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Abstract: In additive manufacturing (AM), especially for advanced powder fusion machines, it
is of high importance to develop an in situ inspection system to monitor the printed surface and
pre-print powder bed as the build cycle proceeds. Consequently, high resolution, high precision and
fast detection measurement systems need to be investigated, as such optically based measurement
systems can provide feedback for manufacturing process optimisation. Fringe projection technology
has a great advantage in the measurement of topography in such environments. The implementation
of a fringe projection system requires that the system is pre-calibrated in order to obtain high
measurement resolution and repeatability. This paper presents a simple calibration method for an
AM-based in situ fringe projection system using a phase-depth calibration model. If a calibration
plate with certificated marks is used, however, the texture of the plate will affect the measured phase
accuracy. A simple calibration method to reduce the calibration plate texture effect in the process of
calibration is outlined. Experimental results show that the proposed method can eliminated these
effects and improve measurement resolution and repeatability. The proposed in situ/in process
inspection technique has been implemented within a commercial electron beam powder bed fusion
additive manufacturing machine (EBAM), to demonstrate the capability for effective feedback during
the manufacturing process.

Keywords: system calibration; fringe projection; additive manufacturing

1. Introduction

Additive manufacturing (AM) techniques have been developing in recent decades
with new machine providers continually joining the market. As AM has a strong man-
ufacturing affinity for providing new solutions, especially for the building of complex
geometries with internal structures, it has significant potential and space for develop-
ment [1]. For any manufacturing technology, in situ/online metrology is an effective
supervision approach that can provide timely feedback to the process, thus improving
the manufacturing efficiency [2]. In AM processing, fringe projection systems and in-
frared detection systems have been implemented for in situ detection methods [3]. In
particular, fringe projection technology can provide a full-field, fast, high-resolution and
high-precision layer-by-layer areal surface measurement [4]. For example, in the AM pro-
cess environment, measurement can allow the inspection of the powder bed, the printed
surface and the consequent 3D reconstruction of the part shape. Such a measurement
can help classify and predict defects [5]. Consequently, the assessment of manufacturing
quality by such methods would be advantageous in the process and provide feedback for
process control.

A significant step for an in situ optical imaging system is calibration [6]. Calibration is
a process of determining the geometrical relationship between a camera and a projector, as
well as the relationship between the world coordinate and the camera image coordinate,
which affects the measurement resolution and repeatability. System calibration can be
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divided into camera calibration and geometric calibration. Existing geometric calibration
methods for 3D inspection systems can be categorized into model-based [7], polynomial [8]
and least-squares [9].

The model-based method [10] is based on a geometrical model. The geometrical
relationship between the camera and the projector is established by triangulation theory.
After calculating system parameters, 3D data can be obtained by the phase map. The
least-squares method seeks to find the nonlinear relationship between the phase map
and the 3D data. In this case, the calibration procedure becomes more flexible and easier,
because system geometric parameters do not need to be directly calculated. For example,
Zhang [11] proposed a method using a white plate with discrete precision markers on the
surface to calibrate horizontal and vertical parameters, a one-to-one mapping between
camera points and projector points is then established, which can be implemented in
practical environments without the need for precise translating stages. The polynomial
method seeks to express the relationship between the phase and depth coordinates by a
polynomial relation, and the relation fits the relative position between the camera and the
projector. Since the phase and depth relationship of the fringe projection system is close
to linear, but due to nonlinear effects, lens distortion and other factors, more than three
polynomials are needed to ensure the measurement repeatability. Windecker [12] proposed
a calibration method to determine the sensitivity field by using a low-order polynomial,
which builds up the transfer function of the phase and the height. Sutton [13] used a
third-order polynomial to calculate phase and height information pixel-by-pixel by a phase–
height transformation. Huang et al. [14] used a typically single colour pattern because
different colour channels can code different phase information. In this case, the shape
acquisition results are affected by the variations of the object’s surface colour. Quan [15]
proposed the relationship between phase and the depth by using a reference plane to
move to a known distance. Guan [16] used a composite structured light pattern to realize
real-time 3D shape measurement. Reich [17] proposed a 3D measurement method for
complex objects by using photogrammetry and fringe projection. All equipment is fixed.

The measurement principle of the fringe projection technique is shown in Figure 1b.
Figure 1a is illustration of a fringe projection system with one camera and one projector. It
has a similar measurement principle to stereo vision systems, but one of the cameras in the
stereo vision system is replaced with a projector. The projector projects fringe patterns onto
the object, and the fringe is deformed because of the form/shape of the test object. The
camera captures the deformed fringes and analyses them. 3D results can be reconstructed
from the deformed fringes.
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Figure 1. The principle of the fringe projection technique [18]: (a) illustration of a fringe projection
system with one camera and one projector; and (b) schematic diagram of the fringe projection system.

In the calibration process of such a system, a calibration board with calibrated marks
is often employed as shown in the present case as etched dark rings, Figure 2a. However,
the marks themselves affect the phase information recorded as shown in Figure 2b, which
causes phase error in the calibration process. A calibration method using circle ring
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calibration plate was studied, and the phase error caused by the rings was eliminated
by using the fitting algorithm [19]. This method eliminated the phase error in the circle
rings region and reduced the random noise. However, there are still some disadvantages.
Because of the lens distortion of the camera and the projector, uneven fringe projection, and
nonlinear effects, the absolute phase map was not a flat but a curved surface. Although the
camera lens distortion was corrected and nonlinear effect corrections make the absolute
phase map close to a plane, it was still difficult to find a perfectly matched surface fitting
formula. In this paper, a simple calibration method to address this so-called “marks
effect” to obtain high-quality calibration results is proposed. One whiteboard was used
to calibrate vertical direction, and the circle ring board was used to calibrate transverse
direction. Experimental results show that the proposed method eliminates the “marks
effect” and improves measurement resolution and repeatability. Post calibration, the AM
deployed fringe projection system has the capability to detect manufacturing defects, which
can improve manufacturing accuracy and control the process during the manufacturing.
The developed system has been fully employed within a commercial AM machine along
with the associated control software.
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Figure 2. Calibration board with ring marks: (a) photograph of the calibration board with concentric
rings (tolerance range of the centre positions within ±0.002 mm); and (b) phase errors from the
ring marks.

2. Materials and Methods
2.1. The Setup of Fringe Projection System

A conceptual illustration of the EBM machine setup with the fringe projection system
is shown in Figure 3. The AM machine consists of four parts with different functions: these
are an electron beam melting source, a powder delivery system, a powder bed transfer
stage, and the fringe projection inspection system. The final implementation was within a
commercial EBM machine. The inside of the machine chamber was under vacuum during
the AM process. The fringe projection system was therefore fixed on top of the machine
outside of the build chamber and the build area was “viewed” through two leaded glass
windows, the windows were protected during the powder melting phase by Kapton film.
The fringe projection system consists of a charge-coupled device (CCD) camera and a
digital light processing (DLP) projector. The camera and projector were located on either
side of the electron beam melting source. The position of the projector and the camera were
fixed with the angle between the optical axes of circa 30◦. The inspected surface was at the
intersection of the axes.
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Figure 3. A conceptual setup of the detection system.

2.2. Measurement Principle of Fringe Projection System

The principle of the fringe projection technique is based on triangulation [20]. To
obtain shape information, the geometric relationship of the DLP projector and the CCD
camera should be determined, as illustrated in Figure 4. The sinusoidal fringe patterns
were projected from the projector onto the tested surface where the fringe patterns were
deformed due to surface form and the deformed fringes were captured by the camera.
The pixel relationship between the camera and the projector can be determined from the
captured fringe images, namely the absolute phase map. The phase map was computed
from the captured deformed fringe patterns. After system calibration, 3D shape data can
be obtained using this absolute phase map.
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The phase information represents the pixel position in the projector and the cor-
responding pixel position in the camera. According to the triangulation method, the
geometric relationship of the projector to the camera can be represented by a mathematical
model between the absolute phase map and depth data [21] as follows:

Z =
L0

2πL2
0L cos θ

P0∆ϕ(x,y)(L0+x cos θ sin θ)2 − L cos θ sin θ
L0+x cos θ sin θ + 1

(1)
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The model was established in a reference coordinate system, where Z is the height
difference value relative to the reference plane. ∆ϕ is the absolute phase difference between
the measured surface and the reference place. Therefore, the height values across the
surface can be calculated with the phase information and system parameters. The geometric
relation is approximated to be a linear relation, however, because of the element of nonlinear
response and lens distortion, the geometric relation cannot be a perfect linear mapping. It
can, however, be fitted by a higher-order polynomial as illustrated in Equation (2):

Zr(x, y) =
N

∑
n=0

an(x, y)∆ϕ(x, y)n (2)

2.3. Phase Analyses Methods

All height information is derived from absolute phase information. In this paper, a
four steps phase-shifting algorithm and a three-frequency selection algorithm were used to
obtain the absolute phase information. In the present case, the sinusoidal fringe pattern is
generated and projected by the projector and the intensity value of the projected image is
illustrated in Equation (3):

Ii(x, y) = 120 + 100 cos(
2πx
Wit

N f j + δi), δi =
1
2

π, π,
3
2

π, 2π (3)

where i indicates the ith image, Ii is the captured fringe pattern intensity, Wit is the image
width of the projector, δi is number of phase shifting steps, N f j is the projection fringe
number. After the camera captures the intensity images Ici the wrapped phase can be
calculated by the following equation:

W(ϕ) = −arctan

(
∑N

i=1 Ici(x, y) sin(δi)

∑N
i=1 Ici(x, y) cos(δi)

)
(4)

After obtaining the wrapped phase W, the unwrapped phase map, namely the absolute
phase data, can be calculated by a temporal phase unwrapping method (three-frequency
selection algorithm). Sets of sequential sinusoidal fringe patterns were projected onto the
tested surface; the number of fringes is defined by the following Equation (5):

N f j = N f 0 − (N f 0)
j−1

m−1 , j = 1, 2, . . . , m − 1 (5)

where Nf0 is the maximum number of fringes, Nfj is the number of fringes in the jth fringe
set, and m is the number of fringe sets used. In this paper, the maximum number of fringes
is 100, and m = 3, therefore Nf1 = 99 and Nf2 = 90.

3. System Calibration
3.1. Calibration Method

In the system calibration, calibration plates with markers are often used. These
markers are used to mark pixel positions to establish a positional relationship between
pixel coordinates and spatial coordinates. The checkerboard mark, as shown in Figure 5, is
commonly used as a calibration board, but it is not the best choice for depth calibration
because the light is absorbed by the black portion of the checkerboard, which will affect
the accuracy of phase acquisition. Therefore, it is necessary to select a calibration plate that
can mark the pixel position and affect the phase acquisition accuracy to the least extent.
Therefore, a certified ceramic flat plane with concentric circle rings with known separation
distances was employed, as shown in Figure 2a. Due to the presence of the black circle
rings on the calibration board, they will still affect the phase value as shown Figure 2b.
The captured fringe patterns have low fringe contrast, which results in phase error and
measurement error. The circle ring area is black which can absorb the light intensity, and
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the profile image of the absolute phase difference that crosses the circle ring area is shown
in Figure 2b.
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A simple calibration method can be used to solve this issue. It can be applied to the
system, which requires higher accuracy in the vertical direction but lower accuracy in the
transverse direction.

Figure 6 shows the procedure for the calibration method. The calibration method is
a two-part calibration: (i) depth calibration and (ii) transverse calibration. In the depth
calibration, a fifth-order polynomial as shown in Equation (6) needs to be fitted. The phase
and depth information are nearly a linear relationship, though some researchers, however,
use a linear model to solve the problem [6]. A fifth order polynomial was employed here
to improve the measurement accuracy. The impact of the degree of the polynomials was
investigated, and it was found that the accuracy was significantly increased initially, but
the improvement became negligible when the order was higher than five. Therefore, a fifth-
order polynomial was the optimal choice, balancing the accuracy and the computational
complexity. A white flat calibration board is employed to obtain the clean phase data:

∆H = a0 + a1∆ϕ + a2(∆ϕ)2 + a3(∆ϕ)3 + a4(∆ϕ)4 + a5(∆ϕ)5 (6)
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∆ϕ is the phase difference between the reference surface and the position of the
calibration surface, which is obtained from the whiteboard. ∆H is the corresponding
movement distance between the reference surface and the calibration position.

In practical application, the whiteboard is placed on the ‘build stage’ and moved to
21 positions. The simulation experiment of the number of moving positions was carried
out in a previous paper [19]. When the number of movement positions is more than 20,
the measurement accuracy of approximately six microns can be achieved. Based on the
position of the calibration board, the middle position is taken as a reference surface. Based
on the reference surface, a reference coordinate system (representing the world coordinate
system) can be constructed. Movement is implemented in the Z axis. At each position, the
movement distance can be measured by an independent traceable distance interferometer.
At each position, the fringe patterns are projected onto the white calibration board. The
phase information from the projected fringe patterns of the calibration board is collected.
After being moved to 21 positions, 21 absolute phase maps can be obtained along with
the corresponding moving distance measured by the interferometer (AM machine z scale).
Based on this obtained phase data and depth data, namely ∆ϕ and ∆H, a least-squares
algorithm is applied to optimize the coefficient values of Equation (6). A set of high
accuracy coefficients of Equation (6) can be calculated pixel by pixel, which as a result of
the least squares fitting, do not now have the black ring effect.

After obtaining the coefficients of Equation (6), the depth calibration is completed. The
whiteboard is replaced by the circle ring board on the ‘build stage’. The circle ring board
is moved to 10 positions, which are in the field of calibrated depth. The same sinusoidal
fringe patterns are projected on the circle ring board. The camera captures them and a
texture image at each position. The phase maps and the corresponding marked points
images are obtained. The height difference between the movement position of the circle
ring board and the reference surface can be calculated by Equation (6). A cross-section
line of the calculated height was selected where it does not intersect any ring area, and
the selected height was fitted by the polynomial equation. The fitted height was used
for calculating the coefficients of transverse direction, namely in Equations (7) and (8).
Therefore, the coefficients of Equations (7) and (8) are optimised by using the fitted height
results and the world coordinates of X and Y calculated by the centre of the concentric circle
as parameters. Figure 7 shows the procedure. The transverse calibration is now completed:

X = b1 + b2∆H + b3(∆H)2 (7)

Y = c1 + c2∆H + c3(∆H)2 (8)
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Consequently, the geometric relationship between the camera and the projector can
be determined.
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3.2. Calibration Results

To verify the proposed calibration method, a white plate was measured by two
methods. The depth data were calculated from the circle ring plate calibration results,
as shown in Figure 8a. The depth data were calculated using the proposed calibration
results as shown in Figure 8b. It can be seen that the circle rings effect was eliminated by
comparing the two calibration results. It can be concluded that the proposed calibration
method effectively reduced the marker effect of the ring marks in the calibration process.
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rings circled); and (b) 3D shape measurement results with the proposed method.

In order to verify the measurement accuracy of the system, the verification method
was divided into two steps: horizontal direction and vertical direction. For the horizontal
direction verification, texture images of four positions were collected within the calibration
range, and the centres of the rings were extracted and the distance between the centres
calculated as shown in Figure 9. The calculated results were compared with the parameters
reported in the calibration plate inspection report. The compared values are shown in
Table 1. It can be clearly seen that the mean absolute error in the Y direction is higher
than that in the X direction, which is because there is an angle between the optical axis
of the camera and the normal line of the calibration plate when the camera is operating.
As a result of the angle between the optical axis of the camera and the normal line of the
calibration plate, a perfect circle becomes an ellipse in the camera view. The centre of the
ellipse extracted in the X direction deviated from the true centre of the circle, while the
deviation between the extracted centre of the ellipse and the true centre in the Y direction
was small, so the accuracy in the Y direction was higher.
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Table 1. Details of the accuracy and precision along transverse direction.

Directions

Nominal Actual
Distance

between Each
Centre Points

(mm)

Number of
Centre-to-

Centre
Measurements

Mean
Measured
Distance

(mm)

Mean
Absolute

Errors
(mm)

Standard
Deviation
(Precision)

(Units: mm)

X 15.0007 320 15.0228 0.0228 0.0467
Y 15.0009 308 14.9971 0.0029 0.0382

For the vertical direction verification, the calibration board was placed at two known
vertical positions. At each position, the board was measured by an independently certified
interferometer with a resolution of 1 nm. The plate was positioned at approximately
−5.4 mm and 1.3 mm with respect to the testing plane, as measured profile images from
the board are shown in Figure 10. The measured distance obtained by the interferometer
was taken as the ideal value and was measured 20 times. The measured average distance
detected by the inspection system, the absolute error between the measurement results and
the ideal value and the standard deviation are listed in Table 2. The maximum absolute
error was 25.9 µm. The standard deviation was approximately 17 µm. Compared with
the previous reported method [19], the standard deviation from the proposed method is
approximately 16.8 µm close to the 15.8 µm in the previous paper. However, the method
applied in this paper is four steps of phase shifting, and the previous paper was an eight-
phase shifting approach. The proposed method reduced measurement time and improved
measurement efficiency without compromising error.
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Table 2. Details of the accuracy and precision along the depth direction.

Position(mm)
Mean Measured

Distance
(mm)

Mean
Absolute

Error (mm)
(Accuracy)

Standard
Deviation (mm)

(Precision)

−5.3987 −5.3728 0.0259 0.0168

1.2982 1.2954 0.0028 0.0126

4. Experiments and Implementation

The fringe projection system hardware consisted of a computer, a CCD camera and
a projector. The CCD camera is an industrial camera (model evo12040MBGEB) from SVS
with a resolution of 3016 × 4016 pixels. It supports external and internal triggers. The
projector is an industrial digital projector (Light Crafter model 4500) with a resolution of
912 × 1140 micromirror array. The resolution requirement of the AM inspection system
is 50 µm (approximately the AM powder particle size). Figure 11a shows a proof-of-
concept experimental setup for the fringe projection system, and Figure 11b shows the
fringe projection system embedded into a commercial EBM machine. The calibration
process for the experimental system uses an interferometer, and within the EBAM machine,
an ultra-precision machine transfer table with an independent positional scale is used
for calibration.
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Figure 11. Experimental setup and AM machine: (a) proof-of-concept experimental system; and
(b) EBM machine.

3D results of proof-of-concept measurement samples are shown in Figures 12–14.
Figure 12 was a 3D measurement result of a coin. Figure 12a shows a twenty-cent coin.
Figure 12b shows the 3D measurement results of the coin after corrections by the proposed
method. Figure 12c shows the 3D measurement results of the coin before corrections.
Figure 12d was the zoomed error area of 3D measurement results. The proposed calibration
method clearly eliminated the effect of the rings. Figure 13 illustrates the profile of the
zoomed error area. It can be seen that the range of the error is from 150 µm to 200 µm in
the ring region without correction. If the ring effect were not corrected for, then the ring
effect hidden in the calibration coefficient would lead to a measurement error of 200 µm in
the ring area.
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corrections; (d) zoom in the error.
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An Ebeam AM printed metal sample was measured by the fringe projection system,
as shown in Figure 14a. The printed metal part with radial grooves and bulges is used
for evaluating the manufacturing resolution. The measured results were consistent with
the manufacturing resolution. Comparing results with the proposed method and without
corrections method shows that the ring effect was eliminated and the measurement error
of the rings area has been improved by 150 µm to 200 µm.

Full implementation with corrections is shown in Figure 15. The figure shows the
application of the proposed in situ system within the EBAM machine. Three-test parts are
seen with evidence of edge swelling at the part edge contouring lines. Additionally, and
more critically in terms of machine feedback, an example of excessive powder delivery is
shown. This error is due to powder rake damage and is visible. Such excessive powder
delivery can be quantified and if this meets a critical threshold then the build will be
terminated via the link between the measurement system and the machine control. The
time of the whole inspection was less than 2 s. The time for the system calibration process
was approximately 30 min. All equipment was mechanically fixed and one to two months
recalibration checks are needed to maintain the measurement accuracy.
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5. Conclusions

In this paper, based on the phase-depth calibration model, a polynomial method was
investigated for measurement system calibration. The proposed fringe projection system
was employed in a commercial EBAM machine for processing quality inspection. The 3D
shape of the powder bed and part geometry were accurately constructed after the system
calibration. The fringe projection system was shown to be able to inspect the powder
delivery and metal printed parts during the build process. The inspection improves
the process quality and facilitates process control. A simple novel calibration method
was developed to facilitate system calibration to improve measurement repeatability and
vertical resolution. This method applied a whiteboard for depth calibration and a circle ring
board for transverse calibration. The proposed method avoids the phase error caused by
using the ring calibration plate in the depth calibration. The form of the powder bed and the
printed parts can be measured with higher precision and speed after the implementation
of the proposed calibration method. The disadvantage is that the precision of transverse
data is not high, because the depth data of transverse calibration are obtained through the
proposed system rather than the interferometer, and the depth measurement accuracy of
the system is 20 microns, while the depth measurement accuracy of the interferometer is
1 nanometre. This is not considered as too serious as this is less than one powder particle,
as used in EBAM. Experimental results show that the fringe projection system has the
capabilities to detect the state of powder bed and printed sample. Moreover, this method
can be used not only in AM but also in other fields.

There are, however, several future research directions for improving system perfor-
mance, namely (1) processing speed: reducing the projection images number and inves-
tigating fast processing algorithms; (2) intelligent control: employing machine learning
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algorithms for the recognition and classification defects; and (3) transverse calibration
precision: improving the extraction accuracy of the rings and the obtained depth precision
during the transverse calibration.
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