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Abstract: The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes,
and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark,
melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation,
heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the
most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60
black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae
(Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has
only been sparsely sampled. By sequencing up to 92 species that will become reference genomes,
the “Shed light in The daRk lineagES of the fungal tree of life” (STRES) project will cover a broad
collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES
project will focus on mostly unsampled genera that display different ecologies and life-styles
(e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10-
to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established.
To identify metabolites and functional processes, these new genomic resources will be enriched with
metabolomics analyses coupled with transcriptomics experiments on selected species under various
stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a
reference and foundation for establishing an encyclopedic database for fungal metagenomics as well
as the biology, evolution, and ecology of the fungi in extreme environments.

Keywords: adaptation; black fungi; Dothideomycetes; Eurotiomycetes; Extremophiles; genomics;
metabolomics; secondary metabolites; stress conditions; transcriptomics

1. Introduction

Fungi are a large group of eukaryotic organisms ranging from unicellular yeasts to multicellular
filamentous forms. They have a global distribution due to their small size and their cryptic lifestyle
in soil, decomposing matter, and abilities to form a symbiosis with algae, plants, and animals [1–4].
Fungi are found in every biome including polar, temperate, and tropical environments. Black fungi are
an ecologically defined group of stress-tolerant specialists that share morphological similarity despite
diverse phylogenetic placement. Black fungi form a polyphyletic morpho-ecological group within
Ascomycota, Eurotiomycetes, and “Dothideomyceta” (a clade encompassing Arthoniomycetes and

http://www.mdpi.com/2075-1729/10/12/362?type=check_update&version=1


Life 2020, 10, 362 3 of 13

Dothideomycetes) [5]. They are often described with the terms black fungi, black yeasts (BY) and
relatives, meristematic fungi, microcolonial fungi (MCF), and rock inhabiting fungi (RIF).

A few examples of their morphology are reported in Figure 1.
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Figure 1. (A–E) Examples of black fungal colonies grown on Malt Extract Agar plates; (F–I) micromorphology
pictures of black fungi.

Black yeasts are among the most successful extremophiles and extreme-tolerant organisms
on Earth; they are distributed globally in harsh environments that impede colonization by most
life-forms. All black yeasts and meristematic fungi share a number of characters, such as yeast-like
polar budding, deep melanization, and meristematic growth [6], thick and even multi-layered cell
walls, and exo-polysaccharide production, resulting in an extraordinary ability to tolerate chemical
and physical stresses. Stresses include extreme pH, high and low temperature, heavy metals, as well
as radionuclides, desiccation, high concentrations of different kosmotropic and chaotropic salts [7],
UV ionizing radiation, alpha particles, and even real Space and simulated Mars conditions [8–13].
They also display a tremendous capacity to resurrect from dry conditions [14]. Constituent melanization
and meristematic growth (i.e., conversion towards isodiametric expansion) is infrequent in the fungal
kingdom and is a specific response to stress, thus providing the ability to cope with and adapt to
highly diverse stressing environments. The black yeasts are also known for their ability to survive in
all the extreme habitats including saltpans [15], acidic and hydrocarbon-contaminated sites [16–18],
exposed natural rocks [19] and stone monument surfaces [20], hot deserts [21], photocatalytic [22]
and solar panel [23] surfaces, and very cold icy habitats [24–31]. These fungi can usually colonize
human environments like dishwashers, steam baths, or sauna facilities; some have been isolated from
a silicone seal in hospitals and in tap water [32–34], while other species are domatia-associated [35]
(Figure 2). Few of them are involved in a broad range of diseases [36,37], while others, because of their
ability to degrade pollutants, are good candidates for bioremediation [38].
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To date, black fungi genome sequencing results are only a drop in the ocean and sequences
are only available for ca. 60 strains, mainly in the family Herpotrichiellaceae (Eurotiomycetes).
In contrast, the class Dothideomycetes which hosts the largest majority of extremophilic black
fungi remains largely unsampled. As a result, our understanding of the evolution and adaptation
strategies of this intriguing group of fungi remains limited. Studies on the genome evolution of these
microorganisms, colonizing a diverse array of inhospitable ecological niches, may enable understanding
of important genetic factors that govern their success in the extremes and will provide insights into the
existence and the understanding of novel enzymes for keeping an active metabolism under conditions,
normally incompatible with [39–41].

Black Fungi Profit from the Era of Genome Consortia

In 1996, the genome of Saccharomyces cerevisiae was published and marked the beginning of
a new era in fungal biology [42]. Advancements in high throughput sequencing technology have
been rapidly progressing and leading to the sequencing of species that can be incorporated into
genome-scale phylogenies, as evidenced by MycoCosm [43], with more than 1700 fungal genomes
(http://mycocosm.jgi.doe.gov), enabling these data as the starting point for an increasing number and
types of researches.

With this rapid development of DNA sequencing technology, this is the time for large-scale,
collaborative genomic studies. An international research team in collaboration with the U.S. Department
of Energy Joint Genome Institute has embarked on a five-year project to sequence 1000 fungal genomes
from across the Fungal Tree of Life (FTOL). The 1000 Fungal Genomes (1KFG) project which started
in 2011, aimed to sequence representatives of approximately two genera from each of the roughly
656 recognized families of Fungi [44] and, to date, more than 1500 reference genomes are available [4,45],
however, several lineages remain still unexplored. In this era of genome consortia, the overall plan
of the “Shed light in The daRk lineagES of the Fungal Tree Of Life” (STRES) project is to fill gaps in
the branches of the FTOL, where black yeasts are found to better reveal the genomic traits and fungal
metabolites that enable these microorganisms to inhabit and exploit the extremes.

http://mycocosm.jgi.doe.gov
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2. The STRES Project

STRES (www.stresblackfungi.org) is a 3-year large-scale community science program project
funded in September 2019 by the U.S. Department of Energy (DOE) Joint Genome Institute (JGI).

The STRES project will cover as best the amplitude of black fungal biodiversity along the
FTOL by sequencing up to 92 strains as reference genomes, representing primarily unsampled genera,
from different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.),
as well as more than 500 additional strains of black yeasts. We also proposed transcriptomics and
metabolomics experiments on a selection of reference species to track transcripts and expressed genes
under different stress conditions (i.e., salinity, dryness, UV radiation, and oligotrophy) to further
discern their roles in nutrient cycling, interactions in the environment, and to investigate the role of
melanin in utilizing radiation as an energy source. The project workflow is outlined in Figure 3.
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Figure 3. The integrated workflow of the STRES project’s multi-omics challenges is addressed for the
construction of high-quality reference genomes.

The STRES consortium is comprised of mycologists, molecular biologists and bioinformaticians
from nineteen universities and research institutions mainly from Europe and the US: University of
Tuscia (Italy), University of Trieste (Italy), University of Turin (Italy), Fondazione Edmund Mach (Italy),
University of Trento (Italy), Center of Expertise in Mycology of Radboud University Medical Center,
Nijmegen (The Netherlands), Freie Universität Berlin & Bundesanstalt für Materialforschung und
–prüfung, BAM (Germany), University of Ljubljana (Slovenia), University of Natural Resources
and Life Sciences (Austria), University of Graz (Austria), University of Debrecen (Hungary),
UC Riverside (CA, USA), The University of Arizona (USA), UC Davis (CA, USA), University of
North Carolina (USA), Center for Scientific Research and Higher Education of Ensenada CICESE
(Mexico), Acadia University (Canada), Nanjing Agricultural University (China), Universidade Federal
do Paraná (Brazil), The University of New South Wales Sydney (Australia), and German Centre
for Integrative Biodiversity Research (Germany). Furthermore, numerous researchers are actively
associated with the project and additional collaborations over the life of the project will be developed.

All strains proposed are currently preserved in private or public culture collections of the
international consortium assembled for this project.

The data acquired will serve as a reference and foundation for establishing an encyclopedic
database for fungal metagenomics, biology, evolution, and ecology and will further clarify how such
fungi adapt and succeed under extreme conditions. These data will also inform on their possible
applications in pollutant treatment, as well as possible preventive measures for material protection.

www.stresblackfungi.org
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2.1. Available Genomic Data

The application of high-throughput sequencing technologies to elucidate the genetic bases of
niche adaptation in black fungi started in 2011, when the first whole-genome sequence, belonging to
Exophiala dermatitidis (Chaetothyriales, Eurotiomycetes, Ascomycota) [46], was sequenced as a part
of the Fungal Genome Initiative (http://www.broadinstitute.org/annotation/genome/Black_Yeasts/
MultiHome.html). This work was followed by sequencing of four Aureobasidium pullulans varieties [47].

Continued efforts generated genomes of additional ca. 50 black fungi, producing an avalanche of
data for comparative genomics. We anticipate the genomes of strains proposed in this project will be
relatively small (20–50 Mbp) and haploid, with GC content varying between 49–57%, and a very low
abundance of repetitive elements.

In 2013, Lenassi et al. [48] reported the genome of Hortaea werneckii (Dothideomycetes) as 51.6 Mb,
larger than most phylogenetically related fungi and coding for almost twice the usual number of
predicted genes (23k), due to a possible relatively recent whole-genome duplication or hybridization.
Gene duplication events might have enabled the rapid evolution of proteins and consequently enhanced
the metabolic plasticity, increasing the fitness during the colonization of hostile ecological niches.
In 2014, the genome of an Antarctic endolithic black fungus, Cryomyces antarcticus, was released for
the first time [49]. Several Antarctic cryptoendolithic black fungi (i.e., Friedmanniomyces endolithicus,
F. simplex) have genomes of about 48 Mbp and have a high frequency of gene duplications compared to
other extreme-tolerant fungi [50,51]. The analyses of the transcriptome of Cladophialophora immunda
(Chaetothyriales, Eurotiomycetes), a black fungus typically associated with hydrocarbons polluted
environments, revealed that exposure to toluene activated degradation genes, which likely protects the
fungus [52]. Teixeira et al. [53] sequenced and annotated 23 Chaetothyriales genomes, reporting the
genome size varying from 25.81 Mb to 43.03 Mb and identifying a reduction of carbohydrate degrading
enzymes. Moreover, some genomes of domatia-associated species showed a relatively small size
(ca. 20 Mbp) compared to other Chaetothyriales; it was speculated that, despite the reduction of several
protein families, members of the clade might tolerate toxic compounds produced from exocrine glands
of the ants as a defense against microbes [35].

2.2. Main Objectives

The STRES project has three overarching objectives:

(I) Cover unsampled lineages and ecologies of black fungi.

During the 1st and 2nd years of the project, STRES aims to sequence and make available
to the scientific community the whole genomes from 92 black fungal taxa. Fifty-two species in
Dothideomycetes, one Arthoniomycetes species, and 39 in the Eurotiomycetes species have been
selected as a reference, covering all the main phylogenetic lineages of black fungi. The majority of
the selection represents hitherto unsampled groups. Other species will be included to improve their
previous poor assembly resolution or because of their very distant phylogenetic relationships with the
closest lineages (e.g., Coniosporium sp.). Several new taxa have been included and will be described
during the project. The selected strains represent diverse ecologies and the breadth of phylogenetic
lineages of black fungi for a comprehensive study of evolutionary processes and adaptations of these
fungi which could not be undertaken by a single laboratory.

(II) Track transcripts and metabolites under different stress conditions.

Transcriptomics and metabolomics experiments will be performed on a selection of reference
species to track transcripts and expressed genes under four different stress conditions (salinity, dryness,
UV radiation, oligotrophy) to discern their roles in nutrient cycling, interactions in the environment,
and to investigate the role of melanin in utilizing radiation. Transcriptomics and metabolomics
experiments will be performed on a selection of reference as the best representative of the main
phylogenetic lineages and ecologies: F. endolithicus, an endemic species of the Antarctic Desert as the

http://www.broadinstitute.org/annotation/genome/Black_Yeasts/MultiHome.html
http://www.broadinstitute.org/annotation/genome/Black_Yeasts/MultiHome.html
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most widespread, and C. antarcticus as a recurrent test organism for astrobiological experiments and
high multi-stress resistance [9,10,12]. Additional representatives of different ecologies and phylogenies
will be sampled among ants- and lichen- associated species, polluted environments, and highly
oxidizing surfaces.

(III) Black fungal stress database.

During the 3rd year, a curated repository to provide access to data generated from STRES for
comprehensive curated analyses will be developed. Genomics, transcriptomics, and metabolomics will
be integrated to look for genes encoding stress response proteins with verified physiological functions
and placed in a black fungal stress database. This deep genomic sampling of the diversity of these
fungi through the whole genome and transcriptome sequencing will be an immense and valuable
resource to understand the organization, regulation, and evolution of stress response systems on black
fungi as the background of all major fungal phyla.

2.3. Sampling to Sequencing

Sampling has been designed and performed in consultation with all the members of the consortium
and will leverage existing biological resources and expertise present in both internationally recognized
and private culture collections available for the STRES project.

Selection of the 92 black fungal species as reference genomes has been developed in concert with
existing large-scale genome studies to minimize redundancies, overarching most of the main unsampled
phylogenetic lineages where black fungi are placed, resulting in a total of 52 Dothideomycetes,
1 Arthoniomycetes, and 39 Eurotiomycetes (Figure 4).

The Dothideomycetes class encompasses many known extremophiles, such as psychrophilic,
acidophilic, and halophilic black fungi. Our selection of species aims to ensure a sample from all
described genera, ecologies, and geographic distributions including 31 species belonging to 8 families
and 6 orders and 16 representatives of new lineages that are being described. Species selected
in this class belong to Capnodiales (Teratosphaeriaceae, Neodevriesiaceae, Teratosphaeriaceae,
Mycosphaerellaceae, Incertae sedis), Venturiales (Sympoventuriaceae), Pleosporales (Dydimosphaeriaceae),
Dothideales (Dothioraceae), Botryosphaeriales (Botryosphaeriaceae), Lichenostigmatales (Incertae sedis);
Dothideomycetes Incertae sedis (e.g., Cryomyces antarcticus, C. funiculosus, Saxomyces penninicus,
and Coniosporium spp.).

A genome will be sampled from a new lineage in Arthoniomycetes which is sister to Dothideomycetes
and the largest taxonomic group of primarily lichenized fungi outside of Lecanoromycetes.

In the Eurotiomycetes Class, 21 described species belonging to 7 families and 3 orders and
18 representatives of new lineages will be sequenced: e.g., Chaetothyriales (Trichomeriaceae,
Herpotrichiellaceae, Cyphellophoraceae, Epibryaceae, Chaetothyriaceae); Chaetothyriales Incertae sedis
including Phaeoannellomyces elegans and a species belonging to Phaeococcomyces; Verrucariales (Verrucariaceae);
Verrucariales Incertae sedis; Phaeomoniellales (Phaeomoniellaceae).

Furthermore, 550 strains (within ~95% nucleotide identity of reference genomes) will be
re-sequenced to identify single nucleotide polymorphisms (SNPs) and characterize intraspecific
genomic variability related to specific stress adaptation, geography, and ecology. Most of the 550 strains
will be selected from culture collections involved in the project, but additional taxa proposed by
international specialists or scientists interested in joining the consortium may be evaluated by the
consortium and JGI and eventually included in the project.
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2.4. Methodologies

Here, the methodologies summarized in the workflow reported above in Figure 3 are here
briefly described. We will apply DNA and RNA following community protocols for high purity
(e.g., https://dx.doi.org/10.17504/protocols.io.rzkd74w). For the 92 standard coverage genomes, we will
provide high-quality DNA/RNA and a proper nucleic acid quantification for Illumina sequencing.
The short insert library alone, with standard coverage, has been demonstrated to be more than sufficient
for reference genomes, as reported by previous experience (e.g., 1KFG project). We will use an Illumina
low coverage-resequencing for up to 550 additional strains within ~95% nucleotide identity with
reference genomes.

The STRES project will be able to address critical evolutionary and biological research questions
by applying effective analysis methods.

(I) Description of particular genes as hallmarks for the whole group of black fungi.

• Phylogenomic profiling to give insights into the evolutionary history of uncovered clades throughout
the FTOL (e.g., the origin of symbioses).

• Single-nucleotide polymorphisms (SNPs) calling to identify genomic regions contributing to local
adaptation or even speciation.

• Detection of genes duplication or whole genome duplication as events contributing to the ability to
adapt to the extremes.

https://dx.doi.org/10.17504/protocols.io.rzkd74w
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• Carbohydrate-active enzymes (CAZymes), assuming that predicted metabolic competences vary
among different groups of black yeasts according to their phylogenetic affiliation and ecology.

• Hydrocarbon and monoaromatic-active enzymes. Some black fungi, particularly in the order
Chaetothyriales, are well known for their ability to degrade pollutants and hydrocarbons.
Understanding the distribution and functionality of these genes will also inform us of their
possible applications in bioremediation.

• Stress-tolerance involved enzymes. Genes involved in stress responses (e.g., UV and ionizing radiation,
osmotic, and thermal stresses) will be characterized.

• Secondary metabolite biosynthetic pathway genes as potential contributors to local adaptation.
• Transcription regulators (TFs) as drivers of adaptation and speciation.

(II) Transcriptomics, metabolomics, and data integration.

Different stress conditions will be tested on a selection of reference species in a special climate
chamber “Environment Emulation System” (http://eq-vibt.boku.ac.at/equipment/extreme-climate-
chamber/) (relative humidity up to 10%; oligotrophy; UV radiation and salinity stress) available at
BOKU University (Austria). We aim to (i) identify potential common/different metabolic patterns
across the different ecologies, and (ii) integrate metabolomic (both polar and non-polar metabolites)
and transcriptomic data. We are particularly interested in the role of melanin that enables black fungi
to utilize radiation for growing [54]; the utilization of these unconventional sources of energy may play
a significant role in conditions of continuous nutrient deficiency.

(III) Black fungi genome database and evolution of the stress response system of black fungi.

The Fungal Stress Response Database (http://internal.med.unideb.hu/fsrd2/?p=consortium) [55,56]
and the Saccharomyces cerevisiae- and Aspergillus nidulans-based stress response databases [57] currently
incorporate filamentous fungi and yeasts but do not specifically address stress-adapted species.
This existing database will be amended with genomes, transcriptomes, and metabolomes that will be
obtained in the frame of the STRES project.

3. Future Directions

The STRES project will generate an unprecedented, comprehensive data set of black fungal
genomes, allowing us to nearly complete the phylogenomic tree for the dark lineages of the FTOL and,
in concert with other projects, fungi in general. A broad research community of fungal systematists,
ecologists, and geneticists will benefit from the generated data, i.e., the reference genomes and
complementing information on fungal biology (metabolic pathway), ecology, and adaptation to stress
conditions and extremes. Furthermore, our results will play a critical role in the fungal metagenomics
community by providing a much-needed source of phylogenetically diverse, reference genomes.
The application of multi-omics approaches to extreme-tolerant and extremophilic fungi will strengthen
an existing community of users and attract interests from industries, enabling new, exploitable
biotechnological applications.

Additionally, the black fungi stress database, generated from this project, will integrate physiology,
ecological and geographic data with completely sequenced and annotated genomes and will represent,
for the first time, a systematic, comprehensive, and detailed overview of the stress response of these
microorganisms, aiming to decipher the remarkable stress tolerance of these fungi and to stimulate
further research in the field of fungal biology. The data acquired will serve to elucidate the possible
role of black fungi both in bioremediation and developing material protection measures for stone
monuments and solar panels, but most importantly to understand the balance and functionality of
extreme ecosystems and to speculate on how life, for as we know it, can adapt and evolve up to the
edge of life.

http://eq-vibt.boku.ac.at/equipment/extreme-climate-chamber/
http://eq-vibt.boku.ac.at/equipment/extreme-climate-chamber/
http://internal.med.unideb.hu/fsrd2/?p=consortium
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