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Abstract: Trajectory tracking is a common application method for manipulators. However, the
tracking performance is hard to improve if the manipulators contain flexible joints and mismatched
uncertainty, especially when the trajectory is nonholonomic. On the basis of the Udwadia–Kalaba
Fundamental Equation (UKFE), the prescribed position or velocity trajectories are creatively trans-
formed into second-order standard differential form. The constraint force generated by the trajectories
is obtained in closed form with the help of UKFE. Then, a high-order fractional type robust control
with an embedded fictitious signal is proposed to achieve practical stability of the system, even if the
mismatched uncertainty exists. Only the bound of uncertainty is indispensable, rather than the exact
information. A leakage type of adaptive law is proposed to estimate such bound. By introducing a
dead-zone, the control will be simplified when the specific parameter enters a certain area. Validity of
the proposed controller is verified by numerical simulation with two-link flexible joint manipulator.

Keywords: constraint-following; flexible joint manipulator; uncertain system; adaptive robust
control; Udwadia–Kalaba

1. Introduction

Conventional industrial robot manipulators generally use harmonic gears for excellent
performances. Meanwhile, the limited torsional stiffness caused by deformable parts also
introduces flexibility into the system. The flexibility of manipulator is sometimes used
to offset small errors or limit impact forces in case of potential collisions. However, it is
unwanted in most situations because of the ensuing vibrations and machining error [1,2].
As manipulators are widely used in aerospace, medical, machining, and other fields,
the flexibility is a non-negligible problem while optimizing the control performance [3–5].

In practical applications, it is often necessary for flexible joint manipulator (FJM) to
follow a prescribed trajectory. To obtain accurate motion, researchers have investigated
various control methods for the FJM, e.g., adaptive control [6,7], sliding mode control [8,9],
neural network control [10,11], boundary control [12], fuzzy logic control [13,14], and so
on. However, the design of the controllers mentioned above are all model-based, and con-
trollers achieve the expected tracking performance only if the model and the parameters
are completely available. Model-based control methods often fail when unpredictable
parameters change or external disturbances occur. Therefore, Ulrich et al. proposed a
composite control methodology for space manipulators affected by parametric uncertain-
ties and joint elastic vibrations. The control is aiming to cope with the adaptive trajectory
tracking issue [15]. The methodology could be decomposed into a decentralized adaptive
term for system stabilizing and a linear correction term for vibration dampening. He et al.
proposed a neural network controller for FJM based on state feedback [10]. The tracking
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performance of FJM, the bound of system state parameters, as well as the security of the
robot were all improved. In [9], Zaare et al. proposed a voltage-based adaptive sliding
mode control for FJM to deal with uncertainties and external disturbances in the tracking
process. Global asymptotic stability is achieved by dividing the FJM into n subsystems.
Combining interval triangular membership functions with Karnik–Mendel-type reduction
algorithm, Kelekci et al. presented an interval type-2 fuzzy logic controller for FJM to
yield improved performance of real-time trajectory and vibration control [13]. From the
literatures survey, it can be seen that most of the past researches regarded the given trajec-
tories as constraints directly. The designed controllers compare feedback positions with
prescribed trajectories to obtain the following error. Then, various methods mentioned
above compel the following error to zero (or a small neighborhood near zero), so that the
asymptotical stability of FJM system is guaranteed. This work provides a quite special
perspective: the given trajectories are regarded as a type of virtual force constraints and
the corresponding constraint-following control method is applied.

In the past decades, the theory of constraint-following control in the research of
trajectory tracking control has been of interest to many scholars. Compared with the
aforementioned researches [6–11,13–16], there is a significant difference: the concept of
such researches is to make the tracking error approaches to zero so that the motion of
FJM approaches to the prescribed trajectory. However, the theory of constraint-following
control regards the trajectories as virtual force constraints. The controller is designed to
add calculated equivalent forces which forced the system to trace given constraints [17].
How to obtain the constraint thereby becomes a critical issue. Udwadia and Kalaba
provided an effective way to solve this problem [18,19]. The Udwadia–Kalaba Fundamental
Equation (UKFE) could be applied to dynamic systems containing whether holonomic or
nonholonomic constraints, to obtain the constraint force in closed form. The UKFE method
greatly promotes the development of control for constrained mechanical systems. Later,
Chen illustrated the conception of constraint-following control systematically (also called
constraint servo control) [20–22]. On this basis, Xu et al. designed the trajectory tracking
control law for uncertain systems by combining with fuzzy control [23]. Zhao et al. solved
the trajectory tracking control problem of an artificial swarm system consisting of multiple
agents [24,25]. Zhao et al. realized the trajectory tracking control of uncertain systems with
given forces and constraint forces [26]. The existing applications have proved the validity
of UKFE. It would be an efficient method for the control of trajectory tracking for FJM, as
such field is not sufficiently investigated.

The use of manipulator is mainly focused on point-to-point motion and trajectory-
tracking applications. For trajectory-tracking, it is often used for milling, grinding, polish-
ing, and so on. As the manipulator has redundant degrees of freedom while machining,
the trajectory is usually programmed and optimized offline in advance under compre-
hensive consideration of error, efficiency, and the stiffness of different poses. The control
proposed in this work could be adopted in the predesigned trajectory and the calculation
is simplified. It is of great practical significance.

In this paper, the trajectory tracking control problem of FJM is explored. The main
contributions of this paper are fivefold. First, being different from previous studies on this
topic, the given trajectories are regarded as virtual force constraints. The required constraint
forces are obtained by using UKFE, whether the constraints are holonomic or nonholonomic.
Second, no extra state variable, Lagrange multiplier or quasi-coordinate is required for
the control design. Furthermore, there is no need for any force feedback but position
and velocity information. Third, the system may contain mismatched uncertainty [27].
A fictitious signal is used to divide the original system into cascaded subsystems so
that, the cascaded controls could be designed accordingly. Fourth, the given controller
contains high-order fractional polynomial terms. Engineers could enhance flexibility of the
controller by adjusting its order. Fifth, what indispensable is the existence of the bound of
uncertainty, rather than exact uncertainty information, so that the controller has a wider
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range of applications. In the meantime, a leakage type adaptive law is designed for the
estimation of such unknown bound information.

2. Dynamic System under Constraints

Consider the dynamic system in [17]:

M(q(t), σ(t), t)q̈(t) + R(q(t), q̇(t), σ(t), t)q̇(t) + D(q(t)), σ(t), t) = τ(t) (1)

where q ∈ Rn is the vector of coordinates, t ∈ R is the time, τ ∈ Rn denotes the torque
from motor, and σ ∈ Σ ⊂ Rp is the p-dimensional uncertain parameter with compact
and bounded set Σ which represents the possible bounding of σ. M(q, σ, t), R(q, q̇, σ, t)q̇,
and D(q(t)), σ(t), t) denote the inertial term, the centrifugal and Coriolis terms, and the
gravitation term, respectively, with appropriate dimensions.

Assume the system (1) satisfies the following constraints:

n

∑
i=1

Tri(q, t)q̇i = αr(q, t) (2)

where q̇i is the i-th element of q̇ and r = 1, 2, · · ·m with m ≤ n. Tri(·) ∈ Rm×n and
αl(·) ∈ Rn are both first-order continuous (C1) functions. Generally, the constraints are
nonholonomic; it is not necessary for the function (2) to be integrable. Rearrange (2) as the
matrix form:

T(q, t)q̇ = α(q, t) (3)

where T = [Tri]m×n and α = [α1 α2 · · · αm]T .
Then, convert (2) into second-order standard differential form [21]. Take derivative of

the given constraints (2) with respect to the independent variable t:

n

∑
i=1

(
d
dt

Tri(q, t)
)

q̇i +
n

∑
i=1

Tri(q, t)q̈i =
d
dt

αr(q, t) (4)

where

d
dt

Tri(q, t) =
n

∑
k=1

∂

∂qk
Tri(q, t)q̇k +

∂

∂t
Tri(q, t) (5)

d
dt

αr(q, t) =
n

∑
k=1

∂

∂qk
αr(q, t)q̇k +

∂

∂t
αr(q, t) (6)

Rewrite Equation (4) as follows:

n

∑
i=1

Tri(q, t)q̈i = −
n

∑
i=1

(
d
dt

Tri(q, t)
)

q̇i +
d
dt

αr(q, t)

=: βl(q, q̇, t)

(7)

where βl(q, q̇, t) = −∑n
i=1

(
d
dt Tri(q, t)

)
q̇i +

d
dt αr(q, t), rearrange into matrix form:

T(q, t)q̈ = β(q, q̇, t) (8)

where β = [β1 β2 · · · βm]T .

Remark 1. Based on the work in [21], most existing control problems, such as trajectory following
control, optimal control, and stabilization, can be transformed into constraint form (8).

Assumption 1. The functions M(·), R(·) and D(·) are Lebesgue measurable or continuous.
Moreover, for each (q, t) ∈ Rn × R, σ ∈ Σ, M(q, σ, t) > 0.
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Remark 2. In the past, the positive definiteness of the inertia matrix was widely perceived as a fact,
however, it has been proved as an assumption rather than a fact in [28] with some special cases in
which the inertia matrix is not positive definite.

Assumption 2. For any T and β, there exists at least one solution q̈ of the constraint
Equation (8). In other words, constraint Equation (8) is consistent.

In (3), the constraints are arbitrary, sometimes causing the constraint Equation (8) to
be unrealistic, however, Assumption 2 avoids this problem. In other words, the given
constraints should be reasonable.

Theorem 1. Ref. [29] A dynamic system described by (1) and required to obey constraints (8).
Subject to Assumptions 1 and 2, the force which compels the system to follow the given constraints
is calculated by

Qc =M1/2(q, σ, t)(T(q, t)M−1/2(q, σ, t)) + [β(q, q̇, t)

+ T(q, t)M−1(q, σ, t)(R(q, q̇, σ, t)q̇ + D(q, σ, t))]
(9)

where the superscript “+” denotes the Moore–Penrose generalized inverse and Qc obeys the La-
grange’s form of d’Alembert’s principle.

Remark 3. According to Theorem 1, we can get constraint force meeting the constraints (8),
but this is model-based, which means we need to obtain an accurate model. On this basis, the control
input applied to force the system with known uncertainty to meet constraints (8) can be acquired.
In more realistic situations, an adaptive control, which is designed for the situation of lacking of
uncertainty information, will be shown later.

3. Dynamic Model of Flexible Joint Manipulator under Constraints

According to the summary of Spong [2], we consider a FJM system which contains
uncertainties described by the following dynamic model:{

M(q1, σ1, t)q̈1 + R(q1, q̇1, σ1, t)q̇1 + D(q1, σ1, t) + K(σ1, t)(q1 − q2) = 0
I(σ2, t)q̈2 − K(σ2, t)(q1 − q2) = τ

(10)

where q1 = [q11 q12 · · · q1n]
T and q2 = [q21 q22 · · · q2n]

T are the generalized
coordinates of links and angles, respectively, with each component denotes the angle of
corresponding part, q = [qT

1 qT
2 ]

T denotes the generalized coordinates of the system.
The revolute joints of the manipulator system can be modeled as linear torsional spring
with stiffness K ∈ Rn×n, where K is diagonal and totally positive. The matrix M(q1, σ1, t)
and I(σ2, t) are the inertial terms of links and actuators, respectively, R(q1, q̇1, σ1, t)q̇1
is the centrifugal and Coriolis force, D(q1, σ1, t) is the mixed term of gravitation force,
Coulomb/viscous friction and external disturbances, τ is an n-dimensional vector which
stands for the input force from actuators. The uncertainties σ1 and σ2 may be fast time-
varying and mismatched.

Assumption 3. The inertia matrix M(q1, σ1, t) has upper and lower bounds [30]. Therefore,
there exist constants ρ̄, ρ > 0, making the following formula true for any q1 and σ1:

ρ ≤ ‖M(q1, σ1, t)‖ ≤ ρ̄ (11)

From (10) we know that the system is under-actuated, which means the control torque
from actuators cannot affect the links directly. Forces are transmitted by the elastic elements
in joints. On the other hand, the uncertainty may be mismatched. It cannot be controlled
directly by designing the input τ. To solve these problems, two steps are taken to design
the control.
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First, a fictitious control signal is designed and implanted into the system. The first
part of (10), and it can be rearranged as follows:

M(q1, σ1, t)q̈1 + R(q1, q̇1, σ1, t)q̇1 + D(q1, σ1, t) + K(σ1, t)q1 = K(σ1, t)(q2 − τ̃) + K(σ1, t)τ̃ (12)

where τ̃ is the implanted fictitious control and the first part of (10) is “controlled” by τ̃.
Second, multiply K−1(σ1, t) on both sides of (12), let x1 = q2 − τ̃, x2 = q̇2 − ˙̃τ, then we

can get the system as follows:

M̂(q1, σ1, t)q̈1 + R̂(q1, q̇1, σ1, t)q̇1 + D̂(q1, σ1, t) + q1 = x1 + τ̃ (13)

I(σ2, t)ẋ2 + I(σ2, t) ¨̃τ + K(σ2, t)x1 − K(σ2, t)q1 + K(σ2, t)τ̃ = τ (14)

where M̂(q1, σ1, t): = K−1(σ1, t)M(q1, σ1, t), R̂(q1, q̇1, σ1, t): = K−1(σ1, t)R(q1, q̇1, σ1, t),
D̂(q1, σ1, t): = K−1(σ1, t)D(q1, σ1, t). By taking such steps, the system (10) is divided into
link position subsystem (13) and joint position subsystem (14) with respective control input,
as well makes the system full-actuated.

Now, we consider the uncertainty in designing the control τ̃ and τ. Decompose the
matrices M̂, R̂, D̂, I and K as follows:

M̂(q1, σ1, t) =:M̄(q1) + ∆M(q1, σ1, t)

R̂(q1, q̇1, σ1, t) =:R̄(q1, q̇1) + ∆R(q1, q̇1, σ1, t)

D̂(q1, σ1, t) =:D̄(q1) + ∆D(q1, σ1, t)

I(σ2, t) =: Ī + ∆I(σ2, t)

K(σ2, t) =:K̄ + ∆K(σ2, t)

(15)

where M̄, R̄, D̄, Ī, K̄ stand for the nominal part, while ∆M, ∆R, ∆D, ∆I, ∆K denote uncertain
parts. Let

Ē(q1) =M̄−1(q1)

∆E(q1, σ1, t) =M̂−1(q1, σ1, t)− M̄−1(q1)

B(q1, σ1, t) =M̄(q1)M̂−1(q1, σ1, t)− E

(16)

where E is the identity matrix, thus ∆E(q1, σ1, t) = Ē(q1)B(q1, σ1, t).
In industrial engineering applications, the actuator is fixed to the link in general.

Thus, the link position subsystem (13) is usually driven to approximately follow the
given trajectory.

Assumption 4. For given q1 ∈ Rn, T(q1, t) is of full rank.

Assumption 5. For any T(q1, t) subject to Assumption 4 and given L ∈ Rm×m, L > 0, let

N(q1, σ1, t) = LT(q1, t)Ē(q1)B(q1, σ1, t)M̄(q1)TT(q1, t)(T(q1, t)TT(q1, t))−1L−1 (17)

for given (q1, t) ∈ Rn × R, there exists a (possibly unknown) constant κl > −1:

1
2

λmin(N(q1, σ1, t) + NT(q1, σ1, t)) ≥ κl (18)

where λmin(·) denotes the minimum characteristic value of matrix.

Remark 4. Assumption 4 assures the matrix T(q1, t)TT(q1, t) is invertible and the given con-
straints are reasonable. Generally, we can hardly get the accurate value of the constant κl as the
lack of information about the uncertainty bound. However, in the special case that there is no
uncertainty, which means M̂ = M̄, B = 0, N = 0, the constant can be chosen as κl = 0. By
continuity, Assumption 5 limits the effect of uncertainty on the inertial function M with a certain
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unidirectional threshold (i.e., it is bounded except a certain single direction), the effect is embodied
as the possible deviation of M from M̄.

4. Robust Servo Control Design

In Section 3, the whole system is divided into two parts. According to the new
structure of the system, the fictitious control τ̃ should be given first. The proposed τ̃
consists of three parts: p11(q1, q̇1, t) is the constraint control designed according to UKFE.
The compatible control p12(q1, q̇1, t) is employed to cope with the incompatibility of the
initial condition. As the uncertainty is always inevitable, p13(q1, q̇1, t) is the adaptive part
designed to counteract the effects of uncertainty.

Assumption 6. (i) There exists a (possibly unknown) j-dimensional constant vector
ψ1 ∈ (0, ∞)j and a known function Υ1(·) : Rj × Rn × Rn × R → R+, for given (q, q̇, t) ∈
Rn × Rn × R and σ1 ∈ Σ1:

Υ1(ψ1, q1, q̇1, t) ≥ max
σ1∈Σ1

‖LT(q1, t)[Ē(q1)(−∆R(q1, q̇1, σ1, t)q̇1 − ∆D(q1, σ1, t))

+ ∆E(q1, σ1, t)(−R̂(q1, q̇1, σ1, t)q̇1 − D̂(q1, σ1, t)− q1

+ p11(q1, q̇1, t) + p12(q1, q̇1, t))]‖ · (1 + κl)
−1

(19)

(ii) For given (q1, q̇1, t) ∈ Rn × Rn × R, the function Υ1(·) is C1, concave and non-
decreasing with respect to each component of its argument ψ1, i.e., for any
ψ11, ψ12 ∈ (0, ∞)j:

Υ1(ψ11, q1, q̇1, t)− Υ1(ψ12, q1, q̇1, t) ≤ ∂Υ1

∂ψ1
(ψ12, q1, q̇1, t)(ψ11 − ψ12) (20)

Assumption 7. (i) There exists a (possibly unknown) s-dimensional constant vector
ψ2 ∈ (0, ∞)s and a known function Υ2(·) : Rs × Rn × Rn × Rn × Rn × R→ R+, for given
matrix P = diag[Pi]n×n, Pi > 0, i = 1, 2, · · · n, and (q, q̇, t) ∈ Rn × Rn × R, σ2 ∈ Σ2:

Υ2(ψ2, q1, q̇1, x1, x2, t) ≥ max
σ2∈Σ2

‖−I(σ2, t) ¨̃τ − ∆K(σ2, t)x1 + ∆K(σ2, t)q1

+ ∆I(σ2, t)Px1 − K(σ2, t)τ̃ +
1
2

İ(σ2, t)(x2 + Px1)‖
(21)

(ii) For each (q1, q̇1, x1, x2, t) ∈ Rn × Rn × Rn × Rn × R, the function Υ2(·) is C1,
concave, and non-decreasing with respect to each component of its argument ψ2, i.e., for
any ψ21, ψ22:

Υ2(ψ21, q1, q̇1, x1, x2, t)− Υ2(ψ22, q1, q̇1, x1, x2, t) ≤ ∂Υ2

∂ψ2
(ψ22, q1, q̇1, x1, x2, t)(ψ21 − ψ22) (22)

Remark 5. Assumptions 6 and 7 refer to properties on the possible bound of uncertainty. The con-
stant vector ψ1,2 is unknown because it is related to the unknown boundary set of Σ1,2. In the
special case that Υ1,2 is linear with respect to ψ1,2, they (Assumptions 6 and 7) are always reached.
The mathematical expressions are as follows:

Υ1(ψ1, q1, q̇1, t) = Υ̂T
1 (q1, q̇1, t)ψ1 (23)

Υ1(ψ11, q1, q̇1, t)− Υ1(ψ12, q1, q̇1, t) = Υ̂T
1 (q1, q̇1, t)(ψ11 − ψ12) (24)

∂Υ1

∂ψ1
(ψ1, q1, q̇1, t) = Υ̂T

1 (q1, q̇1, t) (25)

Υ2 has a similar argument. Next, it will be demonstrated by the linear Υ1,2 we choose.
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Let

p11(q1, q̇1, t) =M̄
1
2 (q1)(T(q1, t)M̄−

1
2 (q1)) + [β(q1, q̇1, t)

+ T(q1, t)M̄−1(q1)(R̄(q1, q̇1)q̇1 + D̄(q1) + q1)]
(26)

p12(q1, q̇1, t) = −γ1M̄(q1)TT(q1, t)(T(q1, t)TT(q1, t))−1L−1(T(q1, t)q̇1 − α(q1, t)) (27)

The purpose of proposing control p11 is to compel the nominal system (the system
without uncertainty) to meet the given constraints by exerting constraint force. Dimension
of the designed control is the same as that of the input control τ. Thus, the design is
feasible. The constraints we consider is ideally met T(q1, t)q̇1 = α(q1, t). However, only
approximate constraints satisfy such conditions in practical applications. The reason is the
effect of uncertainty and the deviation between the initial condition of the system and the
expected constraints.

For given positive scalars ε1 > 0 and Γ ≥ 1, the proposed virtual control is

τ̃ = p11(q1, q̇1, t) + p12(q1, q̇1, t) + p13(q1, q̇1, t) (28)

where

p13(q1, q̇1, t) =− M̄(q1)TT(q1, t)(T(q1, t)TT(q1, t))−1L−1

× ϕ1(q1, q̇1, t)ρ1(q1, q̇1, t)Υ1(ψ̂1, q1, q̇1, t)
(29)

with

ϕ1(q1, q̇1, t) =
‖ρ1(q1, q̇1, t)‖Γ−1

∑Γ
l=0‖ρ1(q1, q̇1, t)‖Γ−lεl

1

(30)

ρ1(q1, q̇1, t) = (T(q1, t)q̇1 − α(q1, t))Υ1(ψ̂1, q1, q̇1, t) (31)

The parameter ψ̂1 is determined by the following adaptive law:

˙̂ψ1 = k1
∂ΥT

1
∂ψ1

(ψ̂1, q1, q̇1, t)‖T(q1, t)q̇1 − α(q1, t)‖ − ψ̂1 (32)

where constant k1 ∈ R+, ψ̂1(t0) ∈ (0, ∞)j, t0 is the initial time.

Remark 6. It can be seen that (30) is a fractional polynomial function with high-order terms. The
designed parameter Γ determines the specific formula of the proposed control. Engineers could
adjust the flexibility of the control with different orders. Large Γ should be used when the initial
state is far away from the desired position, i.e., ‖ρ1‖ � 1. This is because a larger Γ would lead to a
larger control input in the very beginning so that the following error would decrease faster. On the
contrary, for the simplicity purpose, a small Γ is better if the initial condition is close to the position
where it should be.

Now, we give the control torque of the whole system τ with a constant ε2 > 0,
the proposed real control τ is

τ = −Kpx1 − Kdx2 + K̄x1 − K̄q1 − ĪPx2 + p2 (33)

with

p2 =

{
− ρ2
‖ρ2‖

Υ2(ψ̂2, q1, q̇1, x1, x2, t), if ‖ρ2‖ > ε2

− ρ2
ε2

Υ2(ψ̂2, q1, q̇1, x1, x2, t), if ‖ρ2‖ ≤ ε2
(34)

where ρ2 = (x2 + Px1)Υ2(ψ̂2, q1, q̇1, x1, x2, t), Kp ∈ Rn×n and Kd ∈ Rn×n are diagonal
positive gain matrices.
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The parameter ψ̂2 is governed by the following adaptive law:

˙̂ψ2 = k2
∂ΥT

2
∂ψ2

(ψ̂2, q1, q̇1, x1, x2, t)‖x2 + Px1‖ − ψ̂2 (35)

where constant k2 ∈ R+, ψ̂2(t0) ∈ (0, ∞)s.

Remark 7. The adaptive laws (32) and (35) are used to estimate the possible boundary of the
uncertainty. As they are of leakage type, the parameters (ψ̂1 and ψ̂2) may decrease when the
constraint following error reduces. The constant scalars k1 and k2 determine the rate of convergence.

Theorem 2. Let x3(q1, q̇1, t) = T(q1, t)q̇1 − α(q1, t), ψ̃1 = ψ̂1 − ψ1, δ1 = [xT
3 ψ̃T

1 ]
T ;

ψ̃2 = ψ̂2 − ψ2, δ2 = [xT
1 xT

2 ψ̃T
2 ]

T , and δ = [δT
1 δT

2 ]
T . Subject to Assumptions 6 and 7,

the control (33) renders the combined systems (13), (14), (32), and (35) following performances:
(i) Uniform boundedness: For any r > 0, there is a d(r) < ∞ such that if δ(·) is any solution

with ‖δ(t0)‖ ≤ r, then ‖δ(t)‖ ≤ d(r) for all t ≥ t0.
(ii) Uniformly ultimately bounded: For any r > 0 with ‖δ(t0)‖ ≤ r, there exists a d > 0 such

that ‖δ(t)‖ ≤ d̄ for any d̄ > d as t ≥ t0 + T̄(d̄, r), where T̄(d̄, r) < ∞.

In the following proof process, for convenience, the parameters of functions are
retained only when they may be confusing. A Lyapunov function candidate we choose
as follows:

V(δ) = V1(δ1) + V2(δ2) (36)

with

V1(δ1) =
1
2

xT
3 Lx3 +

1
2
(1 + κl)ψ̃

T
1 k−1

1 ψ̃1 (37)

V2(δ2) =
1
2
(x2 + Px1)

T I(x2 + Px1) +
1
2

xT
1 (Kp + PKd)x1 +

1
2

ψ̃T
2 k−1

2 ψ̃2 (38)

Then, we prove that this Lyapunov function is legitimate.According to (37), the lower
bound is analyzed:

V1 ≥
1
2

λmin(L)‖x3‖2 +
1
2
(1 + κl)k−1

1 ‖ψ̃1‖2 ≥ h1‖δ1‖2 (39)

where h1 = min{ 1
2 λmin(L), 1

2 (1 + κl)k−1
1 }. Similarly, the upper bound is given by

V1 ≤
1
2

λmax(L)‖x3‖2 +
1
2
(1 + κl)k−1

1 ‖ψ̃1‖2 ≤ h2‖δ1‖2 (40)

where h2 = max{ 1
2 λmax(L), 1

2 (1 + κl)k−1
1 }, λmax(·) denotes the maximum characteristic

value of matrix.
Then, considering (38), we have

V2 ≥
1
2

θ‖x2 + Px1‖2 +
1
2

xT
1 (Kp + PKd)x1 +

1
2

k−1
2 ‖ψ̃2‖2

=
1
2

θ
[

xT
1 xT

2

][ P2 P
P E

][
x1
x2

]
+

1
2

[
xT

1 xT
2

][ Kp + PKd 0
0 0

][
x1
x2

]
+

1
2

k−1
2 ‖ψ̃2‖2

≥1
2

λmin(Ω1)(‖x1‖2 + ‖x2‖2) +
1
2

k−1
2 ‖ψ̃2‖2

≥h3‖δ2‖2

(41)

where θ = λmin(I), Ω1 =

[
θP2 + Kp + PKd θP

θP θE

]
, h3 = min{ 1

2 λmin(Ω1), 1
2 k−1

2 }.
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As Ω1 is positive definite, V2 is also positive definite. Then, we can get the upper
bound of V2:

V2 ≤
1
2

λmax(Ω2)(‖x1‖2 + ‖x2‖2) +
1
2

k−1
2 ‖ψ̃2‖2 ≤ h4‖δ2‖2 (42)

with

Ω2 =

[
θ̄P2 + Kp + PKd θ̄P

θ̄P θ̄E

]
, θ̄ = λmax(I), h4 = max{1

2
λmax(Ω2),

1
2

k−1
2 } (43)

Therefore, according to (39)–(42),

a1‖δ‖2 ≤ V ≤ a2‖δ‖2 (44)

where a1 = min{h1, h3}, a2 = max{h2, h4}. Yet we have proved V is positive definite
and decrescent.

For given uncertainty parameters σ1 ∈ Σ1 and σ2 ∈ Σ2 with the corresponding δ(t) of
the controlled system, the derivative of V1 is given by

V̇1 =xT
3 Lẋ3 + (1 + κl)ψ̃

T
1 k−1

1
˙̂ψ1

=xT
3 L(Tq̈1 − β) + (1 + κl)ψ̃

T
1 k−1

1
˙̂ψ1

=xT
3 L{T[M̂−1(−R̂q̇1 − D̂− q1 + x1) + M̂−1(p11 + p12 + p13)]− β}

+ (1 + κl)ψ̃
T
1 k−1

1
˙̂ψ1

(45)

these terms will be analyzed separately.
Using decomposition of M̂−1, R̂, D̂ in (15) and by Equation (16), we have

T[M̂−1(−R̂q̇1 − D̂− q1 + x1) + M̂−1(p11 + p12 + p13)]− β

=T[(Ē + ∆E))(−R̄q̇1 − D̄− q1 − ∆Rq̇1 − ∆D)

+ (Ē + ∆E))(p11 + p12 + p13) + M̂−1x1]− β

=T[Ē(−R̄q̇1 − D̄− q1) + Ē(p11 + p12) + Ē(−∆Rq̇1 − ∆D)

+ ∆Ē(−R̂q̇1 − D̂− q1 + p11 + p12) + (Ē + ∆E))p13 + M̂−1x1]− β

=T[Ē(−R̄q̇1 − D̄− q1) + Ēp11]− β + TĒp12 + T(Ē + ∆E))p13

+ T[Ē(−∆Rq̇1 − ∆D) + ∆Ē(−R̂q̇1 − D̂− q1 + p11 + p12)] + TM̂−1x1

(46)

by (9) and (26), under the nominal condition (i.e.,no uncertainty exists, σ1 ≡ 0, M̂−1 = M̄−1,
R̂ = R̄, D̂ = D̄, Qc = p11), we have

T[Ē(−R̄q̇1 − D̄− q1) + Ēp11]− β = 0 (47)

According to the given p12 in (27) and after performing some algebraic operations,
we have

xT
3 LTĒp12 =xT

3 LTĒ[−γ1M̄TT(TTT)−1L−1(Tq̇1 − α)]

=− γ1xT
3 (Tq̇1 − α)

=− γ1‖x3‖2

(48)

According to the given p13 in (29) and with ∆E = ĒB in (16), one has

xT
3 LT(Ē + ∆E))p13 =xT

3 LTĒ{−[M̄TT(TTT)−1L−1]ϕ1ρ1Υ1(ψ̂1, q1, q̇1, t)}
+ xT

3 LTĒB{−[M̄TT(TTT)−1L−1]ϕ1ρ1Υ1(ψ̂1, q1, q̇1, t)}
(49)
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Based on (31), we have ρ1 = x3Υ1(ψ̂1, q1, q̇1, t), after matrix cancellation:

xT
3 LTĒ{−[M̄TT(TTT)−1L−1]ϕ1ρ1Υ1(ψ1, q1, q̇1, t)} =− (x3Υ1(ψ1, q1, q̇1, t))T ϕ1ρ1

=− ϕ1‖ρ1‖2
(50)

Adopting the Rayleigh’s principle and invoking (18) in Assumption 5, we can get

xT
3 LTĒB{−[M̄TT(TTT)−1L−1]ϕ1ρ1Υ1(ψ̂1, q1, q̇1, t)}

=− ρT
1 [LTĒBM̄TT(TTT)−1L−1]ϕ1ρ1]

=− ϕ1
1
2

ρ1[LTĒBM̄TT(TTT)−1L−1 + L−1(TTT)−TTM̄BT ĒTT L]ρ1

≤− ϕ1
1
2

λmin(N + NT)‖ρ1‖2

≤− ϕ1κl‖ρ1‖2

(51)

therefore, we can show that

xT
3 LT(Ē + ∆E))p13 ≤ −ϕ1(1 + κl)‖ρ1‖2 (52)

based on Assumption 6:

xT
3 LT[Ē(−∆Rq̇1 − ∆D) + ∆Ē(−R̂q̇1 − D̂− q1 + p11 + p12)]

≤‖x3‖‖LT[Ē(−∆Rq̇1 − ∆D) + ∆Ē(−R̂q̇1 − D̂− q1 + p11 + p12)]‖
≤‖x3‖(1 + κl)Υ1(ψ1, q1, q̇1, t)

(53)

Based on the inequality ab ≤ 1
2 (a2 + b2), a, b ∈ R, for any ω > 0, we have

xT
3 LTM̂−1x1 ≤‖x3‖‖LTM̂−1‖‖x1‖

≤1
2
‖LTM̂−1‖(ω‖x3‖2 + ω−1‖x1‖2)

≤1
2

λAω‖x3‖2 +
1
2

λAω−1‖x1‖2

(54)

where λA ≥ ‖LTM̂−1‖ is a constant. Thus, according to (31), for all ε1 > 0,

xT
3 Lẋ3 ≤− γ1‖x3‖2 − ϕ1(1 + κl)‖ρ1‖2 + ‖x3‖(1 + κl)Υ1(ψ1, q1, q̇1, t)

+
1
2

λAω‖x3‖2 +
1
2

λAω−1‖x1‖2

≤− (γ1 −
1
2

λAω)‖x3‖2 + (1 + κl)(‖ρ1‖ −
‖ρ1‖Γ+1

∑Γ
l=0 ‖ρ1‖Γ−lεl

1

)

+ ‖x3‖(1 + κl)(Υ1(ψ1, q1, q̇1, t)− Υ1(ψ̂1, q1, q̇1, t)) +
1
2

λAω−1‖x1‖2

(55)

as ε1 > 0, we can show

−‖ρ1‖Γ+1 ≤ −‖ρ1‖Γ+1 + εl+1
1

= (−‖ρ1‖+ ε1)
Γ

∑
l=0
‖ρ1‖Γ−lεl

1
(56)

this lead to

xT
3 Lẋ3 ≤− (γ1 −

1
2

λAω)‖x3‖2 + (1 + κl)ε1 +
1
2

λAω−1‖x1‖2

+ ‖x3‖(1 + κl)[Υ1(ψ1, q1, q̇1, t)− Υ1(ψ̂1, q1, q̇1, t)]
(57)
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By Assumption 6, we have

Υ1(ψ1, q1, q̇1, t)− Υ1(ψ̂1, q1, q̇1, t) ≤
∂ΥT

1
∂ψ1

(ψ̂1, q1, q̇1, t)(ψ1 − ψ̂1) (58)

this leads to

xT
3 Lẋ3 ≤− (γ1 −

1
2

λAω)‖x3‖2 + (1 + κl)ε1 +
1
2

λAω−1‖x1‖2

+ (1 + κl)‖x3‖
∂Υ1

∂ψ1
(ψ̂1, q1, q̇1, t)(ψ1 − ψ̂1)

(59)

Combine the second term on the right-hand side (RHS) of (45) with the adaptive
law (32), we can get

(1 + κl)ψ̃
T
1 k−1

1
˙̂ψ1 =(1 + κl)ψ̃

T
1 k−1

1 (k1
∂ΥT

1
∂ψ1

(ψ̂1, q1, q̇1, t)‖x3‖ − ψ̂1)

=(1 + κl)ψ̃
T
1 k−1

1 [k1
∂ΥT

1
∂ψ1

(ψ̂1, q1, q̇1, t)‖x3‖ − (ψ̂1 − ψ1)− ψ1]

≤(1 + κl)‖x3‖
∂Υ1

∂ψ1
(ψ̂1, q1, q̇1, t)ψ̃1

− k−1
1 (1 + κl)‖ψ̃1‖2 + k−1

1 (1 + κl)‖ψ̃1‖‖ψ1‖

≤(1 + κl)‖x3‖
∂Υ1

∂ψ1
(ψ̂1, q1, q̇1, t)(ψ̂1 − ψ1)

− 1
2

k−1
1 (1 + κl)‖ψ̃1‖2 +

1
2

k−1
1 (1 + κl)‖ψ1‖2

(60)

According to (59) and (60), we have

V̇1 =− (γ1 −
1
2

λAω)‖x3‖2 + (1 + κl)ε1 +
1
2

λAω−1‖x1‖2

− 1
2

k−1
1 (1 + κl)‖ψ̃1‖2 +

1
2

k−1
1 (1 + κl)‖ψ1‖2

≤− λ1‖δ1‖2 + (1 + κl)ε1 +
1
2

k−1
1 (1 + κl)‖ψ1‖2 +

1
2

λAω−1‖x1‖2

(61)

where λ1 = min{γ1 − 1
2 λAω, 1

2 k−1
1 (1 + κl)}.

The derivative of V2 is shown as

V̇2 =(x2 + Px1)
T I(ẋ2 + Px2) +

1
2
(x2 + Px1)

T İ(x2 + Px1)

+ xT
1 (Kp + PKd)x2 + ψ̃T

2 k−1
2

˙̂ψ2

=(x2 + Px1)
T(−I ¨̃τ − Kx1 + Kq1 − Kτ̃ + τ + IPx2 +

1
2

İx2 +
1
2

İPx1)

+ xT
1 (Kp + PKd)x2 + ψ̃T

2 k−1
2

˙̂ψ2

(62)

Based on (15), introducing the decomposition of I and K, we have

V̇2 =(x2 + Px1)
T(−Iτ̈1 − Kτ̃ + τ − K̄x1 + K̄q1 + ĪPx2 − ∆Kx1 + ∆Kq1

+ ∆IPx1 +
1
2

İx2 +
1
2

İPx1) + xT
1 (Kp + PKd)x2 + ψ̃T

2 k−1
2

˙̂ψ2
(63)
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Based on Assumption 7 and the control (33) and (34), it can be seen that

V̇2 =(x2 + Px1)
T(−Iτ̈1 − Kτ̃ − ∆Kx1 + ∆Kq1 + ∆IPx1 +

1
2

İx2 +
1
2

İPx1

− Kpx1 − Kdx2 + p2) + xT
1 (Kp + PKd)x2 + ψ̃T

2 k−1
2

˙̂ψ2

≤‖x2 + Px1‖Υ2(ψ2, q1, q̇1, x1, x2) + (x2 + Px1)
T p2

+ (x2 + Px1)
T(−Kpx1 − Kdx2) + xT

1 (Kp + PKd)x2 + ψ̃T
2 k−1

2
˙̂ψ2

(64)

If ‖ρ2‖ > ε2, we have

‖x2 + Px1‖Υ2(ψ2, q1, q̇1, x1, x2) + (x2 + Px1)
T p2

≤‖x2 + Px1‖Υ2(ψ2, q1, q̇1, x1, x2)− ‖x2 + Px1‖
‖ρ2‖
‖ρ2‖

Υ2(ψ̂2, q1, q̇1, x1, x2)

=‖x2 + Px1‖Υ2(ψ2, q1, q̇1, x1, x2)− ‖x2 + Px1‖Υ2(ψ̂2, q1, q̇1, x1, x2)

≤‖x2 + Px1‖
∂Υ2

∂ψ2
(ψ̂2, q1, q̇1, x1, x2)(ψ2 − ψ̂2)

(65)

If ‖ρ2‖ ≤ ε2, according to (‖ρ2‖/
√

ε−
√

ε/2)2 ≥ 0, we have

‖x2 + Px1‖Υ2(ψ2, q1, q̇1, x1, x2) + (x2 + Px1)
T p2

≤‖x2 + Px1‖Υ2(ψ2, q1, q̇1, x1, x2)− ‖x2 + Px1‖
‖ρ2‖

ε2
Υ2(ψ̂2, q1, q̇1, x1, x2)

=‖x2 + Px1‖Υ2(ψ2, q1, q̇1, x1, x2)− ‖x2 + Px1‖Υ2(ψ̂2, q1, q̇1, x1, x2)

+ ‖x2 + Px1‖Υ2(ψ̂2, q1, q̇1, x1, x2)−
1
ε2
‖x2 + Px1‖2Υ2

2(ψ̂2, q1, q̇1, x1, x2)

≤‖x2 + Px1‖
∂Υ2

∂ψ2
(ψ̂2, q1, q̇1, x1, x2)(ψ2 − ψ̂2) +

ε2

4

(66)

Thus, for all ε2 > 0,

‖x2 + Px1‖Υ2(ψ2, q1, q̇1, x1, x2) + (x2 + Px1)
T p2

≤‖x2 + Px1‖
∂Υ2

∂ψ2
(ψ̂2, q1, q̇1, x1, x2)(ψ2 − ψ̂2) +

ε2

4
(67)

The third and fourth terms on the RHS of (64) can be simplified as

(x2 + Px1)
T(−Kpx1 − Kdx2) + xT

1 (Kp + PKd)x2

=− xT
2 Kpx1 − xT

2 Kdx2 − xT
1 PKpx1 − xT

1 PKdx2 + xT
1 (Kp + PKd)x2

=− xT
1 PKpx1 − xT

2 Kdx2

≤− λKp‖x1‖2 − λKd‖x2‖2

(68)

where λKp = λmin(PKp), λKd = λmin(Kd).
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Similarly, after the equivalent substitution of the adaptive law (35) in the last term on
the RHS of (64), we have

ψ̃T
2 k−1

1
˙̂ψ2 =ψ̃T

2 k−1
2 (k2

∂ΥT
2

∂ψ2
(ψ̂2, q1, q̇1, x1, x2)‖x2 + Px1‖ − ψ̂2)

=ψ̃T
2 k−1

2 [k2
∂ΥT

2
∂ψ2

(ψ̂2, q1, q̇1, x1, x2)‖x2 + Px1‖ − (ψ̂2 − ψ2)− ψ2]

≤‖x2 + Px1‖
∂Υ2

∂ψ2
(ψ̂2, q1, q̇1, x1, x2)ψ̃2 − k−1

2 ‖ψ̃2‖2 + k−1
2 ‖ψ̃2‖‖ψ2‖

≤‖x2 + Px1‖
∂Υ2

∂ψ2
(ψ̂2, q1, q̇1, x1, x2)(ψ̂2 − ψ2)−

1
2

k−1
2 ‖ψ̃2‖2 +

1
2

k−1
2 ‖ψ2‖2

(69)

Combining (67)–(69), we have

V̇2 ≤‖x2 + Px1‖
∂Υ2

∂ψ2
(ψ̂2, q1, q̇1, x1, x2)(ψ2 − ψ̂2) +

ε2

4
− λKp‖x1‖2 − λKd‖x2‖2

+ ‖x2 + Px1‖
∂Υ2

∂ψ2
(ψ̂2, q1, q̇1, x1, x2)(ψ̂2 − ψ2)−

1
2

k−1
2 ‖ψ̃2‖2 +

1
2

k−1
2 ‖ψ2‖2

=− λKp‖x1‖2 − λKd‖x2‖2 − 1
2

k−1
2 ‖ψ̃2‖2 +

1
2

k−1
2 ‖ψ2‖2 +

ε2

4

(70)

With (61) and (70), the derivative of V is given by

V̇ =V̇1 + V̇2

≤− λ1‖δ1‖2 + (1 + κl)ε1 +
1
2

k−1
1 (1 + κl)‖ψ1‖2 +

1
2

λAω−1‖x1‖2

− λKp‖x1‖2 − λKd‖x2‖2 − 1
2

k−1
2 ‖ψ̃2‖2 +

1
2

k−1
2 ‖ψ2‖2 +

ε2

4

=− λ1‖δ1‖2 − (λKp −
1
2

λAω−1)‖x1‖2 − λKd‖x2‖2 − 1
2

k−1
2 ‖ψ̃2‖2 + (1 + κl)ε1

+
ε2

4
+

1
2

k−1
1 (1 + κl)‖ψ1‖2 +

1
2

k−1
2 ‖ψ2‖2

≤− λ1‖δ1‖2 − λ2‖δ2‖2 + (1 + κl)ε1 +
ε2

4
+

1
2

k−1
1 (1 + κl)‖ψ1‖2 +

1
2

k−1
2 ‖ψ2‖2

≤− λ‖δ‖2 + χ

(71)

where

λ2 = min{λKp −
1
2

λAω−1, λKd ,
1
2

k−1
2 } (72)

λ = min{λ1, λ2} (73)

χ = (1 + κl)ε1 +
ε2

4
+

1
2

k−1
1 (1 + κl)‖ψ1‖2 +

1
2

k−1
2 ‖ψ2‖2 (74)

According to (54), as λA and ω are selected constants, there always exist suitable γ1, P
and Kp to make the inequality (γ1 − 1

2 λAω) > 0 and (λKp − 1
2 λAω−1) > 0 true, then we

have V̇ is negative definite for all
‖δ‖ ≥

√
χ/λ (75)

The uniform boundedness performance follows [25], and d(r) is given by

d(r) =

ξ
√

a2
a1

, if r ≤ ξ

r
√

a2
a1

, if r > ξ
(76)

ξ =
√

χ/λ (77)
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The uniform ultimate boundedness performance is determined by

d = ξ
√

a2/a1 (78)

for a given d̄ > d,

T̄(d̄, r) =

0, if r ≤ ξu
a2r2−a1ξ2

u
λξ2

u−χ
, otherwise

(79)

ξu = d̄
√

a1/a2 (80)

The radius of uniform ultimate boundedness ball is determined by d . By (78), it is
shown that d and ξ are positively correlated, which means that d approaches to 0 when ξ
approaches to 0. By (74) and (78), ξ approaches to 0 while both of ε1 and ε2 are close to 0,
and k1, k2 approach to infinity. Thus, if ε1,2 → 0, k1,2 → ∞, then d→ 0.

Figure 1 shows the design process of the proposed adaptive robust controller, where τ
is the final controller. The design process is shown as follows.

Step 1. Decomposing the FJM into rigid link and flexible joint, simplify the flexibility
of FJM as linear torsion spring, and get the dynamic model of the FJM system.

Step 2. Implant a fictious control τ̃ into the rigid part and rewrite the dynamic model.
Step 3. Transform the constraint equation into second order differential form, and get

the constraint control p11 by UKFE equation.
Step 4. Get the compatible control p12 based on the initial deviation to the desired

trajectory.
Step 5. Design the adaptive law 1 to deal with uncertainty in rigid part, on this basis,

get the adaptive robust control p13.
Step 6. Get the fictious control τ̃ by adding p11, p12 and p13.
Step 7. Design the nominal control for the flexible part.
Step 8. Design the adaptive law 2 to deal with the flexible joint subsystem. On this

basis, get the adaptive robust control p2.
Step 9. Get the final controller τ by adding τ̃, p2, and the nominal control.
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Figure 1. Process of the control design.

5. Simulations and Discussion

We consider a 2-link flexible joint manipulator (shown in Figure 2) to show the validity
of the control proposed in this article.
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τ

τ

Figure 2. 2-Link flexible joint manipulator.

Define the link angle vector q1 = [q11 q12]
T ; the joint angle vector q2 = [q21 q22]

T ;
m1, m2 are the mass of links; l1 is the length of the first link; lc1, lc2 are the centroid of the
links (suppose the mass is uniformly distributed on the link); i11, i12 and i21, i22 are the
moment of inertia of link and angles, respectively; τ = [τ1 τ2]

T denotes the torques from
motors; K1, K2 are the stiffness of linear torsional springs; and g is the gravity coefficient.
The system model is given by

M(q1) =

[
d11 d12
d21 d22

]
R(q1, q̇1) =

[
−m1l1lc2 sin q12q̇12 −m2l1lc2 sin q12(q̇12 + q̇11)
m2l1lc2 sin q12q̇11 0

]
D(q1) =

[
(m1lc1 + m2l1)g sin q11 + m2lc2g sin(q11 + q12)

m2lc2g sin(q11 + q12)

]
I =

[
i21 0
0 i22

]
, K =

[
K1 0
0 K2

]
P =

[
p1 0
0 p2

]
, Kp =

[
kp1 0
0 kp2

]
, Kd =

[
kd1 0
0 kd2

]
(81)

where 
d11 = m2(l2

1 + l2
c2 + 2l1lc2 cos q12) + m1l2

c1 + i11 + i12

d12 = m2(l2
c2 + l1lc2 cos q12) + i12

d21 = d12

d22 = m2l2
c2 + i12

(82)

All elements of inertia matrix are bounded by

|d11| ≤ m2(l2
1 + l2

c2 + 2l1lc2) + m1l2
c1 + i11 + i12

|d12| ≤ m2(l2
c2 + l1lc2) + i12

|d22| ≤ m2l2
c2 + i12

(83)
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We require the link angles to obey the following constraints:{
q11 + q12 = 0
q11 = 3

4 sin(π
3 t)

(84)

which means T =

[
1 1
1 0

]
, α =

[
0

π
4 cos(π

3 t)

]
, β =

[
0

−π2

12 sin(π
3 t)

]
.

T is of full rank, and we notice that the desired constraints are linear with respect to
velocities. Assumptions 6 and 7 are achieved by choosing

Υ1(ψ1, q1, q̇1, t) = ψ11‖q̇1‖2 + ψ12‖q̇1‖+ ψ13

=
[

ψ11 ψ12 ψ13
] ‖q̇1‖2

‖q̇1‖
1


=: ψT

1 Υ̃1(q1, q̇1, t)

(85)

Υ2(ψ2, q1, q̇1, x1, x2, t) = ψ21(‖x2‖+ ‖x1‖)2 + ψ22(‖x2‖+ ‖x1‖) + ψ23

=
[

ψ21 ψ22 ψ23
] (‖x2‖+ ‖x1‖)2

(‖x2‖+ ‖x1‖)
1


=: ψT

2 Υ̃2(q1, q̇1, x1, x2, t)

(86)

The adaptive laws are given by

˙̂ψ1 =
[

ψ̂11 ψ̂12 ψ̂13
]T

=k1

 ‖q̇1‖2

‖q̇1‖
1

‖Tq̇1 − α‖ −

 ψ̂11
ψ̂12
ψ̂13

 (87)

˙̂ψ2 =
[

ψ̂21 ψ̂22 ψ̂23
]T

=k2

 (‖x2‖+ ‖x1‖)2

(‖x2‖+ ‖x1‖)
1

‖x2 + Px1‖ −

 ψ̂21
ψ̂22
ψ̂23

 (88)

We consider there exists uncertainty in m1, m2 and K1, K2( i.e., m1 = m̄1 + ∆m1(t),
m2 = m̄2 + ∆m2(t), K1 = K̄1 + ∆K1(t), K2 = K̄2 + ∆K2(t)). We suppose that
∆m1(t) = ∆m2(t) = 0.2 sin(t), ∆K1(t) = ∆K2(t) = 0.2 sin(t). Then the simulation is
performed with m1 = m2 = 1, l1 = 1, lc1 = lc2 = 0.5, i11 = i12 = 1, i21 = i22 = 1, g = 9.81,
k1 = 80, k2 = 100, ε1 = ε2 = 0.1, K̄ = diag[100]2×2, Kd = diag[3000]2×2, P = diag[1]2×2,
L = diag[5]2×2, Γ = 3. With these, we have

1
2

λmin(N(q1, σ1, t) + NT(q1, σ1, t)) = −0.28 > −1 (89)

Then we choose γ1 = 50 to make (γ1 − 1
2 λA) > 0 and set Kp = diag[300]2×2. The ini-

tial q21(0) = 0.2, q11(0) = 0.5, q22(0) = 0.3, q12(0) = 0.3, q̇21(0) = 0.1, q̇11(0) = 0.2,
q̇22(0) = −0.2, q̇12(0) = −0.5. For comparison, a hybrid controller, which consists of PD
control, feedback control, and variable structure control (VSC), is applied to the same
system with the same initial conditions and constraints [31]. Parameters of the hybrid
control are chosen by α = 1, δ = 0.1, Φ = 10, η = 10, λ = 100, Kp = 30, Kd = 10 (details of
these notations could be found in [31]). The results of simulation are shown in Figures 3–8.
Figure 3a,b shows the revolute trajectories of two links, respectively. The actual trajectories
approach to the desired trajectories in a short time. This is also verified through the link
position error shown in Figure 5a,b. The variation of adaptive parameters are shown
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in Figure 4a,b. After a local undulation, ‖ψ̂1‖ as well as ‖ψ̂2‖ converge to a region near
0. The comparison of constrained system performance by adopting the proposed adap-
tive robust control and a hybrid control (PD+feedback+VSC compensation) is shown in
Figure 5. Obviously, the hybrid control has more unwanted waves and errors than that of
the proposed control. The comparison of control torques of the two control methods is also
given in Figure 6. Evidently, the hybrid control has a worse performance than the proposed
adaptive robust control. The proposed control is more reposeful and its magnitude of
undulation is much lower than the hybrid control.

The relationship between different magnitude of uncertainty and the control per-
formance is also investigated. For instance, the range of ∆m is chosen as m̃ = [0.1, 0.5],
and the range of ∆K is set as K̃ = [0.1, 0.5]. The result of the average following error ē1
and ē2 with respect to different pairs of ∆m and ∆K are shown in Figures 7 and 8 and the
average control cost τ̄1 and τ̄2 with respect to different pairs of ∆m and ∆K are shown in
Figures 9 and 10, respectively. Obviously, the proposed control has strong robustness since
the average following error and the average control cost varies in a small range when the
magnitude of uncertainty changes.
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Figure 3. The tracking performance of link position. (a,b) show the trajectories of two links, respectively.
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Figure 4. The performance of system parameters. Panels (a,b) show the trend of adaptive parameters
ψ̂1 and ψ̂2, respectively.
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Figure 5. The comparison of errors under adaptive robust control and PD+VSC+feedback control.
Panels (a,b) show the following error e1 and e2 of two links, respectively.
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Figure 6. The comparison of toques under adaptive robust control and PD+VSC+feedback control.
Panels (a,b) show the control cost τ1 and τ2 of two links, respectively.
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Figure 7. The average following error ē1 under different magnitude of uncertainty.
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Figure 8. The average following error ē2 under different magnitude of uncertainty.
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Figure 9. The average control cost τ̄1 under different magnitude of uncertainty.
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Figure 10. The average control cost τ̄2 under different magnitude of uncertainty.

6. Conclusions

The constrained FJM system has strong coupling and nonlinearity. The performance
would worsen when mismatched uncertainty arises. This research is on the basis of the
frame built by Udwadia and Kalaba. The desired trajectory is not used to obtain the
position error directly. It is treated as a constraint applied to the system and utilized to
acquire the constraint force. A UKFE-based control is designed for the nominal portion of
the system. No extra coordinate or Lagrange multiplier is needed other than its original
ones. For the mismatched uncertainty in the system, the entire system can be divided
into two cascaded subsystems by implanting a virtual control. An adaptive robust control
with high-order terms is proposed to guarantee the uniform boundedness and uniform
ultimate boundedness, even the information of uncertainty is poorly known. The system
performance could be regulated easily by adjusting the order of the controller. Both
theoretical analysis and simulation guarantees the effectiveness of the proposed control.
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