the 

female secretome (retinal dehydrogenase 1, 6-phosphogluconate dehydrogenase decar-

boxylating, and transitional endoplasmic reticulum ATPase) [131]. 

Using twin pairs to study sex differences in transcriptome, Hartaman and colleagues 

observed that HUVECs from twins of different sexes (male/female) had greater differ-

ences in their transcriptome (2528 differentially expressed gene versus 79 in the compar-

ison boy–boy versus girl–girl twins) than HUVECs from twins of the same sex (both 

male/male and female/female pairs). Females in boy/girl twins showed higher activation 

of endothelial pathways (endothelial to mesenchymal transition, hypoxia and nuclear 

factor-kappa B signaling), while males had significantly higher expression of Myc targets, 

oxidative phosphorylation and mTOR signaling [143]. Interestingly, some of the detected 

sex differences were maintained throughout life, confirming that sexual dimorphism 

starts in utero [143]. 

As regards HUAECs, no sex-related differences have been reported at present and to 

our knowledge, probably because they are a less used source of endothelial cells. 

8. Sex Differences in HUASMCs 

Few results are available about the influence of sex on HUASMCs. Cells from male 

and female neonates display sexual dimorphism in ERβ expression, with ERβ being more 

highly expressed in male-derived cells, while ERα is similarly expressed in both sexes 

[23]. ERα is also localized in HUASMCs starved for 5 days to allow for ERα 

up-regulation, and ERα is more highly expressed on average in HUASMCs from female 

donors than in HUASMCs from male donors [144]. 

Constitutive autophagy is similar between male and female HUASMCs, but they 

respond differently to pharmacological stimulations: serum starvation and rapamycin 

treatment (immunosuppressant and anticancer agent acting as a selective inhibitor of 

mTOR protein kinase, a pleiotropic agent in nutrient detection and signaling) [145] 

promote authophagy in both sexes, but especially in female cells increasing the LC3II/I 

ratio and decreasing the phosphorylation of the autophagic regulator mTOR. In addition, 

verapamil is able to increase LC3II/I ratio similarly in male and female HUASMCs, but it 

has a sex-specific effect in beclin-1 expression, indicating that treatments may activate 

sexually different signaling pathways in male and female HUASMCs autophagic process 

[23]. 

To the best of our knowledge, no further data on sex differences are available for a 

HUASMCs model.  

However, it has been reported that proliferation of HUASMCs is inhibited by es-

trogen or progesterone at physiological concentrations, and this correlates to the inhibi-

tion of MAPK and MEK activities, while testosterone has no effect; unfortunately no in-

dication of the infant’s sex is provided [146].  

9. Sex Differences in WJ Cells 

The WJ cell population expresses the characteristic phenotype of MSCs, exhibiting 

plastic adhesion and the expression of CD90, CD73 and CD105 [147]. Moreover, there are 

no safe data on the expression of estrogen and androgen receptors but only some reports 

regarding the effect of estradiol or testosterone on these cells [148–150]. 

Amniotic fluid-derived MSCs and WJ-MSCs, among the various tissues sources of 

stem cells, represent a promising cell population due to their high pluripotency, and 

WJ-MSCs have also attracted interest for their banking and transplantation capacities 

[151,152]. 
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Balzano et al. [153], recently, disclosed novel biomedical implications in WJ-MSCs 

related to the sex of the donor, thus providing additional cues to exploit their regenera-

tive potential in allogenic transplantation. They reported significantly higher gene ex-

pression of octamer-binding transcription factor 4 (OCT4), pluripotency gene, and the 

DNA-methyltransferase epigenetic modulator gene (DNMT1) in males than in females, 

while no sex differences have been detected in the expression levels of other stem-

ness-regulating genes such as SOX2, NANOG, and C-MYC [153]. In a later study, the 

authors suggest that sex may affect the potential and efficiency of WJ-MSCs differentia-

tion and autophagy: no significant differences between males and females were observed 

for miR-145-5p (target: OCT4 gene), and miR-185-3p (target: DNMT1 gene), while 

miR-148a-3p (target: OCT4 gene) was significantly lower in males. In addition, the au-

tophagic marker LC3II/I ratio was higher in female cells than in male ones, indicating a 

higher constitutive autophagy in female cells [154].  

Another study showed that baculoviral IAP repeat-containing protein 2 (BIRC2) and 

BIRC3 genes, which inhibit apoptosis by interfering with the activation of caspases, are 

higher, although not significantly, in WJ stem cells from male newborns, indicating, 

perhaps a sex difference in the sensitivity to apoptosis [155]. 

10. Conclusions 

Understanding the sex-specific mechanisms underlying susceptibility to future 

diseases could lead to sex-specific preventive interventions during early childhood. From 

this overview of the available literature, it emerges that the sex variable is still often for-

gotten in experimental models. In fact, for some cell types, which may be important for 

understanding sex differences in the pathophysiology of the cardiovascular system, such 

as the one we have analyzed, there are no data. The knowledge of sex differences is 

fundamental to the improvement of therapeutic response, at least for cardiovascular 

diseases in both men and women, as they are the main cause of mortality and morbidity 

for both sexes. In the era of personalized medicine, it is clear that animals, organs, cells 

and organelles of male and female origin should be used for drug screening and in di-

agnostic procedures in order to provide sex-based medicine that could lead to new 

therapy approaches and strategies, increasing the adequacy and safety of therapy. The 

inclusion of XX cells and female animals in experiments and the analysis of data by sex 

can contribute to solving, at least in part, the problem of irreproducibility observed in 

preclinical biomedical research, paying particular attention to methodological problems 

[3]. Therefore, our key message is that it is no longer reasonable to ignore methodological 

issues in sex-specific research, because only awareness of these issues can lead to inno-

vations. It is no longer sufficient to simply compare males and females on a range of 

health indicators, but there is a pressing need to use more sophisticated experimental 

designs, redefine old methods and develop new ones to produce new measures to study 

the influence of sex on health. A multilevel approach including molecular and cellular 

studies, the use of appropriate animal models, and well-designed human studies is re-

quired. In human research, experimental manipulation of prenatal stress and the intrau-

terine environment and access to many of the target tissues of interest, particularly in 

fetal life, are difficult to achieve. Therefore, for future research purposes, having simple 

experimental models available becomes primary for the comprehension of mechanisms 

of fetal programming. 
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