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Abstract: Bearings prevent damage caused by frictional forces between parts supporting the rotation
and they keep rotating shafts in their correct position. However, the continuity of work under harsh
conditions leads to inevitable bearing failure. Thus, methods for bearing fault diagnosis (FD) that can
predict and categorize fault type, as well as the level of degradation, are increasingly necessary for
factories. Owing to the advent of deep neural networks, especially convolutional neural networks
(CNNs), intelligent FD methods have achieved significantly higher performance in terms of accuracy.
However, in addition to accuracy, the efficiency issue still needs to be weathered in complicated
diagnosis scenarios to adapt to real industrial environments. Here, we introduce a method based on
multi-output classification, which utilizes the correlated features extracted for bearing compound
fault type classification and crack-size classification to serve both aims. Additionally, the synergy
of a time–frequency signal processing method and the proposed two-dimensional CNN helped
the method perform well under the condition of variable rotational speeds. Monitoring signals of
acoustic emission also had advantages for incipient FD. The experimental results indicated that
utilizing correlated features in multi-output classification improved both the accuracy and efficiency
of multi-task diagnosis compared to conventional CNN-based multiclass classification.

Keywords: convolutional neural network; multi-output classification; acoustic emission; time–frequency
domain; bearing fault diagnosis

1. Introduction

Electric machines have been widely used and play an undeniable role in industrial
applications, as well as in machinery serving life. Continuous operation under various
conditions (temperature change, overload, high moisture level, etc.) causes inevitable faults
for machines and exerts adverse effects on safety standards, production quality in factories,
cost, and downtime. Based on some surveys of the IEEE Industry Application Society
and other related organizations, bearings account for approximately 40% of machine
fault causes [1]. This has caused alarm and heightened the need to develop bearing fault
diagnosis (FD) methods that will prevent unwanted incidents and ensure the reliability
and safety of sophisticated systems.

Nowadays, industrial companies increasingly seem to find FD an essential task to keep
track of desirable performance during the production processes. The competitiveness of a
company is strongly related to its level of intelligence in the FD process. Therefore, most
industrial companies desire to improve their performance by enhancing their capability to
handle faults. The common process of FD is summarized into two stages: (1) observing the
behavior of monitoring objects; and (2) determining the existing faults and their nature,
explaining the root causes. Thus, the level of a smart factory depends on its ability to utilize
information from the data.

Some experimental and theoretical studies have been conducted in the field of FD,
especially regarding bearings. In general, the diagnosis issues are solved by modeling the
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physical model bearing or finding the relationship between bearing defects and the cor-
responding characteristic of monitoring signals that carry the bearing health information.
Various modalities have been utilized for monitoring bearings—such as vibration [2–5],
stator current [6,7], thermal imaging [8], electromagnetic signals [9], and acoustic emission
(AE) [10–13]. In general, these methods are categorized into knowledge-based, physical
model-based, and data-driven approaches, with the help of signal processing analysis in
the time-, frequency-, or time–frequency domains. However, attaining diagnostic accuracy
is more challenging in reality, as incipient fault detection with a small signal-to-noise
value is required. The presence of other complicated working conditions, such as variable
rotational speeds and the requirement of predicting degradation levels, also make man-
ual modeling effort-intensive. Among these approaches, data-driven methods have the
advantage of reducing effort in modeling or accumulating prior knowledge of interests.
With the advent of machine learning (ML), data-driven approaches have significantly
impacted FD processes owing to their automation, simplicity, and effectiveness. This
opens a new era in the field—namely, intelligent FD—which is based on ML algorithms,
including principal component analysis (PCA), artificial neural network (ANN), support
vector machine (SVM), and k-nearest neighbors (k-NN), to learn from the acquired data
and adapt the acquired knowledge to predict the presence of bearing faults with high
accuracy [14,15]. Furthermore, deep learning (DL) has achieved even better performance
in noisy environments and versatile operation condition constraints [16–18].

Besides the accuracy in diagnosis, the real-time capability of FD is also a critical
aspect that needs to be considered, especially in hazardous industrial types of machinery.
Efficiency is also essential for reducing the computational resources of the entire monitoring
system, especially in limited-resource devices (e.g., handheld devices). Although DL-based
methods, especially CNN, show high performance, latency is their critical problem that
needs to be considered because they consume a large number of computing resources. Some
studies have focused on reducing the number of MAC (multiply–accumulate operations)
and the number of parameters, thus indirectly reducing the latency of diagnosis inference.
For example, simple CNN architectures were designed [19,20]. The scenario of fault type
classification works well on limited-resource systems (e.g., embedded systems) by CNN-
based methods using a small input image size or model established by a neural architecture
search [21,22]. However, the efficiency of more complex diagnosis scenarios still needs to
be considered to fulfill the diagnosis process, which could play a role as an intermediate
stage for fault prognosis to estimate the longevity of the bearing. M.T. Pham et al. [10]
proposed a method based on the efficient-net (CNN) to predict not only bearing fault
types but also the level of degradation, but the proposed multiclass classification shapes
a network with many classes. This method requires a large amount of computational
resources. In an effort to utilize correlated features in terms of multiple classification tasks,
Shen et al. [23] proposed a multiple-label framework applied to raw vibration signals to
predict single faults with the level of degradation. The simplicity of signal representation
made it difficult to ensure stability under conditions of variable rotational speeds and noisy
working environments.

This paper proposes a method based on CNN multiple-output classification to address
the diagnosis problem in complicated scenarios. The proposed method initially utilizes
time–frequency analysis applied to AE signals to represent fault features under conditions
of varying rotational speeds owing to the nonstationary property of monitoring signals. The
proposed CNN multiple-output model, which utilizes the synergy of correlated features to
solve two tasks of fault type diagnosis and crack size diagnosis (level of degradation), will
be applied if there are existing faults detected by a preliminary anomaly detection model
(ADM). This multi-task learning process can improve the overall efficiency and accuracy.
The proposed method can also help to utilize a part of the training samples lacking labels.

The rest of this paper is organized as follows: Section 2 reviews works related to
intelligent bearing FD. Section 3 details the proposed method based on the multiple-output
CNN model applied for two-dimensional (2D) spectrogram representation. Section 4
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conducts experiment to evaluate the proposed diagnosis method, accompanied by results,
explanations, and comparisons. Finally, Section 5 presents our conclusions.

2. Related Works

Over the past decade, the advent of ML has created great tools to automatically gener-
alize and learn from data. Hence, intelligent bearing FD is derived from a combination of
conventional signal processing methods and ML tools. On the one hand, signal processing
methods can be performed in single domains (i.e., time-domain, frequency-domain) [24,25]
or in the time–frequency domain [26,27]. In contrast, there have been numerous ML meth-
ods applied for bearing FD. First, the k-NN classifier is one of the simplest and most basic
tools utilizing the shortest distance in the feature space among training samples, which does
not consider the data distribution [28]. Among the measurement metrics, the Euclidean
distance among samples is the most popular in k-NN [29]. In addition to the advantage of
simplicity in implementation, k-NN shows its disadvantage in computational expenses
depending on the number of data dimensions. In the field of bearing FD, Pandya et al. [30]
proposed APF-kNN applied to AE signals that are preprocessed by the Hilbert–Huang
transform. Baraldi et al. [31] integrated k-NN and binary differential evolution to diagnose
bearing states under varying conditions. Second, ANN also contributes to the diagnosis
area, which is based on the principles of the human brain. An ANN is composed of input,
hidden, and output layers, which are connected consecutively to learn the knowledge
from the historical data [32]. Owing to its classification capability, Yu et al. [33] proposed a
method for bearing condition diagnosis using input data from energy features created by
EMD. Moreover, Ben Ali et al. [34] proposed an ANN-based method using input data from
the energy entropy calculated by IMFs. The disadvantage of ANNs is the requirement
of a large amount of training data and the difficulty of network scale selection. Thus, it
needs a lot of effort when applying it in reality. Next, the limitation of ANN is weathered
by the support of SVM, which is able to separate the group of data by maximizing the
gap between classes in the search space [35]. For example, Jiang et al. [36] applied SVM
for multi-source monitoring signals represented in the time domain, which were acquired
from some sensors to diagnose fault sources (gear, bearing, and rotor). In an effort to
mitigate the downside of SVM when the number of votes for classes is equivalent (decision
conflicts), Hui et al. [37] proposed a method using an improved version of SVN, namely
SVM-Dempster Shafer, to detect the anomaly accurately.

Recently, the movement toward DL has helped bearing FD perform better while
reducing the manual processes compared to conventional FD methods. DL, especially
CNN-based methods, can solve more complicated diagnosis problems by the capability of
fault feature extraction. CNN is initially applied directly for acquired monitoring signals
in the time domain; for example, Bhadane et al. [38] used statistical parameters as input
features to feed the CNN. Other methods also utilize one-dimensional (1D) CNN models
applied to raw monitoring signals in terms of simplicity and efficiency. For instance,
Shao et al. [39] proposed a hybrid model that combined 1D CNN and SVM with the
support of an improved swarm optimization algorithm to enhance the performance and
convergence speed. Zhou et al. [40] proposed an 1D CNN-based fusing frequency feature
matching algorithm to extract key frequency features in the signal spectrum for bearing
fault diagnosis under noisy environments. Ince et al. proposed an efficient 1D CNN-based
method that adapts an inherent adaptive design to combine a feature extractor and classifier
into a single learning body, with the input data being raw signals [41]. Zan et al. built a
multi-dimension input CNN model based on 1D CNN which utilizes multiple input layers
rather than one [42]. Moreover, 2D CNNs are increasingly used owing to their power
in image processing. For example, Li et al. proposed a 2D CNN-based method applied
to wavelet packet transform images [43]. Zhuang et al. proposed a method utilizing
stacked residual dilated convolutions with high denoising capability; however, it has high
complexity in terms of the number of parameters and training time [44]. Ma et al. proposed
a method based on the idea of unsupervised learning with the loss function to solve the
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problem of diagnosis under variable rotational speeds [45]. Haedong et al. [46] proposed a
CNN-based method using orbit plot images as input data to classify the fault modes [46].
Yuan et al. [27] proposed a combination of CNN and SVM to construct a network framework
for bearing FD. In reality, other aspects are also considered, for example, Han et al. [47]
proposed an adversarial learning framework for alleviating the overfitting problem due to
the lack of labeled data. The efficiency of CNN-based methods has received attention in
the field of bearing FD [21,22]; however, they still need to be considered in complicated
diagnosis conditions.

3. Proposed Method

In this section, we introduce our proposed method based on 2D CNN multi-output
classification for both the aims of compound fault type diagnosis and level of degradation
diagnosis. After providing an overview of the proposed method, we clarify the charac-
teristics of the signal processing technique used, and the terms related to multi-output
classification in FD.

CNNs are powerful tools for dealing with the issue of feature extraction, especially
with 2D image data. Therefore, the CNN model was compatible with the 2D representation
of the signal spectrogram in the time–frequency domain, which could effectively represent
fault features for acquired nonstationary signals under variable rotational speed conditions.
Neural networks based on CNNs consist of three layers: convolutional, pooling, and
fully connected layers. Whereas convolutional and pooling layers have been used for
establishing feature extractors, fully connected layers are often used to construct classifiers.
As Figure 1 shows, the proposed method contained two sub-models constructed based
on basic layers: the ADM and the multi-output FD model. On the one hand, the first
model served for binary classification between normal and abnormal states, which were
pre-screened based on a practical condition (bearings usually were in a normal state). In
contrast, the second model was activated whenever an anomaly was detected to perform
further tasks of fault type diagnosis and degradation level diagnosis.

Figure 1. (a) Proposed CNN-based multi-output classification framework (Conv2D|x|y means 2D CNN|kernel
size|channels; Maxpool means Max pooling operation); (b) Illustration of two classifiers for two diagnosis aims: compound
fault types: Outer raceway (BCO), Inner raceway (BCI), Roller (BCR), Inner and outer raceway (BCIO), Outer raceway and
roller (BCOR), Inner raceway and roller (BCIR), Inner and outer raceway and roller (BCIOR); Crack size: 3, 6, 12 mm.
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3.1. Time–Frequency Analysis for AE Signals

In the working condition of variable rotational speed, single domains (time domain
or frequency domain) could not adequately represent the fault features owing to the
nonstationary characteristic of monitoring signals [22,48,49]. In contrast, time–frequency
utilized the synergy of both domains to analyze the signal spectrum of the transient signal.
Among time–frequency analysis methods, wavelet packet transform (WPT) has been
widely used owing to its flexibility in changing the resolution according to the frequency
range. WPT variants are related to the Gabor transform being effective when using a low
bandwidth duration and transient signals. This study used the Constant-Q Transform
(CQT), a variant of WPT, to create spectrogram images from acquired monitoring signals.
CQT has the advantage of representing a signal at low frequencies and solves the problem
of mapping frequency on a logarithmic scale. Low-frequency components in the acquired
AE signals contain more meaningful bearing information than those in the high-frequency
range because of high-frequency noise. CQT needs to consider the following factors to
establish: (1) window gk, which was real-valued and even functions—in the frequency
domain, the Fourier transform of gk was defined in the interval [−Fs/2, Fs/2]; (2) the
sampling rate ωs; (3) the number of bins per octave, b; and (4) the minimum and maximum
frequencies, ωmin and ωmax, respectively.

After being converted into spectrograms, all samples were removed from their redun-
dant borders and rescaled into the size of 224 × 224 by linear interpolation to ensure the
ability to represent features for both fault types and levels of degradation. Figure 2 illus-
trates single-fault signal spectrograms at various levels of degradation under the condition
of variable rotational speeds.

Figure 2. 2D spectrograms of single fault types with various levels of degradation at different
rotational speeds.
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3.2. Anomaly Detection

Owing to the simplicity of the task, the ADM was constructed using three layers. First,
the convolutional layer convolved across the input image size to extract a high-abstract
feature map. Second, a max-pooling layer was used to downsample the dimensions of
the feature maps. The pooling operation acted as a feature summarization to improve
the robustness of the model with the change of feature location in the input image data.
Third, both the number of parameters and computational resources were reduced by using
pooling operations. The last layer was a fully connected layer that acted as a binary classifier.
The features extracted by the first two layers (feature extractor) had a high abstraction level;
thus, they could be reused for further diagnosis. Therefore, we froze the ADM weights
after the training process. This tip, introduced in a previous work [17], helped reduce the
overall computational cost in the long-term monitoring process owing to the dominance in
the occurrence frequency of a normal state compared to an abnormal state.

3.3. Multi-Output Classification for Compound FD with Degradation Levels

The proposed multi-output classification model had two major stages: feature extrac-
tion and multi-output classification. The input of this model was the feature map extracted
by the feature extractor of the ADM.

3.3.1. Feature Extraction

The feature extractor of this model was established by stacking several groups of
convolutional layers and max-pooling layers. Each group began with convolutional layers
used to convolve across the input feature and result in a new feature map. Subsequently,
max-polling supported down-splitting the created feature map by taking advantage of
improving efficiency and controlling overfitting phenomena.

With input image data Am−1 consisting of channels km, the output Am setting with
the om channel after a convolutional layer was calculated as

Ao
m = gm

(
∑
k

Wok
m ∗ Am

m−1 + bo
m

)
(1)

where gm(.) denoted a nonlinear function, Wok
m was the weight matrix, bo

m ∈ <.
Then, the output feature map Am was applied to the max-pooling operation for spatial

dimensionality reduction. The max-pooling formula was

Xm = max(Am, s) (2)

where Xm denoted the output of the max-pooling operation and s the pooling size of a
non-overlapping segment. The operation max(.) returned the maximum value among the
values of each non-overlapping segment.

3.3.2. Multi-Output Classification

Conventionally, the classification problem was known using multiclass classification.
It was a classification task with more than two classes, and each sample was labeled only
by one class. Regarding the field of bearing fault type diagnosis, the classification task
applied for a set of fault signal samples might either be of a specific type of fault (inner
race fault, roller fault, outer race fault, etc.). Multi-class classification assumed that each
fault signal sample belonged to only one label. With this definition, adopting multiclass
classification for the diagnosis of both bearing fault type and degradation levels required
training data for numerous classes. For example, with seven types of compound-bearing
faults, three levels of degradation for each fault type, and one normal state, we needed to
prepare data for classifying 22 separate classes [10]. In addition to the problem of preparing
data for some classes, another adverse effect was that—in multiclass classification—each
sample focused on representing fault features for individual classes without considering
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the relationship with other aspects of the fault. Therefore, missing labels in some classes
could cause serious problems for the overall prediction accuracy.

In contrast, multi-output classification was related to the ability of the estimator to
handle several joint classification tasks. This tactic attempted to fit the input sample into
one classifier per target by allowing multiple target variable classifications. The only
predictor was trained to estimate a series of target functions (loss function 1, loss function
2, . . . ) to predict a series of corresponding labels (output 1, output 2, . . . ). Because of
the use of the common predictor, correlated features were utilized to enhance the overall
performance of all related targets. There was the fact that the probability of overfitting
when using shared parameters between tasks was smaller than the risk of task-specific
parameters [50]. Intuitively, the more tasks that were trained simultaneously, the greater
the probability that the model found the representation capturing all related tasks.

After the feature extraction stage, a flattening operation was initially applied to create
a 1D vector

zm = f latten(Xm) (3)

where f latten(·) denoted the flattening operation converting the matrix Xm to a vector zm.
The final layer of the architecture was divided into two sub-outputs that served N

targets. Thus, each input X finally obtained the N output as ym
f inal_output = [ym

1 , ym
2 , . . . , ym

N ].
In the scope of this research, N = 2 for two targets of compound fault type classification
and the level of degradation classification.

Concerning the training process, multi-output learned the way to match each input
to multiple outputs. Given the input space X ∈ R d, and the output label space Y ∈ Rm.
The goal of the training process was to determine a function f : X → Y from the training
set domain D = {(xi, yi)|1 < i < n}, where xi ∈ X and yi ∈ Y. Intuitively, the training
problem became an optimizing function F : X×Y → R by using training samples. Sub-
sequently, with unseen samples of validating or testing set x, the model was predicted
ỹ = f (x) = argmaxy∈Y F(x, y).

The overall loss function was defined as the sum of the sub-output loss of the training
targets, lossoverall = loss f ault_type + losscrack_size. For each sub-output, the loss function was
obtained as

loss = − 1
M ∑M

m=1 ∑P
p 1{ym = pm} · log(ỹm) (4)

where M was the number of samples, and P the set of labels in each sub-output, predicted
value ỹ, true label y, and binary function 1{}.

The process of minimizing the overall loss function was supported by an automatic
stochastic line search (SLS) optimizer to automatically adjust the learning rate and enhance
the convergence ability [51].

Concerning the SLS, stochastic gradient descent (SGD) is used to compute the gra-
dient of the loss function of a minibatch in iteration k. It then updates the weights as
wk+1 = wk − ηk∇ fik(wk), where wk+1, and wk are the SGD iterates, ηk is the step size,
and ∇ fik(·) is the average loss function gradients computed at iteration k. Each stochastic
gradient ∇ fik(w) is assumed to be equivalent (e.g., Ei[∇ fi(w)] = ∇ f (w) for all w).

The Armijo line [52] search is used as a criterion for deterministically setting the step
size of gradient descent. At iteration k, the Armijo line search performs computations to
choose a step size that satisfies the following condition, where c > 0 is a hyperparameter

fik(wk − nk∇ fik(wk)) ≤ fik(wk)− c · ηk||∇ fik(wk)||2 (5)

The adopted SLS optimizer can be summarized as: (1) compute the gradients∇ fik(wk)
for a given training batch; (2) search for a step size ηk that satisfies the stochastic Armijo
line search condition; and (3) use the step size and update the model parameters with
SGD: wk+1 = wk − ηk∇ fik(wk).
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4. Experiments and Results

In this section, we describe the data used to evaluate the proposed method. We show
and discuss the results obtained from the experiments.

4.1. Experimental System and Dataset

Figure 3 shows that the data used for evaluating the proposed method were acquired
from the experimental testbed. The experimental system consisted of a three-phase induc-
tion motor providing motion for the entire system, which changed the rotational speed by
a controller. The motion from the motor was transferred into a gearbox (ratio 1.52:1) that
contained two shafts; namely, drive-end and non-drive-end shafts. Each shaft was attached
to two bearings (FAG NJ206-E-TVP2), and Table 1 lists the specifications. Moreover, the AE
sensor was mounted near the bearing of the non-drive-end shaft. The non-drive-end shaft
was connected to the load by a belt. The load was a blade that could be adjusted.

Figure 3. Data acquisition system and experimental testbed.

Table 1. Bearing specification.

Contact angle 0◦

Number of rolling elements 13

Pitch diameter 46.5 (mm)

Rolling element diameter 9.0 (mm)

Regarding the data acquisition system (DAS), a wideband AE sensor (PAC WSα)
was used, with a frequency range of 100 kHz to 900 kHz, a peak sensitivity of −62 dB,
a frequency response range of 1 kHz to 3 MHz, directionality of ±1.5 dB, and resonant
frequency of 650 kHz. DAS was a PCI-2-based board with a sampling rate of 250 kHz.

Diamond cuts were used to create seven fault types (single and compound faults),
and each fault type had three different crack sizes. Thus, there were 21 fault cases in
total. We used a dataset for training, validating, and testing the multi-output CNN model
(see Table 2). Concerning the training and validation subsets, the samples were acquired
at rotational speeds of 300, 400, and 500 rpm; whereas, the testing subset samples were
acquired at rotational speeds of 250, 350, and 450 rpm. The defined dataset helped evaluate
the capability of the proposed method under the condition of variable rotational speeds. In
the experiments, we used 80 samples for every fault case in the training process (60 samples
of each fault case for training and 20 samples of each fault case for validation). After
training, 400 samples of each fault case were used to test the trained model. Therefore, the
training subset, validation subset, and testing subsets contain 1760, 440, and 8800 samples,
respectively. Each sample was a spectrogram of a 0.05 s signal segment determined by the
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range of the fault frequency components [21]. As Table 3 shows, 22 bearing states were
introduced. The ADM was trained to classify the two states (normal and faulty states);
whereas the multi-output model was trained to classify 21 fault states.

Table 2. Experimental compound fault with various levels of degradation dataset.

Single and Compound
Bearing Defect Dataset

Rotational
Speed (rpm)

Crack Size

Length (mm) Width (mm) Depth (mm)

Training subset 300, 400, 500

3 0.6 0.3

6 0.6 0.5

12 0.6 0.5

Validation subset;
Testing subset 250, 350, 450

3 0.6 0.3

6 0.6 0.5

12 0.6 0.5

Table 3. Bearing fault dataset labels.

Abbr. Fault Category (Fault Type—Crack Size)
Multi-Output Labels

Fault Type Crack Size

BCO (3) Outer raceway (3 mm) 1 1

BCI (3) Inner raceway (3 mm) 2 1

BCR (3) Roller (3 mm) 3 1

BCIO (3) Inner and outer raceway (3 mm) 4 1

BCOR (3) Outer raceway and roller (3 mm) 5 1

BCIR (3) Inner raceway and roller (3 mm) 6 1

BCIOR (3) Inner, outer raceway, roller (3 mm) 7 1

BCO (6) Outer raceway (6 mm) 1 2

BCI (6) Inner raceway (6 mm) 2 2

BCR (6) Roller (6 mm) 3 2

BCIO (6) Inner and outer raceway (6 mm) 4 2

BCOR (6) Outer raceway and roller (6 mm) 5 2

BCIR (6) Inner raceway and roller (6 mm) 6 2

BCIOR (6) Inner, outer raceway, roller (6 mm) 7 2

BCO (12) Outer raceway (12 mm) 1 3

BCI (12) Inner raceway (12 mm) 2 3

BCR (12) Roller (12 mm) 3 3

BCIO (12) Inner and outer raceway (12 mm) 4 3

BCOR (12) Outer raceway and roller (12 mm) 5 3

BCIR (12) Inner raceway and roller (12 mm) 6 3

BCIOR (12) Inner, outer raceway, roller (12 mm) 7 3

BNC Normal state

BAC Abnormal state
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4.2. Evaluation Metrics

To evaluate the proposed method, we considered the performance in each particular
task: anomaly detection, fault type diagnosis, and degradation level diagnosis. Sensitivity
was one of the most important metrics for diagnosis; therefore, it was used to evaluate and
compare the diagnostic performance.

Sensitivity =
NTrue_Positive

NTrue_Positive + NFalse_Negative
× 100(%) (6)

where NTrue_Positive was the quantity of correctly predicted samples in a specific class, and
NFalse_Negative the quantity of incorrectly predicted samples in a specific class.

For the whole dataset, the average classification accuracy was measured as the average
value of sensitivities.

ACA =
∑ Sensitivity

∑ NClasses
(7)

Moreover, concerning the multi-output model, we also evaluated the overall perfor-
mance of the proposed model by defining a correct prediction as meaning that both labels
of fault type and label of crack size were the same as their corresponding ground truth
simultaneously. Therefore, the accuracy was calculated by

ACCmulti_output =
1
M

M

∑
m=1

1
{

ỹm
f ault_type = pm

f ault_type

}
× 1
{

ỹm
crack_size = pm

crack_size
}

(8)

4.3. Classification Results by Using Proposed Multi-Output Classification

We evaluated the performance of the proposed method based on the testing subset
after the training process, with the experiments being repeated 10 times to obtain results
on average. We initially evaluated the performance of each task (fault type diagnosis and
degradation level diagnosis). The confusion matrices in Figure 4 show the results of these
tasks. First, concerning the task of anomaly detection, owing to the simplicity of binary
classification, absolute accuracy was easily achieved after several training epochs (five
epochs). Second, owing to the correlated learning features, the task of fault type diagnosis
also achieved 100% in all classes of single faults and compound faults. The task of the level
of degradation diagnosis was shown to have greater difficulty in detecting some fault types
in the early stage (small crack size). Nevertheless, it still achieved an accuracy of 97.62%
for a 3 mm crack size and an overall accuracy of 99.21%.

In addition to evaluating diagnosis tasks separately, we provided an evaluation based
on the combination of two tasks in the multi-output model to compare with conventional
multi-class learning-based methods. This meant that there were 21 classes (seven fault types
and three levels of gradation for each fault type) evaluated by the metrics of ACCmulti_output.
The confusion matrix in Figure 5 illustrates that the model had some missing predictions
in cases of outer race faults or when all types of faults appeared. Figure 6 shows that the
SVM-based method established by grid-search achieves an accuracy of 84.59% on average.
The proposed multi-output CNN-based method also outperforms the previous multi-class
CNN-based method [8] in solving the FD problem accompanied by the level of degradation.
Our proposed multi-output CNN-based method can achieve an accuracy of diagnosis of
up to 99.32%.
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Figure 4. Confusion matrix showing the classification results for separate diagnosis tasks: (a) anomaly detection, (b) level of
degradation classification, (c) compound fault type classification.



Machines 2021, 9, 199 12 of 16

Figure 5. Confusion matrix showing the result of FD with the corresponding level of degradation simultaneously.

Figure 6. Diagnosis comparison for SVM-based method and two CNN-based methods.
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The computational resource requirement was also an important aspect that needed
to be considered when evaluating the applicability of an intelligent FD method. It was
convenient to consider the number of MAC and the number of parameters of the two
models separately (ADM and multi-output model). As Table 4 shows, the ADM using
only one CNN layer accounted for approximately 0.05M MAC and 962 parameters. Not
only MAC but also the number of parameters would affect inference latency owing to the
dataflow latency, especially concerning memory bottleneck systems. If an upcoming input
sample was predicted to be in the normal state, the inference process would be terminated
by ADM. Otherwise, the features extracted by the feature extractor of ADM would be
reused as input features of the following multi-output model, where the further inference
process classified the fault type and level of degradation. In this way, the difference between
the number of normal and abnormal states in reality (most of the time bearing was in a
normal state) gave rise to saving computational resources [21]. However, when considering
the tasks of FD and level of degradation diagnosis, the proposed multi-output CNN-based
method also reduced the number of MAC (to 1.9M) and the number of parameters (to
2.31M) significantly compared to the conventional multi-class CNN (Efficient Net B0)-based
method [10].

Table 4. Computational consumption comparison between CNN-based methods.

Number of MAC Number of Parameters

Multi-class CNN [10] 195M 5.3M
Proposed multi-output CNN 1.9M 2.31M

Proposed ADM 0.05M 962

4.4. Stability in Noisy Working Environments

The proposed method’s stability was also inspected in a noisy virtual environment to
ensure that the model would be sustainable in real working environments in the presence
of noise. We conducted the experiment by adding white Gaussian noise at various signal-
to-noise ratios (SNR), which depended on the power of the meaningful signal and the
power of noise

SNRdB = 10 log10

(Psignal

Pnoise

)
(9)

The results on average (see Table 5) proved that the accuracy of prediction experienced
a marginal decrease for both types of models when the SNR was lower (i.e., the power
of the meaningful signal was lower). However, the proposed multi-output outperformed
the previous CNN-based method and still achieved an accuracy of 95.87%, while the SNR
value was positive (i.e., the power of the signal was higher than the power of noise).

Table 5. Comparison of average accuracy between two CNN-based methods under noisy conditions.

SNR
ACA

Multi-Class CNN [10] Proposed Multi-Output CNN

No noise 98.21 99.32
10 96.08 98.65
5 95.36 97.82
0 93.33 95.87

5. Conclusions

This paper proposed a multi-output CNN-based method for bearing fault multitask
diagnosis under variable rotational speeds. The combination of using time–frequency
representation and learning correlated features in multiple tasks of diagnosis helped
improve the efficiency and performance of the proposed method. Pre-screening to classify
between the normal state and anomaly also contributed to the efficiency of the entire
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diagnosis process in the long run. The experiments’ results indicated that the proposed
bearing FD method was able to reduce the number of MAC and parameters compared to
the conventional CNN-based method in the same tasks while maintaining higher accuracy
in prediction (99.32% on average). The proposed method also proved its stability in noisy
working environments. These improvements indicated that it was a reliable solution for
smart factories in monitoring issues.
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