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Abstract: Implicit in the RNA world hypothesis is that prebiotic RNA synthesis, despite occurring
in an environment without biochemical catalysts, produced the long RNA polymers which are
essential to the formation of life. In order to investigate the prebiotic formation of long RNA
polymers, we consider a general solution of functionally identical monomer units that are capable
of bonding to form linear polymers by a step-growth process. Under the assumptions that
(1) the solution is well-mixed and (2) bonding/unbonding rates are independent of polymerization
state, the concentration of each length of polymer follows the geometric Flory-Schulz distribution.
We consider the rate dynamics that produce this equilibrium; connect the rate dynamics, Gibbs free
energy of bond formation, and the bonding probability; solve the dynamics in closed form for
the representative special case of a Flory-Schulz initial condition; and demonstrate the effects of
imposing a maximum polymer length. Afterwards, we derive a lower bound on the error introduced
by truncation and compare this lower bound to the actual error found in our simulation. Finally,
we suggest methods to connect these theoretical predictions to experimental results.

Keywords: origins of life; nonenzymatic polymerization; astrobiology; RNA world; prebiotic
chemistry; linear step-growth polymerization; Flory-Schulz distribution; chemical kinetics;
thermodynamics

1. Introduction

The RNA world hypothesis maintains that RNA molecules, being capable of both performing
functions and storing information, were the first self-replicating molecules in the origin of life [1,2].
Deamer et al. [3] have advanced a specific theory that outlines the importance of RNA to the origins
of life. Of particular interest is the formation of long RNAs called ribozymes which are capable
of catalysis [4,5]. A variety of ribozymes have been designed and synthesized [6], including some
capable of catalyzing the reactions necessary for RNA replication [7], and some capable of replicating
other ribozymes [8,9]. In theory, collections of ribozymes may form autocatalytic sets, leading to self
replication and evolution [10–13]. In order for a ribozyme to exist in the first place, non-enzymatic
RNA synthesis must have occured. Extensive experiments have been conducted on non-enzymatic
RNA polymerization in various settings, including lipid-assisted synthesis, templating, and chemical
activation of the phosphate [14]. Additionally, the effect of wet-dry cycling on RNA polymerization
has been studied in simulation [15–17] as well as experiment [18–20].

RNA polymerization occurs through dehydration synthesis: the ribose unit of one nucleotide
bonds with the phosphate unit of another, releasing a single water molecule. This is a classic example
of a polycondensation process [21]; however, classical models of polycondensation are not appropriate
for RNA polymerization because they were developed for chemical batch reactors where the reaction
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product is continuously evacuated to increase yield [22] (ch. 2). Instead, since the essential processes of
life take place in aqueous solution, the condensate is negligibly small in comparison to the solution
as a whole. As a result, the external concentration of water is approximately constant, so RNA
polymerization is more accurately modeled as a polyaddition process.

Consider an experiment initially consisting of a solution of monomers (e.g., nucleotides) capable
of bonding with each other to form polymers. Each monomer can support two bonds, one on its left
and one on its right, so that these monomers can link together to form linear polymers of an arbitrary
length. A contiguous chain of k monomer units will henceforth be referred to as a k-mer, including the
monomer case where k = 1. For the sake of visualization, one can imagine each monomer unit as a
puzzle piece with a A terminus and an B terminus. It is important to note that no matter how long a
polymer becomes, it always has precisely one unbound A terminus and one unbound B terminus.

We now make the assumption that the system is well-mixed in the sense that all reactants
move and interact freely independent of mass, polymerization status, etc. Under these conditions,
the polyaddition interaction between A and B termini is described by Hill-Langmuir protein-ligand
reaction kinetics; that is, the two termini bind to each other with a reaction rate constant k+, and bonded
A – B pairs separate from each other at a rate k−. These are assumed to be independent of the
configuration of the reacting monomer units; that is, the bonding rate k+ does not depend on whether
each A and B terminus is the endpoint of a long polymer or of a free monomer, nor is the unbonding rate
k− affected by the position of the A – B bond within a polymer. Under these conditions, the reactions
affecting each bonding site take the following simple form:

A + B
k+−−→←−−
k−

AB (1)

2. Flory-Schulz Polymer Length Distribution

We have assumed that all binding sites behave identically; this implies that each site has the same
(potentially time-varying) probability p of being occupied at any given time. This fact, independent of
bonding and un-bonding rates, leads very directly to a geometric distribution of polymer length [21].
Alternatively, Higgs [15] provides a proof of the Flory-Schulz distribution as an equilibrium state
characterized entirely by bonding and un-bonding rates as opposed to bonding probabilities.

To see how our bonding probability assumption leads to a geometric distribution, we can perform
the thought experiment of randomly selecting a k-mer of any length from the solution. Moving from
left to right along the k-mer, the probability of a bond existing between two consecutive monomer
units is p. In this way, we can view each k-mer as a sequence of Bernoulli trials, where the length
of the k-mer is the number of trials up to and including the first failure. The result is by definition a
geometric distribution with parameter p, so the probability mass function ρ(k) over polymer length is
given for positive k by:

ρ(k) = (1− p)pk−1 (2)

From this probability distribution over polymer length, we would like to find the expected
concentration of each k-mer as a function of our total concentration [U] of monomer units. If we define
n∗ to be equal to the total concentration of reactants, including monomers and polymers of all lengths,
the expected concentration n(k) of k-mers is given by multiplication with (2) as follows:

n(k) = n∗ρ(k) = n∗(1− p)pk−1 (3)

However, we would like to express this result in terms of [U] rather than n∗ because n∗ varies
with time as bonds break and reform, whereas [U] is fixed in a closed system. We can find the value of
n∗ using conservation of mass:
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[U] =
∞

∑
k=1

kn(k) = n∗(1− p)
∞

∑
k=1

kpk−1 = n∗(1− p)−1 =⇒ n∗ = (1− p)[U]

The distribution of polymer lengths for any bonding probability p is given by substituting the
value of n∗ into (3):

n(k) = (1− p)2 pk−1[U] (4)

2.1. Steady-State Bonding Probability from Reaction Rates

We consider a step-growth polymerization process described by (1), and assume that the total
number of reactants is large enough for the law of mass action to apply. Under these conditions, if we
introduce the equilibrium constant κ = k−/k+, the steady-state concentration of A – B bonds [AB] is
given by the Hill-Langmuir equation:

[AB] = [U]
[A]

[A] + κ

Here [A] is always equal to the total reactant concentration n∗ because each monomer or polymer
has exactly one unbound A and one unbound B terminus. Thus we can calculate the steady-state
bonding probability Pb:

Pb =
[AB]
[U]

=
n∗

n∗ + κ
=

(1− Pb)[U]

(1− Pb)[U] + κ
(5)

Rearranging to solve for Pb gives a quadratic equation with two real roots for positive values of κ.
One of these roots is greater than 1 and thus cannot correspond to a probability, so the other must be
the solution. We introduce the reduced rate constant κ̄ = κ/2[U] and solve to find a value of Pb which
can be substituted into (4):

Pb = 1 + κ̄ −
√

κ̄(2 + κ̄) (6)

2.2. Thermodynamics of Bonding

We have described the bonding sites as a vast number of non-interacting systems which alternate
stochastically between discrete states. This means that the steady-state probability of bonding can be
described by Boltzmann statistics if we associate a Gibbs free energy ∆Gb with the bound state:

Pb =
e−∆Gb/RT

1 + e−∆Gb/RT ⇐⇒ ∆Gb = −RT ln
Pb

1− Pb
(7)

For this system, the equilibrium constant κ must have units of concentration, meaning that the
commonly-employed expression κ = e∆Gb/RT is dimensionally inconsistent. Solving (5) for κ, then
substituting (7), we find:

κ =
[U]e∆Gb/RT

1 + e−∆Gb/RT

The relation defining the Gibbs free energy implies a functional dependence between ∆Gb and
temperature: ∆Gb = ∆Hb − T∆Sb, where ∆Hb and ∆Sb are the enthalpy and entropy of bonding
respectively. This means that depending on the signs of these two quantities, a polymerization reaction
may change favorability depending on temperature as shown in Table 1-3 of Voet & Voet [23]; both Pb
and κ will vary with temperature to reflect this. The four cases are compared in Figure 1 as well as in
Table 1.

We expect intuitively that in most polymerization reactions ∆Sb would be negative due to the
increased order, meaning that polymerization would have to be enthalpically favorable in order to be
observed at all. This explains the observation that polymerization is favorable at low temperatures but
polymers break down as temperature increases, for example in self-assembly of nanowires [24].
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Table 1. The temperature dependence of the equilibrium probability of bond formation Pb varies
depending on the signs of two key thermodynamic quantities of interest: the free enthalpy change ∆Hb
and the corresponding entropy change associated with bond formation. Compare to Figure 1, which
displays Pb as a function of temperature in these four cases.

∆Hb ∆Sb Effect on Pb

+ + Pb > 0.5 above ∆Hb
∆Sb

+ - Pb < 0.5 at all T
- + Pb > 0.5 at all T
- - Pb > 0.5 below ∆Hb

∆Sb

Temperature Θ (a.u.)
0.0
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Favorability of Polymerization

∆Hb > 0, ∆Sb > 0
∆Hb > 0, ∆Sb < 0
∆Hb < 0, ∆Sb > 0
∆Hb < 0, ∆Sb < 0

Figure 1. A comparison of the four different cases described in Table 1 for the signs of ∆Hb and ∆Sb.
When ∆Hb and ∆Sb have the same sign, there is a critical temperature Tc = ∆Hb

∆Sb
at which ∆Gb = 0,

so Pb = 50% and polymerization changes between being favorable and unfavorable. When the signs
differ, however, polymerization is either favorable or unfavorable regardless of temperature.

The suggestion that polymerization ought only to proceed when bond formation is enthalpically
favorable may appear to conflict with the fact that the formation of an ester linkage between a sugar
and a phosphate group is endergonic under standard conditions as shown in Table 13-4 of Nelson &
Cox [25]. However, this is a consequence of entropic unfavorability—by confining the reactants to
the surface of a microdroplet, Nam et al. were able to nearly eliminate the contribution of the T∆S
term to the free energy of esterification, revealing a favorable negative value of ∆H [26]. Other means
of reducing the entropic unfavorability of polymerization such as mineral surface adsorption [27],
restriction to small cavities [28], or the excluded volume effect of crowding [29] can also increase the
favorability of polymerization.

3. Dynamics

In this section, we look at another way of thinking about our chemical system. In particular,
we consider a countably infinite family of reaction equations which describe the way in which i-mers
and j-mers bond to form (i + j)-mers, represented with the chemical symbols Pi, Pj, and Pi+j. The
chemical equations in this family are of the form:

Pi + Pj
k+−−→←−−
k−

Pi+j (8)

It is perhaps not immediately obvious that (8) describes the same system as (1), but in fact they
are two different views of the same chemical process. From the perspective of bond formation, a k-mer
is identical to a monomer in that it has precisely one A terminus and one B terminus. In this view, (8) is
derived from splitting up the single reaction Equation (1) into separate chemical equations describing
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the behavior of each possible configuration of A and B termini: the A terminus is the end of an i-mer,
and the B terminus is the end of a j-mer.

3.1. Continuous Dynamics

We have found a set of chemical equations which describe the interactions of individual k-mers
Pk. This is fundamentally a stochastic jump process describing discrete numbers of k-mers, but in the
thermodynamic limit as the number of reactants grows very large, we can concern ourselves with the
deterministic, continuous evolution of the expected concentration n(k) of k-mers.

Our dynamics can be written as a system of differential equations describing the time derivative
of n(k). As is usual for deriving mass-action differential equations from systems of chemical equations,
we find the time derivative of n(k) by a summation over each place where Pk occurs in the system of
chemical equations: if it is on the left-hand side, a negative contribution is made to d

dt n(k), and if on
the right, the contribution is positive.

Any given Pk can appear in all three positions in the chemical Equation (8). For each equation
where Pk appears as the first term on the left side (i.e., for each possible synthesis partner j ∈ N),
we lose Pk at a rate k+[Pk][Pj], but gain it at a rate k−[Pk+j]. Each of those contributions should also
be doubled to handle the functionally identical case where Pk appears as the second term on the left
side. Finally, when Pk appears on the right side, for each possible split point j ∈ {1 . . . k− 1}, we gain
Pk at a rate k+[Pk−j][Pj] and lose it at a rate k−[Pk]. The facts above can be consolidated into a single
differential equation describing the evolution of n(k) = [Pk] as follows:

dn(k)
dt

=
∞

∑
j=1

2k−n(k + j)− 2k+n(k)n(j) +
k−1

∑
j=1

k+n(j)n(k− j)− k−n(k) (9)

3.2. Reduction to One Dimension

We consider the special case where the initial condition is a Flory-Schulz distribution (4) with rate
parameter p(0). For example, the p(0) = 0 case would be a solution consisting entirely of monomers,
and is particularly relevant as it is a popular experimental initial condition [18–20,30].

The derivation of the Flory-Schulz distribution holds for all time in a well-mixed step-growth
polymerization process, even as the distribution parameter p evolves. This has been predicted
theoretically [31] and demonstrated experimentally [24,32,33]. We would like to calculate the rate at
which the distribution parameter p changes with time. A generalization of this problem was discussed
in the context of self-assembling nanoparticles by Gu et al. [34] (SI 2).

Applying the principle of mass action to (1) to calculate the time derivative of the total
concentration of bonds [AB], then dividing through by [U] gives:

dp
dt

=
d
dt

[AB]
[U]

= [U]−1k+([U]− [AB])2 − k−[U]−1[AB] = [U]k+(1− p)2 − k−p (10)

The time evolution of the Flory-Schulz parameter p according to our closed-form solution of this
equation, together with the resulting time evolution of the polymer length distribution, is shown in
Figure 2. The initial condition is p = 0, corresponding to an all-monomer solution.

3.3. Closed-Form Solution

For the special case we just considered where the initial distribution is Flory-Schulz, the system
has been reduced to the one-dimensional ODE (10). We can go one step further: this ODE is separable
and admits a closed-form solution. In preparation for this, we will perform some simplifications. First,
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recall that the steady-state bonding probability Pb = 1 + κ̄ − ∆, where κ̄ = k−/k+
2[U]

and ∆ =
√

κ̄(2 + κ̄).
We nondimensionalize the ODE (10) by setting τ = 2k+[U]t, transforming the equation into:

dp
dτ

= 1
2 (1− p)2 − κ̄p

The result is a separable ODE, allowing us to write:∫ dp
1
2 (1− p)2 − κ̄p

=
∫

dτ = τ + c

This gives us τ as a function of p, which can be inverted to give a solution to the ODE:

p(τ) = 1 + κ̄ − ∆ tanh( 1
2 ∆τ + c)

We can fix p(0) to solve for the value of c:

c = tanh−1
(

1+κ̄−p(0)
∆

)
Finally, we can recover the original time parameterization by replacing τ with 2k+[U]t, which

gives the parameter of the Flory-Schulz distribution as a function of time:

p(t) = 1 + κ̄ − ∆ tanh
(

∆k+[U]t + tanh−1
(

1+κ̄−p(0)
∆

))
(11)

As τ → ∞, the tanh function asymptotically approaches a value of 1 regardless of initial condition,
which recovers the previously derived steady-state value Pb.
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Figure 2. Closed-form solution to the dynamics of the Flory-Schulz rate parameter p starting from an
initial condition p = 0, corresponding to an all-monomer solution. The parameter itself is shown on the
left, and the resulting concentrations of k-mers for k from 1 (blue) to 10 (cyan) are shown on the right.

4. Numerical Treatments

We have derived the rate dynamics of interacting k-mers (9) from the family of reaction
Equation (8). However, because the state vectors lie in an infinite-dimensional space, physically
realizable numerical methods require us to approximate these dynamics in finitely many dimensions.
From our work in Section 2, we know that the expected number of extremely long polymers tends to be
low due to the geometrically-distributed equilibrium state. Therefore, we can achieve very low error
by introducing a constraint d on the maximum length of polymers to be considered. This effectively
constrains the system from the infinite-dimensional space `2 down to the finite-dimensional Rd.
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4.1. Choice of Parameter Values

An experimentalist investigating polymerization in the lab might choose a set of representative
conditions in the form of an initial temperature, pH, total concentration of monomer units, and presence
of other cofactors such as salts. The dynamics of the system are determined by the rate constants
k+ and k−, which are a function of the experimental conditions; although the effect of pH and salt
cofactors on hydrolysis have been studied in depth, e.g., by Oivanen et al. [35], the effects of the same
on synthesis rates have remained obscure.

In our setting, we consider conditions common to experiments investigating the hot-spring origins
of life hypothesis [16,18,20], with temperature T = 85 ◦C and pH of approximately 3. This allows us
to take the approximate value of k− from the experimental results of Oivanen et al. [35] for similar
conditions. As noted in Section 2.2, although ester formation is endergonic under standard conditions,
it is enthalpically favorable and can be made spontaneous by decreasing its entropic unfavorability. We
assume that ∆Gb has been brought down by some means to an illustrative negative value, and compute
the corresponding value of k+.

4.2. Truncation

Although we seek to truncate the system to a finite dimension d, we do this not by throwing
away polymers which become too large, but rather by eliminating the formation of longer polymers in
the first place. This means that we approximate the family of reaction Equation (8) by prohibiting all
reactions which include a reactant of length greater than d:

Pi + Pj
k+−−→←−−
k−

Pi+j for i + j ≤ d (12)

The dynamics can be derived from the reaction family (12) in exactly the same way that (9) was
derived from (8), the only difference being that the first sum becomes finite due to the truncation. The
resulting system of ODEs, describing the evolution of a state vector x ∈ Rd whose components xk
represent the concentration of k-mers, is given by:

dxk
dt

=
d−k

∑
l=1

2k−xk+l − 2k+xkxl +
k−1

∑
l=1

k+xl xk−l − k−xk (13)

A perhaps more obvious method of truncation would be to keep the exact original form of (9),
but ignore lengths above d by taking n(k) = 0 for k > d. However, this approach leads to unsatisfactory
results because it is equivalent to permanently deleting any k-mer which forms with k > d. Since the
mass associated with these deleted k-mers is never returned to the system, mass is continually being
lost, so the system asymptotically approaches a steady state at x = 0.

4.3. Simulations

To demonstrate the dynamics of the system and the effects of truncation, we numerically solve (13)
starting from an initial solution of exclusively monomers for the truncation lengths d = 100 and d = 10,
and plot the concentration of k-mers up to length 10 over time in Figure 3. All simulations were run
using the DifferentialEquations.jl package [36] with parameters other than d held fixed; these values are
given in Table 2. The Github repository containing our simulation code is given in the Supplementary
Materials below.

The expected equilibrium state is the geometric distribution (4), which would appear uniformly
spaced on a logarithmic plot, with the dimer concentration equal to Pb multiplied by the monomer
concentration and so on. In the case where d = 100, this is exactly what we observe; however, when
we truncate to d = 10, the distribution goes through an inversion after which d-mers, rather than
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monomers, dominate. Since truncation depends on the assumption that longer polymers are negligible,
this is obviously nonphysical.

Table 2. Parameter values used in all numerical simulations.

Parameter Description Value

[U] initial monomer concentration 1 M
∆G Gibbs free energy of bonding −1.5 kcal/mol
k− unbonding rate 10−6 s−1

k+ bonding rate constant 7.4× 10−5 s−1mol−1

Pb steady-state bonding probability 89%
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Figure 3. Concentration of k-mers for k from 1 (blue) to 10 (cyan), for truncation lengths d = 100 (left)
and d = 10 (right). The d = 100 case, visually identical to the results shown in Figure 2, reaches the
correct geometric distribution, whereas the d = 10 case goes through a nonphysical inversion near time
t = 105.

Although each of our simulations converges to some steady-state distribution, the degree of
agreement with our theoretical prediction varies depending on the truncation length d. To visualize
this, Figure 4 plots the steady state distributions for three values of d compared to the theoretical
steady-state Flory-Schulz distribution.
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L
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.)

Steady-State Distribution Comparison

d = 10
d = 25
d = 100
Theoretical

Figure 4. The steady state concentration distribution for d = 10, d = 25, and d = 100 compared to the
closed-form solution. By d = 100, the numerical and analytical solutions are indistinguishable.

4.4. Error Bound

Since the Flory-Schulz distribution of polymer length which is the solution to the system of
reaction Equation (9) includes a non-zero expected concentration for polymers longer than any finite d,
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it is impossible for the truncated probability distribution which is the solution to (13) to be identical
to the infinite-dimensional solution. As noted above, the dynamics of (13) are exactly the result of
constraining the dynamics of (9) to finite maximum polymer length while preserving conservation
of mass. Therefore, the distance between the true solution n(k) and its projection n̂(k) onto the set of
d-dimensional distributions with the correct total mass provides a lower bound to the error of any
mass-preserving truncation of the reaction family (8). We can use the “mass operator” Mn = ∑ kn(k),
which counts the total concentration of monomer units in the system, to write this projection as:

minimize
n̂∈`2

‖n̂− n‖2 subject to Mn̂ = [U] and n̂(k) = 0 ∀k > d

We can simplify the objective by separating the portion of n̂ which is allowed to vary from the
infinite “tail” which is fixed to zero. Introducing the d-dimensional truncations x and x̂ of n and n̂
respectively, and letting y = n− x to capture the error in the tail, we have:

‖n̂− n‖2
2 =

∞

∑
k=1

(n̂(k)− n(k))2 =
d

∑
k=1

(n̂(k)− n(k))2 +
∞

∑
k=d+1

n(k)2 = ‖x̂− x‖2
2 + ‖y‖2

2 (14)

Now we can change variables to δx = x̂− x and find the optimal projection using ordinary least
squares. In plainer language, the problem being solved is to find the smallest correction δx whose
total mass is equal to that of the missing “tail” y. The finite-dimensional version of the mass operator
Mdx = ∑d

k=1 kxk can be constructed as a 1× d matrix whose entries are ascending integers.

minimize
δx∈Rd

‖δx‖2
2 subject to Md(x + δx) = [U] =⇒ Mdδx = [U]−Mdx = My (15)

The well-known closed-form solution to the ordinary least squares problem (15) is:

δx = (Md MT
d )
−1MT

d My

This can be brought into more elementary terms by calculating:

My =
∞

∑
k=d+1

kn(k) = [U](1− p)2
∞

∑
k=d+1

kpk−1 = [U](1 + d(1− p))pd

‖y‖2
2 =

∞

∑
k=d+1

n(k)2 =
∞

∑
k=d+1

(1− p)4[U]2 p2(k−1) =
(1− p)4[U]2 p2d

1− p2

Md MT
d =

d

∑
k=1

k2 = 1
6 d(d + 1)(2d + 1)

and

‖δx‖2
2 = δxTδx = MyMd(Md MT

d )
−1(Md MT

d )
−1MT

d My =
(My)2

Md MT
d

We can now directly calculate the total distance of the projection using (14).

‖n̂− n‖2
2 = ‖δx‖2

2 + ‖y‖2
2 =

6[U]2(1 + d(1− p))2 p2d

d(d + 1)(2d + 1)
+

(1− p)4[U]2 p2d

1− p2
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This provides a lower bound on the sum-squared error of any solution with maximum polymer
length d and the same total mass as the previously proven solution n(k). In order to make this result
more directly comparable between different parameter values, however, we will use the relative error:

E(p) =

√√√√‖n̂− n‖2
2

‖n‖2
2

= pd

√
1 +

6(1 + d(1− p))2(1− p2)

d(d + 1)(2d + 1)(1− p)4 > pd (16)

4.5. Applying the Error Bound

This result E, which is strictly greater than but asymptotically equal to pd, provides an absolute
lower bound on the `2 error between the instantaneous distribution of polymer lengths and any
mass-conserving finite approximation to this distribution. In other words, error terms on the order of pd

arise in any simulation of our chemical system, so long as the simulation (a) produces finite-dimensional
results and (b) obeys conservation of mass. These errors can be surprisingly large even for quite
reasonable-sounding d as p approaches 1. This result is relatively insensitive to the choice of error
metric; although we specifically investigate the case of `2 norm, other metrics which we tested in
simulation also produced error on the order of pd.

It is important to emphasize that this is a lower bound on error; this does not guarantee that a
certain choice of d will produce less than a certain error, which is in fact impossible without being
more specific about the method of solution. For example, in Figure 5, above a certain truncation
length of about d = 250, the finite precision of the solver becomes more of a limiting factor than the
truncation error. Likewise, early in the dynamical simulation when the instantaneous value of p is
very small, the error bound is practically useless. Instead, this bound guarantees that any simulation
which chooses d too small will produce at least a certain specified error.
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Figure 5. Comparison between the error bound (16) and the actual error in the results of our simulation.
The left figure depicts the steady-state error and the theoretical lower bound E(Pb) as a function of d,
and on the right is the time evolution of the error in a single simulation for d = 100, compared to the
bound E(p) computed from the instantaneous analytical value of p as in Figure 2.

As an example of applying this error bound in practice, if we consider a system with
∆Gb = −3.5 kcal/mol, corresponding to a steady-state bonding probability Pb = (1 + e∆Gb/RT)−1 ≈
99.3%, we can numerically solve (16) for d to find that a simulation with d < 700 cannot have final
relative error less than 1%. The simpler error bound E > Pd

b is even easier to apply: any truncation
length d < logPb

E∗ must produce final relative error E > E∗. In the above case, this laxer bound is
only able to rule out truncations up to d = 632, but the ease of calculation makes this bound probably
more useful than the tighter one.
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5. Comparison to Experiment

The main value of a theoretical model of any physical process is the predictive and interpretive
power it brings to designing and analyzing experimental results. In this section, we present a few
commonly measured experimental quantities and the predictions our theory makes about them.

5.1. Critical Concentration

As the total concentration [U] of monomer units increases, the concentration of monomers in the
final solution approaches a fixed value Cc called the critical concentration [37] (section 3.2). This value
is a function only of the rate constants, and can be calculated by taking the limit of n(1) as [U] is
taken to infinity. The monomer concentration n(1) is given by substituting (6) into the Flory-Schulz
distribution (4) with k = 1:

n(1) = (1− Pb)
2[U] =

(
κ̄2 − 2κ̄

√
κ̄(2 + κ̄) + κ̄(2 + κ̄)

)
[U]

As [U] grows to infinity, the reduced equilibrium constant κ̄ = κ/2[U] goes to zero, so we can
calculate Cc as:

Cc = lim
[U]→∞

n(1) = lim
[U]→∞

2κ̄[U] + o(κ̄2) = κ

The critical concentration provides an alternate route to experimental determination of rate
constants; since it is likely easier to measure the monomer concentration than to find the complete
length distribution, it is possible to use the critical concentration to find one rate constant given
the other.

5.2. Polymer Yield

Experimental studies commonly report the polymer yield, the fraction of mass which is converted
to polymers at equilibrium. We can compute this mass conversion efficiency η as:

η =
[U]− n(1)

[U]
= 1− (1− Pb)

2 = Pb(2− Pb) (17)

The analogous quantity derived from concentrations rather than masses is simply equal to Pb,
since the monomer concentration ratio is exactly 1− Pb.

5.3. Mass Distribution

It is frequently easier to measure the mass rather than the concentration of polymers of each given
length. For example, the output of high-performance liquid chromatography (HPLC) is a “spectrum”
where the height and location of each peak corresponds approximately to the total and per-molecule
mass of a reaction product respectively. For comparison with such results, we follow Flory’s treatment
of the polymer mass distribution m(k), which can be defined in terms of the concentration distribution
n(k) (3) as follows [38]:

m(k) = km0n(k)

Here, each term m(k) is the theoretical total mass of k-mers, and m0 is the molar mass of the
corresponding monomer. Since m(k) is a single peak distribution we can analyze an experimentally
determined mass distribution m̂(k) by matching the position k∗ of the peak of m(k) to the position k̂∗
of the peak of m̂(k). We find the peak of our theoretical distribution by differentiating m(k):

dm(k)
dk

= m0(1− p)2[U]pk(1 + k ln p)
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The unique zero of this equation is k∗, so according to our theory, the mode of the mass distribution
is related to the bonding probability by:

k∗ = −1/ ln p ⇐⇒ p = e−1/k∗ (18)

In other words, given an experimental Flory-Schultz-like mass distribution, one can derive the
value for the bonding probability p. At equilibrium, p→ Pb, so the Gibbs free energy of bond formation
can be calculated using (7).

As a simple example of how these results may be applied, Monnard et al. used HPLC to
measure nonenzymatic polymerization of activated nucleotides [28]. When multiple bases were mixed,
the HPLC results are difficult to interpret, but in the case with pure uridine, the result appears to
be a Flory-Schulz mass distribution with a mode of about 2. This corresponds by (18) to Pb ≈ 60%.
Substituting this value into (17), we expect polymer yield of η ≈ 85%, consistent with their reported
value of 88%.

We can also estimate the free energy of bond formation under their experimental conditions in
this way: when Pb ≈ 60%, the Boltzmann statistics of (7) give a free energy ∆G ≈ −0.2 kcal/mol,
corresponding to a process where bond formation is slightly favorable. Additionally, given the free
energy at two different temperatures, we can separate the entropic and enthalpic contributions. Since
this experiment was carried out at −18 ◦C, we can make a first approximation by assuming that our
calculated value is directly comparable to the value for sugar-phosphate esterification under standard
conditions of 3.3 kcal/mol as shown in Table 13-4 of Nelson & Cox [25].

The temperature of this experiment was 43 K colder than the standard temperature of 25 ◦C,
and the concomitant free energy change was 3.5 kcal/mol. Since ∆G = ∆H − T∆S, a bit of algebra
gives ∆S ≈ −0.1 kcal mol−1 K−1 and ∆H ≈ −20 kcal/mol. These conditions correspond to the case
in Figure 1 and Table 1 where polymerization is favorable below a critical temperature Tc ≈ −15 ◦C.
It seems suspect, however, that ∆H would be so large [26], suggesting that the role of entropy in bond
formation is reduced by the environment of the eutectic ice-water mixture, in agreement with the
commentary of Monnard et al. [28].

5.4. Degree of Polymerization

Another quantity commonly measured in experiments is the average degree of polymerization in
obtained solutions, e.g., [30]. Our model allows the evolution of this parameter to be calculated easily;
by Carother’s equation, the number average degree of polymerization is given by X̄n = 1

1−p , so we
can use (10) and the chain rule to calculate:

dX̄n

dt
=

d
dp

1
1− p

dp
dt

= 2k+[U]− k−X̄n(Xn − 1)

This correctly simplifies in the irreversible case k− = 0 or when the degree of polymerization
X̄n = 1 to a linear increase in degree of polymerization d

dt X̄n|X̄n=1 = 2k+[U]. This linear dependence
on initial concentration is in contrast to the quadratic dependence predicted for polycondensation.
We are not aware of a study of the time course of X̄n in RNA polymerization, but these dynamics have
been observed in the synthesis of nanowires by Gao et al. [24], in supramolecular polymerization of
micelles by Lu et al. [39], and in simulations of interfacial polymerization by Xing et al. [40]. In all
three cases, the reversibility of the polymerization process is also in evidence due to the slowdown in
the rate of increase in degree of polymerization.

6. Discussion

Our model provides an explicit description of the formation of RNA polymers in aqueous prebiotic
conditions as is necessary for the RNA-world hypothesis. The mathematical and computational models
presented in this paper generalize to all polymers that grow by polyaddition in well-mixed solutions.
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In these cases, as well as in polycondensation processes where the concentration of the condensate
remains approximately constant, our models describe the dynamics of the length distribution as well
as the eventual steady state. The time evolution of an initial Flory-Schulz distribution is completely
determined by the evolution of the bonding probability, for which we have stated a closed form
solution depending only on the forward and back reaction rates and the number of monomer units.

In the simple case of an initial population of RNA monomers in absence of any cofactors,
whenever polymerization is favorable in the sense that the Gibbs energy of bond formation is negative,
the steady-state concentration of polymers is expected to exceed the concentration of monomers.
However, we do not expect to see a population length inversion, sometimes dubbed a “kinetic
trap,” in which polymers of certain lengths achieve a greater concentration than any shorter polymer.
Any experimental deviation from these predictions with or without the presence of cofactors indicates
the presence of significant higher-order effects (e.g., hairpin structures, cyclical polymers, catalysis)
and may suggest future directions for mathematical models. The inclusion of the shielding of bonding
sites from hydrolysis by virtue of the secondary structure of RNA in the model may increase the
lifetime of long polymers in solution, leading to a recovery of kinetic trap-like behavior. Similarly,
should the RNA in question be encapsulated in lipid vesicles small enough to introduce finite-size
effects, or assisted in polymerization by association with a surface, then the statistics of our model
may no longer apply.

Additionally, when considering the hydrothermal origins of life hypothesis advanced by
Deamer et al. it becomes important to consider the effects of wet-dry cycling on RNA polymerization [3].
In the dry phase, polymerization is favorable due to the lack of hydrolysis but the well-mixed
assumption is violated. In the wet phase, polymerization is unfavorable due to the presence of
hydrolysis but the well-mixed assumption is upheld. Intuitively, this means that alternation between
a relatively long dry phase and short wet phase allows for the “well-enough mixing” of the RNA
molecules, such that the solution approaches the polymer distribution predicted for a dry phase
with mixing [15]. In short, wet-dry cycling leads to an effective increase in the probability of
bonding and therefore increases the concentration of long polymers. Besides wet-dry cycling, another
important feature of the hydrothermal hypothesis is the suggestion that biogenesis occurs at a certain
optimal temperature: it is well-known that elevated temperature is required to increase the rate of
biological reactions [3], but as temperature increases, polymerization becomes entropically unfavorable,
suggesting a Goldilocks effect with regard to the ambient temperature at the origins of life.

Supplementary Materials: The Julia code used to perform these simulations is available at the following GitHub
repository: https://github.com/atspaeth/PolyadditionModel.
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