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Abstract: Stability of the rotor motion is the precondition for the reliable operation of magnetically
levitated slice motors (MLSMs). However, with gyroscopic effect and non-collocated structure
existing simultaneously, its stability analysis faces a tremendous challenge, because the torsional
motions couple with the radial translational ones, making MLSM a multiple-input and multiple-
output (MIMO) system with high order. Therefore, in this paper, we first establish a novel MIMO
rotor dynamics closed-loop model and further convert it into an equivalent single-input and single-
out (SISO) feedback control system by constructing complex variables, meanwhile reducing the
system order by half. Beneficial from the equivalence between the MIMO and SISO systems, the
sufficient and necessary conditions of the absolute stability of MLSM are derived by the extended
inverse Nyquist stability criterion in the complex domain. Additionally, the effectiveness of the
proposed modelling and stability analysis method is evaluated by simulation and experimental
results. Thus, apart from PID parameters, this paper demonstrates that the stability of MLSM is also
affected by the coupling of gyroscopic effect and non-collocated structure, which should serve as an
essential guideline for system regulation of MLSM.

Keywords: magnetically levitated slice motor; gyroscopic effect; non-collocated structure; equivalent
SISO feedback control system; extended inverse Nyquist stability criterion

1. Introduction

In recent years, there have been increasing demands for ultrapure and miniature
systems in many advanced industrial fields, such as the pharmaceutical, biotechnological,
chemical, and semiconductor industries [1–4]. With all the degrees of freedom of the
rotor actively controlled or passively positioned by the magnetic field, a magnetically
levitated slice motor (MLSM) can operate with no abrasion and no contamination due to
its non-contacting and non-lubricating features. Furthermore, because of the improved
compactness, simpler structure and lower cost, the MLSM is superior to magnetic bearings
in the industrial applications mentioned above [5,6].

Nevertheless, the development and further application of MLSMs are hindered due to
the following features: (i) the simplified mechanical structure is at the cost of much stronger
interaction in the magnetic domain [7]; (ii) a large inertia ratio of the rotor facilitates
higher stiffness of passive suspension but meanwhile leads to a significant gyroscopic
effect, characterized by precession and nutation modes at high speed [8–11]; (iii) the
interference between actively controlled translational directions and passively stabilized
tilting directions is inevitable [12] when a non-collocated structure exists, as can be seen
in various centrifugal pumps [2,4,13,14]. Sugimoto et al. defined and explained the non-
collocated structure concept thoroughly in [15]. To sum up, many factors may destabilize
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the rotor in a MLSM, which leads to collisions and produces particles in the MLSM-based
system. Therefore, MLSM is such a complicated system that it is challenging to analyze
its stability parameters for better controllability, especially when the gyroscopic effect and
non-collocated structure exist simultaneously.

In the last decades, researches on the operating stability of magnetically suspended
rigid flat rotors have attracted widespread attention, since this type of rotor possesses
outstanding advantages, including high power density, high efficiency and small vol-
ume [16,17]. Over the whole range of spin speeds, Fang et al. employed positive and
negative frequency characteristics to analytically demonstrate the nutation and precession
stability criteria for a magnetically suspended rigid rotor system with cross-feedback con-
trol [18]. Wei et al. presented an absolute and relative stability analysis for magnetically
suspended rigid rotors in the frequency domain by analyzing the corresponding Nyquist
curves, and furtherly proposed a method to calculate the stable rotation speed region [19].
Regarding asymmetric rotors, Sun et al. utilized the double-frequency Bode plot method
to judge the instability caused by nutation mode and designed the exact parameters of
filter cross feedback accordingly [10]. However, all the stability criteria mentioned above
are limited to rotors suspended by magnetic bearings, and hence not suitable for rotors
in MLSMs. In case of single-drive bearingless motor, the interference coefficients of tilt-
ing torque and radial force relative to axial position of the center of gravity of the rotor
were calculated by 3D-FEM analysis [20]. Based on experiments in [21], Sugimoto et al.
described how gyroscopic effect influenced the operating condition regarding the system
in [20]. Still, neither of them presented sufficient theoretical analysis. From rotational
tests on disk-shaped rotors of a multi-pole bearingless machine with a non-collocated
structure, it was concluded that tilting and radial translational vibrations tended to occur
as a consequence of the mutual interference which was proportional to the rotational speed
and axial distance between the active radial suspension force and the center of gravity of
the rotor [22]. However, only a qualitative analysis of specific parameters was conducted at
rather low rotational speed, so essentially the cause of system instability was not explained
and the conclusion had no universal applicability. In [15], a MLSM with a non-collocated
structure was represented as a fifth-order system and its stability condition was derived by
applying the Hurwitz stability criterion. Nevertheless, the mathematical calculation was
too complicated to be used to analyze the suspension stability during rotation due to its
much higher system order.

Based on the above analysis on gyroscopic effect and non-collocated structure, it can
be concluded that close attention should be paid to both scenarios to ensure the stability
of MLSMs. Non-collocated structures received a comprehensive study in [15] and the
gyroscopic effect are already individually investigated in many studies on magnetically
levitated flat rotors, because it leads to two poles located on the imaginary axis. Hence,
this paper intends to provide the way to regulate and sequentially ensure the stability of
MLSMs where the gyroscopic effect inevitably interacts with a non-collocated structure. To
the best of the authors’ knowledge, this paper investigates theoretically and experimentally
for the first time how both the coupling of the gyroscopic effect and the non-collocated
structure act on the stability of a MLSM. A novel closed-loop model is first set up to
simultaneously describe the rotor dynamics of MLSM undergoing gyroscopic effect and
with a non-collocated structure, which turns out to be MIMO and coupled. Then, motivated
by the outstanding convenience and simplicity of stability analysis with SISO system in
classical control theory, we make an effort to convert the derived MIMO model to a SISO
one by constructing complex variables. Consequently, benefitting from the extended
inverse Nyquist stability criterion, the condition of stability for the targeted MSLM can
be deduced. The simulation and experimental results have verified that the rotor motion
stability of MLSM varies, when the relations between gyroscopic effect and non-collocated
structure get altered.
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2. Modelling of MLSM with Gyroscopic Effect and Non-Collocated Structure
2.1. Working Principle of the MLSM

In order to produce bearing force and driving torque in a single motor simultaneously,
a set of suspension coils is superposed on the same stator slots besides driving coils in
MLSM. Driving coils generate torque as they work in a permanent-magnet synchronous
motor. A radial bearing force can be produced if the difference between pole-pair numbers
of suspension coils and driving coils is +1 or −1 while currents in these two sets of coils
have equal frequency [7,23]. Figure 1 depicts the principle of bearing force generation in
detail, where the pole-pair numbers of suspension coils denoted by NBd, NBq and driving
coils denoted by Ndd, Ndq are 2 and 1, respectively. In Figure 1a, flux of suspension
coils makes flux of driving coils and permanent magnet increased in the right air gap
while decreased in the left, which generates bearing force in the x-direction. Similarly, in
Figure 1b, the superposition strengthens flux in the upper air gap but weakens flux in the
lower part, leading to bearing force in the y-direction. Thus, bearing force can be controlled
in arbitrary directions by adjusting the current in suspension coils [24–26]. Summarily,
axial rotational and radial translational degrees of freedom are actively controlled by the
driving and suspension coils, respectively.
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However, different from the aforementioned three degrees of freedom, axial translation
and radial tilting are passively positioned. As can be seen in Figure 2a,b, based on the
minimum reluctance principle, corresponding restoring force Fstab or restoring moment
Tstab develops to pull the permanent-magnet rotor back to its balanced position when it
deflects in axial or tilting direction [27–29].
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2.2. Kinetics Analysis of the MLSM System Featured with Gyroscopic Effect

Figure 3 gives the coordinate system definition of the MLSM, where O-xyz is the
inertial coordinate system fixed to the stator while N-XYZ is the rotating coordinate system
fixed to the rotor. Here, O and N refer to the center of stator and the center of gravity of rotor,
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respectively. α, β, γ denote the inclinations of rotor about the x-, y-, and z-axes, respectively.
The spin velocity Ω defined by Ω =

.
γ is assumed to be constant. In addition, since the rotor

has equal moments of inertia in the radial direction because of its symmetrical structure,
radial motions are decoupled from the axial rotational one [30]. Meanwhile, considering
the following several aspects, the kinetic equation of rotor axial translation is omitted in
Equation (1). For one thing, the variation of axial translation has no effect on the measured
translational displacement by the sensors. For another, controller generates force in the
radial direction according to the deviation signal between the reference position and the
above measured one, which doesn’t influence the axial direction. Moreover, in the scope of
this manuscript, it is supposed that the rotor maintains no-load operation, signifying that
it is only subjected to magnetic force and gravity. Hence, the kinetic equation of rotor axial
translational motion can be written as m

..
z = −kzz − mg, where kz is the axial stiffness

and z defines the axial translational displacement. Therefore, only radial translational and
titling motions are researched in this article.
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x and y define the radial translational displacements of N relative to the O-xyz inertial
coordinate system. From Lagrange’s equations [31], the kinetic equations of rotor radial
translational and titling motions can be derived as:

m
..
x = kxx + Fx + dx

m
..
y = kyy + Fy + dy

JX
..
α = −kαα− JZΩ

.
β+ Tα

JY
..
β = −kββ+ JZΩ

.
α+ Tβ

(1)

where m is the mass of the rotor; JX, JY and JZ are the moments of inertia of the rotor about
X-, Y-, and Z-axes, respectively; kx, ky and kα, kβ correspond to the radial and tilting
stiffness in x- and y-directions, respectively. Furthermore, JX = JY = J, kx = ky = ks as well as
kα = kβ = kθ. The theoretical formulae of the active radial forces Fx and Fy are consistent
with those in the reference [32]. Finally, dx, dy, Tα and Tβ indicate the total disturbance
forces or moments in x- and y-direction. Here, we set dx = dy = 0.

2.3. Description of the MLSM with Non-Collocated Structure

Since the non-collocated structure concept has been explained exhaustively in [15],
in this section, it is simply reshown only for the description of related parameters. The
definitions of each symbol in Figure 4 are as follows: N, S and F represent the center
of gravity of rotor, the axial position of radial displacement sensors and the equivalent
application point of radial suspension force, respectively. Correspondingly, Zs and ZF
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denote the axial distance of S and F with respect to N, separately, and their signs are
positive above N and negative below N.
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In order to more intuitively demonstrate how the non-collocated structure affects
the torsional stability, Figure 4 shows the case where the rotor possesses an angular dis-
placement around the x-axis without any radial translational displacement. Specifically, in
Figure 4a, points N, S and F coincide with each other, wherefore there is no extra radial
translational displacement detected by the sensors because of the tilting displacement.
Consequently, only restoring moment arises from the magnetic resistance, which pulls the
rotor back to its balanced position. Under this circumstance, the controllers applied to the
radial translational directions have no effect on the tilting ones. However, in Figure 4b, the
sensors detect a radial translational displacement at point S due to the tilting motion, which
is determined by Zs and the tilting angle. This radial translational displacement generates a
radial force f at point F by the radial feedback controller. Additionally, F is not aligned with
N, so a tilting moment produced by f acts in the deflection direction, which destabilizes the
tilting motions. It means that tilting movements interfere with radial translational ones
in the non-collocated structure. To sum up, the non-collocated structure leads to mutual
coupling among degrees of freedom of the rotor movements, so the stability condition of a
non-collocated MLSM system should be considered cautiously.

2.4. Analytical Model of the Controlled MLSM System with Gyroscopic Effect and
Non-Collocated Structure

With the gyroscopic effect and non-collocated structure taken into account, MLSM
under the assumption of no-load operation is characterized by a strongly coupled multiple-
input and multiple-output model in Figure 5. To be specific, PID parameters for radial
translational motions are designed by following the principles in controller design for one-
axis magnetic suspension, which have been illustrated and received extensive applications
in the predecessors’ research [33]. Subsequently, the gyroscopic effect and non-collocated
structure respectively described by JZ∗Ω and ZS, ZF are contained to comprehensively
reveal the interactions among these four degrees of freedom. It is worth specially mention-
ing that ZS∗α, ZS∗β represent extra radial displacements detected by the sensors due to
non-collocated structure, while ZF∗α, ZF∗β refer to additional radial forces resulting from
non-collocated structure, Besides the effects above, the non-collocated structure also exerts
moments on the radial tilting motions, which are evaluated by the products of ZF and the
corresponding resultant radial forces.
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According to the block diagram in Figure 5, the closed-loop model of MLSM consider-
ing gyroscopic effect and non-collocated can be presented in the form below:

ms2x− ksx +
(

Kp + KI
s + KDs

)
x

=
(

Kp + KI
s + KDs

)
x∗ +

[
ksZF −

(
Kp + KI

s + KDs
)

Zs

]
β

(2)

ms2y− ksy +
(

Kp + KI
s + KDs

)
y

=
(

Kp + KI
s + KDs

)
y∗ −

[
ksZF −

(
Kp + KI

s + KDs
)

Zs

]
α

(3)

Js2α+ kθα+
(

Kp + KI
s + KDs

)
ZsZFα− ksZ2

Fα

= −y∗
(

Kp + KI
s + KDs

)
ZF −

[
ksZF −

(
Kp + KI

s + KDs
)

ZF

]
y− JZΩsβ

(4)

Js2β+ kθβ+
(

Kp + KI
s + KDs

)
ZsZFβ− ksZ2

Fβ

= x∗
(

Kp + KI
s + KDs

)
ZF +

[
ksZF −

(
Kp + KI

s + KDs
)

ZF

]
x + JZΩsα

(5)

where, Kp, KI and KD are the proportional, integral and derivative gains, respectively,
while meanings of the remaining symbols have been illustrated in detail above. Besides, it
is the general situation that both the reference position x∗ and y∗ are zero.

For the ease of representation and calculation, we make the following substitutions:

A = ms2 − ks +

(
Kp +

KI

s
+ KDs

)
(6)
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B = ksZF −
(

Kp +
KI

s
+ KDs

)
Zs (7)

C = Js2 + kθ +

(
Kp +

KI

s
+ KDs

)
ZsZF − ksZ2

F (8)

D = ksZF −
(

Kp +
KI

s
+ KDs

)
ZF (9)

Hereafter, Equations (2)–(5) can be presented in a simplified way:

x =
B
A
β (10)

y = − B
A
α (11)

α = −Dy + JZΩsβ
C

(12)

β =
Dx + JZΩsα

C
(13)

Because x leads y by 90 degrees in terms of phase and there is the same relationship
between α and β likewise, these four variables can be reconstructed by two complex
variables, i.e., X = x+ jy, Ψ = α+ jβ, where j represents imaginary unit [34,35]. Performing
the basic mathematical operations: (10) + j(11) and (12) + j(13), we can get a new equation
set on the complex variables X and Ψ:

X = −j
B
A

Ψ (14)

Ψ = j
D
C

X + j
JZΩs

C
Ψ (15)

Combining (14) with (15) yields:

Ψ =
BD
AC

Ψ + j
JZΩs

C
Ψ (16)

In order to make the meaning of formula (16) more intuitive, a further mathematical
transformation should be given as:

ACΨ = BDΨ + jAJZΩsΨ (17)

Then, substituting (6)− (9) into (17) yields[
Jms4 − jmJZΩs3 +

(
mkθ −mksZ2

F − Jks

)
s2 + jJZΩkss− kskθ

]
Ψ

= −
[
(J + mZsZF)s2 − jJZΩs + kθ

](
Kp + KI

s + KDs
)

Ψ
(18)

To give prominence to the essence of Equation (18), the following steps are executed:
First, a controlled plant as well as the corresponding PID controller is established, whose
transfer functions are presented as Equations (19) and (20), respectively. Then, we set up
a unit negative feedback system by Gcontr(s) and Gplant(s). Last, respectively setting the
input and output of the above system as 0 and Ψ leads to a SISO feedback system as Figure
6, for which the closed-loop transfer function is Ψ = (0−Ψ)GcontrGplant. It is easy to derive
that Equation (18) equals the result of multiplying both sides of Ψ = (0−Ψ)GcontrGplant by
the denominator of Equation (19), where Ψ is a complex variable constructed by α+ jβ, as
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defined above. In summary, Equation (18) is equivalent to a SISO control system depicted
in Figure 6.

Gplant(s) =
(J + mZsZF)s2 − jJZΩs + kθ

Jms4 − jmJZΩs3 +
(

mkθ −mksZ2
F − Jks

)
s2 + jJZΩkss− kskθ

(19)

Gcontr(s) = Kp +
KI

s
+ KDs (20)
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According to the classical control theory, we can write the open-loop transfer function
of the system as:

GOL(s) = Gcontr(s)Gplant(s) (21)

In this section, with the method of variable reconstruction in the complex domain, we
transform a two-input four-output coupling system described by (2)− (5) into a SISO one
presented by (18). This work can not only greatly reduce the system order, but also make
it feasible to apply the extended inverse Nyquist stability criterion of the SISO system to
deduce the stability condition for the original MIMO one.

3. Extended Inverse Nyquist Stability Criterion in the Complex Domain

First of all, Cauchy’s argument principle is provided [36]: it is supposed that F(s)
represents a meromorphic function with P poles and Z zeros circled by CS which designates
a simple closed curve avoiding any zeros and poles of F(s) on S plane. As the point s travels
around CS clockwise, the closed curve CS is mapped to a closed curve CF on F plane by
F(s), which circles the origin by M times. Finally, we obtain the relationship between the
symbols P, Z and M as M = Z − P, where positive M stands for the clockwise encirclements
of the origin.

Taking advantage of the property of Cauchy’s argument principle, the extended
inverse Nyquist stability criterion can be readily summarized in accordance with the
classical Nyquist stability criterion proposed by Nyquist [37]:

Theorem 1. Pertaining to a closed-loop feedback control system containing complex coefficients,
the corresponding sufficient and necessary conditions for stability can be described as: the number
of times that its open-loop inverse Nyquist plot encloses the point (−1, j0) counterclockwise equals
the number of its open-loop zeros located in the right half plane when s = jω,−∞ < ω < +∞.

Proof of Theorem 1. Without loss of generality, we make G(s)H(s) represent the open-loop
transfer function of a common control system. Naturally, a new complex function F(s) can
be reformulated with G(s)H(s), as is shown in (22):

F(s) = 1 +
1

G(s)H(s)
(22)

The establishment of F(s) can provide a practical and convenient graphical technique for
determining the absolute stability of a feedback control system in the light of Cauchy’s
argument principle. Specifically, the numerator and denominator of F(s) indicate the pole
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polynomial of closed-loop transfer function and the zero polynomial of open-loop transfer
function, respectively. Besides, polar diagram of 1/G(jω)H(jω) is the so-called inverse
Nyquist plot [38–40]. Thereupon, the number of right half-plane poles of the closed-loop
system can be calculated from: the number of right half-plane zeros of the open-loop
system subtracts the number of times that its open-loop inverse Nyquist plot encloses the
point (−1, j0) counterclockwise. Ultimately, the closed-loop system is stable, if and only if
the calculation result is zero. �

Remark 1. As for 1/G(s)H(s), the numerator tends to have a higher order compared to its denom-
inator, because G(s)H(s)is always real for the open-loop transfer function of a physical system. In
such a situation, mapping locus of the clockwise semicircle curve s = ∞ejθ , θ ∈

(
π
2 ,−π

2
)
has to be

considered cautiously. Another point that needs to be taken seriously is that symmetry of the inverse
Nyquist curve about the real axis no longer holds for a transfer function with complex coefficients, so
there is no way to omit the inverse Nyquist plot in the negative frequency domain. Moreover, given
that in the inverse Nyquist plot, the difference between the times of positive and negative crossings
about the real axis in the range of (−∞,−1)is identical to the number of encirclements about
(−1, j0), we introduce the method to distinguish between different types of crossing in Figure 7.
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4. Stability Analysis on MLSM with Gyroscopic Effect and Non-Collocated Structure

To apply the proposed extended inverse Nyquist stability criterion to the MLSM with
gyroscopic effect and non-collocated structure, it is required that the open-loop transfer
function of its equivalent SISO control system should be particularly discussed.

The open-loop transfer function of the equivalent SISO control system is:

GOL(s) =

[
(J + mZsZF)s2 − jJZΩs + kθ

][
KDs2 + KPs + KI

](
Jms4 − jmJZΩs3 +

(
mkθ −mksZ2

F − Jks

)
s2 + jJZΩkss− kskθ

)
s

(23)

here, according to the definitions of transfer function [40] and Laplace transform [41], s is a
complex variable generally written as s = σ+ jω, where σ andω represent the real part
and the imaginary part, respectively. Then, by setting GOL(s) = 0, zeros of the open-loop
system get solved as:

s1,2 =
−KP ±

√
K2

P − 4KDKI

2KD
(24)

s3,4 = j
JZΩ±

√
(JZΩ)2 + 4kθ(J + mZsZF)

2(J + mZsZF)
(25)
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Thereupon, the corresponding open-loop frequency response function can be derived
as follows by making σ = 0:

GOL(jω) =

[
−(J + mZsZF)ω

2 + JZΩω+ kθ

][
−KDω

2 + jKPω+ KI
](

Jmω4 −mJZΩω3 −
(

mkθ −mksZ2
F − Jks

)
ω2 − JZΩksω− kskθ

)
jω

(26)

More specifically, the frequency response functions of the MLSM system and the
controller are given in (27) and (28), respectively:

Gplant(jω) =
−(J + mZsZF)ω

2 + JZΩω+ kθ

Jmω4 −mJZΩω3 −
(

mkθ −mksZ2
F − Jks

)
ω2 − JZΩksω− kskθ

(27)

Gcontr(jω) =
−KDω

2 + jKPω+ KI

jω
(28)

Since all of the three control parameters KP, KI and KD always keep positive, s1,2
definitely lie in the left half plane. As a result, there is no need for special handling when
the inverse Nyquist curve is drawn. Nevertheless, this is not the case for s3,4. Based on the
value of F = (JZΩ)2 + 4kθ(J + mZsZF), the zeros s3,4 impact the inverse Nyquist plot of
GOL(jω) in three distinct ways, which are explicitly presented in Table 1.

Table 1. Characteristics of the inverse Nyquist plot.

Condition Zeros s3,4 Characteristic of the Inverse Nyquist Plot

F < 0 Symmetry about the
imaginary axis

Turn 180o clockwise from ω→ +∞ to
ω→ −∞ with an infinite radius

F = 0 Double root on the
imaginary axis

Turn 180o clockwise from ω→ +∞ to
ω→ −∞ and 360o clockwise at

ω3 = ω4 = JZΩ
2(J+mZsZF)

with an infinite radius,
respectively

F > 0 Two different roots on
imaginary axis

Turn 180o clockwise from ω→ +∞ to
ω→ −∞ and 180o clockwise at

ω3,4 =
JZΩ±

√
(JZΩ)2+4kθ(J+mZsZF)

2(J+mZsZF)
with an

infinite radius, respectively

To summarize the distribution of zeros for GOL(s) according to Table 1, only when
condition F < 0 is satisfied does one zero exist in the right half plane, while the remaining
three zeros are located in the left half plane. Apart from this, there are two zeros in the left
half plane and the other two are on the imaginary axis for both F > 0 and F = 0. So far, the
inverse Nyquist stability criterion for the MLSM with gyroscopic effect and non-collocated
structure can be given:

(1) When (JZΩ)2 + 4kθ(J + mZsZF) < 0, the sufficient and necessary condition for the
absolute stability is that the inverse Nyquist curve of the open-loop transfer function
GOL encloses (−1, j0) counterclockwise once.

(2) When (JZΩ)2 + 4kθ(J + mZsZF) ≥ 0, the sufficient and necessary condition for the
absolute stability is that the inverse Nyquist curve of the open-loop transfer function
GOL encircles (−1, j0) zero times.

5. Simulation and Experimental Results

To verify the feasibility of the proposed methods, both simulation and experiments
were implemented in this section. Figure 8a,b show the prototype MLSM and the corre-
sponding rotor, of which the electromechanical specifications are presented in Table 2. In
addition, electromagnetic structure of the MSLM has been presented in Figure 3 in this
paper. The rotor consists of an aluminum-alloy counterweight (above) and a permanent
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magnet (bellow) of the same inner diameter, outer diameter and thickness, i.e., their thick-
nesses equal 7 mm, respectively. ZF can be set to different values by using counterweights
of different thicknesses. Particularly, the laser displacement sensors are mounted on z-axis
displacement platforms to adjust Zs to different values. Then, we derived the parameters
of ZS, ZF based on the following conditions: With the upper surface of the rotor taken
as a reference, its center of gravity is calculated theoretically and the axial position of
radial displacement sensors is estimated by the readings for z-axis displacement platforms.
Besides, the equivalent application point of radial suspension force lies in the middle of
confronting area between the rotor and stator. Four hall sensors are differentially mounted
under the rotor in order to provide the information of speed and angular positions for
control. Finally, a high-performance integrated controller executes the control algorithm
with a sampling frequency of 10 kHz. Table 3 summarizes the corresponding physical and
control parameters.
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Table 2. Electromechanical specifications of the illustrated MLSM.

Quantity Value Unit

Inner diameter of the rotor 11 mm
Outer diameter of the rotor 29 mm

Thickness of the rotor 14 mm
Inner diameter of the stator 36.5 mm
Outer diameter of the stator 61.5 mm

Height of the stator 54.26 mm
Phase of driving windings 2 //
Poles of driving windings 2 //

Phase of suspension windings 2 //
Poles of suspension windings 4 //

Table 3. System parameters relevant to the employed MLSM.

Parameter Value Parameter Value

m 0.04 kg kθ 0.045 N·m/rad
JZ 4.81× 10−6 kg·m2 KP 10000 N/m
J 2.95× 10−6 kg·m2 KI 5000 N/(m·s)

ks 1389 N/m KD 20 N/(m/s)

Under the condition that Zs is set to −2.2 mm and −0.3 mm, respectively, the inverse
Nyquist curves are drawn from Ω = 300 rad/s to Ω = 1200 rad/s every 50 rad/s using the
software MATLAB, which are based on the open-loop transfer function of the equivalent
SISO control system by Equation (23). Here, we choose not to display the inverse Nyquist
curves for all the speeds of Zs = −2.2 mm, because they own similar trends to Figure 9
with the speeds bellow 600rad/s while the speeds over 600 rad/s result in the similarity
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to Figure 10. In the cases of Zs = −0.3 mm, only the inverse curves of Ω = 550rad/s
and Ω = 600rad/s are presented in Figures 11 and 12 due to the same reason. Obviously,
F = (JZΩ)2 + 4kθ(J + mZsZF) is positive due to the positive ZsZF, which satisfies the
third case of Table 1. The inverse Nyquist curves turn 180o clockwise at the frequencies
corresponding to the two different imaginary roots and from ω→ +∞ to ω→ −∞ with
an infinite radius, separately, i.e., from A to A′, B to B′ and C to C′ in Figures 9–12. It can
been seen that the inverse Nyquist curves circle (−1, j0) counterclockwise zero times in
Figures 9 and 12 but once in Figures 10 and 11.
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Given that the open-loop transfer function of the equivalent SISO control system holds
no zeros on the right half-plane in all the cases researched, the sufficient and necessary
condition for the absolute stability is that the corresponding inverse Nyquist curves of
GOL(s) encircle (−1, j0) zero times as demonstrated in Section 4. Specifically, the rotor
can’t operate stably until the spinning speed is below 600 rad/s when Zs = −2.2 mm.
Contrarily, if Zs is set to −0.3 mm, the rotor is able to keep the stability of motion at a speed
above 600 rad/s.
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Hereafter, corresponding experiments were implemented to prove the effectiveness
of the simulation results. Figure 13 shows the experiment results at Zs = −2.2 mm,
and the rotor is speeded up to 300 rad/s after start-up. It is indicated that the rotor can
operate without collision and the maximum radial vibration displacements are less than
400 µm. As the rotary speed increases successively, radial displacements fluctuate less.
Nevertheless, once the speed reaches 600 rad/s, radial vibration displacements begin to
enlarge over time and then the rotor collides with the stator (The rotor will collide with
the stator if radial vibration displacements surpass 500 µm). The above phenomenon
accords with the result deduced by the inverse Nyquist stability criterion that the rotor
loses its stability with a speed above 600 rad/s as Zs = −2.2 mm. Afterwards, Zs is set to
−0.3 mm by adjusting z-axis displacement platforms. Progressively, the rotor speeds up
to 1200 rad/s and subsequently slows down to 550 rad/s. Figure 14 presents the whole
decelerating process. Obviously, the rotor suspends and rotates stably with radial vibration
displacements no more than 250 µm above 600 rad/s. However, the rotor runs into the
stator frequently when it slows down to 550 rad/s. In this situation, the rotor can keep
stable only when the speed exceeds 600 rad/s, corresponding to the conclusion drawn for
Zs = −0.3mm by the inverse Nyquist stability criterion. To summarize, the experimental
results are consistent with the simulation results.
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6. Conclusions

In this paper we propose a method of modelling and a stability analysis for a magneti-
cally levitated slice motor (MLSM) with simultaneous gyroscopic effect and non-collocated
structure, which was characterized by a strongly coupled multiple-input and multiple-
output (MIMO) model. A block diagram indicated that radial translational displacements,
tilting displacements and spin velocity interfered for the rotors of the MLSM, where the
center of gravity of rotor, the axial position of radial displacement sensors, and the equiv-
alent application point of active radial suspension force were not collocated. A novel
MIMO rotor dynamics closed-loop model was set up to describe the strongly coupled
system and then was converted into an equivalent single-input and single-output (SISO)
feedback control system with complex coefficients. With respect to the above-mentioned
SISO system, the extended inverse Nyquist stability criterion in the complex domain of-
fered the way to deduce the sufficient and necessary condition for its absolute stability.
Eventually, simulation and experiments were conducted on a MLSM prototype operating
with different spin velocities and different axial positions of radial displacement sensors,
which confirmed that the proposed method of modelling and stability analysis was valid
to analyze such MLSM systems.
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Nomenclature

MLSM Magnetically levitated slice motor.
MIMO Multiple-input and multiple-output.
SISO Single-input and single-out.
NBd, NBq, Ndd, Ndq Suspension coils and driving coils.
α, β, γ Inclinations of rotor about x-, y-, and z-axes.
Ω Spin velocity.
M Mass of the rotor.
JZ Moment of inertia of the rotor about Z-axis.
J Moment of inertia of the rotor about X- and Y-axes.
ks Radial stiffness in x-and y-directions.
kθ Tilting stiffness in x-and y-directions.
dx, dy Total disturbance forces in x-and y-directions.
Tα, Tβ Total disturbance moments in x-and y-directions.
S Axial position of radial displacement sensors.
F Equivalent application point of radial suspension force.
N Center of gravity of rotor.
Zs Distance of S with respect to N.
ZF Distance of F with respect to N.
Kp, KI, KD Parameters of the radial translational controllers.
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