River (locality code) / Drainage	Country	Individuals	Haplotypes of cox1 (GenBank accession number)	Haplotypes of $n d h 1$ (GenBank accession number)	Haplotypes of cox1+ ndh1	Sequence variation at ITS region (GenBank accession number)
	$\begin{aligned} & 8 \\ & 4 \\ & 0 \\ & 0 \end{aligned}$	6 P	C1 (KJ525912.1)	-	-	-
		7 P	C1 (KJ525912.1)	-	-	-
		10P	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I7 (KJ525942.1)
		11P	C4 (KJ525915.1)	N4 (KJ525931.1)	CN6	I4 (KJ525939.1)
		12P	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I13 (KJ525948.1)
		13P	C4 (KJ525915.1)	N5 (KJ525932.1)	CN7	I14 (KJ525949.1)
		16P	C4 (KJ525915.1)	N6 (KJ525933.1)	CN8	I13 (KJ525948.1)
		19P	C5 (KJ525916.1)	N1 (KJ525928.1)	CN9	I10 (KJ525945.1)
		21P	C4 (KJ525915.1)	N4 (KJ525931.1)	CN6	I15 (KJ525950.1)
		22P	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I10 (KJ525945.1)
		23P	-	N1 (KJ525928.1)	-	I10 (KJ525945.1)
	$\begin{aligned} & 0 \\ & \frac{2}{4} \\ & 0 \\ & 0 \end{aligned}$	3 CW	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I4 (KJ525939.1)
		5CW	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I6 (KJ525941.1)
		6CW	C1 (KJ525912.1)	N3 (KJ525930.1)	CN3	-
		14CW	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	17 (KJ525942.1)
		15 CW	C2 (KJ525913.1)	N4 (KJ525931.1)	CN4	I8 (KJ525943.1)
		16 CW	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		17CW	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I7 (KJ525942.1)
		18CW	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
	$\begin{aligned} & \hat{Z} \\ & \underset{4}{0} \\ & 0 \end{aligned}$	1W	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I20 (KJ525955.1)
		2W	C6 (KJ525917.1)	N4 (KJ525931.1)	CN10	-
		3W	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I1 (KJ525936.1)
		4 W	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	
		5W	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I21 (KJ525956.1)
		10W	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		11W	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I22 (KJ525957.1)
		13W	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I20 (KJ525955.1)
		15W	C6 (KJ525917.1)	N4 (KJ525931.1)	CN10	I20 (KJ525955.1)

		$\begin{aligned} & 17 \mathrm{~W} \\ & 18 \mathrm{~W} \\ & 19 \mathrm{~W} \end{aligned}$	-	-	-	I10 (KJ525945.1)
			C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I4 (KJ525939.1)
			C6 (KJ525917.1)	N4 (KJ525931.1)	CN10	I23 (KJ525958.1)
	$\begin{aligned} & \text { R } \\ & \underset{y}{2} \\ & 0 \\ & 0 \end{aligned}$	1C	C1 (KJ525912.1)	N2 (KJ525929.1)	CN2	I1 (KJ525936.1)
		5 C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I2 (KJ525937.1)
		6 C	C1 (KJ525912.1)	N3 (KJ525930.1)	CN3	I3 (KJ525938.1)
		8 C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I4 (KJ525939.1)
		10C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I4 (KJ525939.1)
		11C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		12C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		15C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		16C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		23C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I5 (KJ525940.1)
		25 C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		28 C	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
	$\begin{aligned} & \underset{3}{2} \\ & \frac{1}{3} \\ & 0 \end{aligned}$	15	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I16 (KJ525951.1)
		4 S	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I4 (KJ525939.1)
		6 S	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I17 (KJ525952.1)
		75	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		8 S	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		95	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		10 S	-	N1 (KJ525928.1)	-	I18 (KJ525953.1)
		135	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I19 (KJ525954.1)
		22 S	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
	$\begin{aligned} & \text { Q } \\ & \substack{4 \\ 0 \\ 0} \end{aligned}$	1 J	C1 (KJ525912.1)	-	-	
		3 J	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		7J	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		8J	C1 (KJ525912.1)	-	-	-
		9 J	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	-
		10J	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	19 (KJ525944.1)
		14J	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I10 (KJ525945.1)
		16J	C3 (KJ525914.1)	N1 (KJ525928.1)	CN5	I4 (KJ525939.1)
		18J	C1 (KJ525912.1)	N1 (KJ525928.1)	CN1	I11 (KJ525946.1)

Table S2. Data on sampling localities from Poland and Lithuania

Geographical region	River	Locality code	Coordinates	Hydrological data	The conservation status of the species	Literature data
	Babrungas	BAB	$\begin{aligned} & 55^{\circ} 56^{\prime} \mathrm{N} \\ & 21^{\circ} 53^{\prime} \mathrm{E} \end{aligned}$	the right tributary of the Minija river, flows from the lake Plateliai, the catchment area about 270 km^{2},	average abundance of U. crassus 21.8 ind./m2 (results of the U. crassus inventory carried in 2016)	www.upese.lt Skujienė 2018
	Šešuvis	SES	$\begin{aligned} & 55^{\circ} 26^{\prime} \mathrm{N} \\ & 22^{\circ} 52^{\prime} \mathrm{E} \end{aligned}$	the main tributary of the Jūra river, 115 km long, the catchment area about $1.916 \mathrm{~km}^{2}$ there are almost no lakes in Šešuvis basin what caused its great seasonal fluctuations	Natura 2000 average abundance of U. crassus 1.2 ind./m2 (results of the first monitoring carried in 2008)	Skujienė 2018
	Zalvys	ZAL	$\begin{gathered} 55^{\circ} 49^{\prime} \mathrm{N} \\ 25^{\circ} 53^{\prime} \mathrm{E} \end{gathered}$	the tributary of the Zalve lake, flows from Duburis lake	Natura 2000 average abundance of U. crassus 10.5 ind./m2 (results of the first monitoring carried in 2008)	Skujienė 2018
	Virvita	VIR	$\begin{aligned} & 55^{\circ} 57^{\prime} \mathrm{N} \\ & 22^{\circ} 30^{\prime} \mathrm{E} \end{aligned}$	the left tributary of the Venta river	average abundance of U. crassus 18.85 ind./m2 (results of the U. crassus inventory carried in 2016)	Skujienė 2018
	Dubysa	DUB	$\begin{gathered} 55^{\circ} 57^{\prime} \mathrm{N} \\ 23^{\circ} 4^{\prime} \mathrm{E} \end{gathered}$	the tributary of Nemunas Dubysa is connected with the Venta river by the abandoned Windawski Canal	Dubysa Regional Park established in 1992 U. crassus was found in state monitoring in 2014-2015	Skujienė 2018 Zettler et al. 2005
	Luknelis	LUK	$55^{\circ} 12^{\prime} \mathrm{N}$ $25^{\circ} 53^{\prime} \mathrm{E}$	15 km long, the right tributary of the Žeimenos river	detailed study along the river confirmed that U. crassus survived in Luknelè	www.upese.lt Skujienė 2018

		Pilica	PIL	$\begin{gathered} 50^{\circ} 89^{\prime} \mathrm{N} \\ 19^{\circ} 80^{\prime} \mathrm{E} \end{gathered}$	the left-hand tributary of the Vistula River, flows into the middle Vistula virtually isolated from the rest of the rivers of the Carpathian foothills but connected with Nida River by the ecological corridor - Biala Nida River	Natura 2000 Pilica River as well as its tributaries are the appropriate habitat for the thick shell river mussels	Abraszewska-Kowalczyk 2002; http://natura2000.org.pl/
		Czarna Włoszczowska	CZW	$\begin{gathered} 50^{\circ} 95^{\prime} \mathrm{N} \\ 19^{\circ} 85^{\prime} \mathrm{E} \end{gathered}$	tributary of the Pilica River a small geographical distance from Warkocz, but hydrologically isolated population	Natura 2000 low density of population, even though the conservation status of the species was determined as poor	Abraszewska-Kowalczyk 2002; http://natura2000.org.pl/
		Warkocz	WAR	$\begin{aligned} & 50^{\circ} 83^{\prime} \mathrm{N} \\ & 20^{\circ} 75^{\prime} \mathrm{E} \end{aligned}$	tributary of the Lubrzanka River, than Czarna Nida River, Nida River and flows into the upper Vistula river the residual remaining of large Nida population from the 70 s; isolation from the 80 s ; a small geographical distance from Czarna Włoszczowska, but hydrologically isolated population	Natura 2000 not very large, but stable, sampled individuals of different age classes, although, the conservation status of the species determined as unsatisfactory - the risks resulting from the anthropogenic influence	Piechocki 1981; http://natura2000.org.pl/
		Cedron	CED	$49^{\circ} 88^{\prime} \mathrm{N}$ $19^{\circ} 73^{\prime} \mathrm{E}$	tributary of the Skawinka River hydrologically isolated population	Natura 2000 very large population; density 550 individuals $/ \mathrm{m}^{2}$ (dominated by juveniles)	Hus et al. 2006; http://natura2000.org.pl/
		Skawinka	SKA	$\begin{gathered} 49^{\circ} 90^{\prime} \mathrm{N} \\ 19^{\circ} 83^{\prime} \mathrm{E} \end{gathered}$	the right-hand tributary of the upper Vistula River once large, now rapidly declining population, isolated from remaining populations by the contaminated Vistula River; isolation from the 60s (personal communication, Zając)	Natura 2000 ow density of population, abnormal age structure; the conservation status of the species was determined as unsatisfactory	http://natura2000.org.pl/
		Jasiołka	JAS	$\begin{gathered} 49^{\circ} 70^{\prime} \mathrm{N} \\ 21^{\circ} 67^{\prime} \mathrm{E} \end{gathered}$	tributary of the Wisloka River which flows into the upper Vistula isolated from remaining populations (personal communication, Zając)	Natura 2000 large and stable population (personal communication, Zając K.)	Hus 2003; http://natura2000.org.pl/

