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Abstract: The vibration caused by resonance modes frequently occurs during acceleration and decel-
eration of the modular joint integrated with flexible harmonic drive. The conventional equivalent
rigid-body velocity method with observer can suppress the residual vibration induced by resonant
frequency but has poor robustness to model uncertainties and external disturbances. Moreover, it
cannot eliminate the torque ripple caused by the harmonic drive during low-speed uniform motion,
reducing the velocity tracking accuracy. Hence, a velocity controller with a rigid-body state observer
and an adjustable damper is designed to improve the robust performance and velocity tracking
accuracy. The designed rigid-body state observer allows a higher gain so that the bandwidth of
the observer can increase, and the equivalent rigid-body velocity can be acquired more accurately.
Notably, the high gain observer reduces the sensitivity to model uncertainties and exotic distur-
bances, especially near the resonant frequency. In addition, the observer combined with an adjustable
damper can suppress the residual vibration and torque ripple simultaneously. The proposed method
is compared experimentally with a PI method and two other rigid-body velocity methods, such as
the conventional equivalent rigid-body observer method and the self-resonance cancellation method,
to verify its advantages.

Keywords: modular joint; residual vibration; torque ripple; model uncertainties; external
disturbances; robustness

1. Introduction

The modular joint with flexible Harmonic Drive (HD) is commonly used in collabora-
tive robots due to its lightweight, high gear reduction ratio, and high power density [1].
However, its inherent resonance is easy to induce vibration if the command velocity
changes abruptly, seriously affecting the system stability [2]. Moreover, due to the inaccu-
rate dynamic models and impeded external disturbances, the accuracy of velocity control
seriously degrades. Therefore, when the velocity servo signal varies quickly, it is essential
to suppress the residual vibration on the modular joint and ensure its robustness in the
presence of model uncertainties and external disturbances.

Up to now, various methods have been proposed for vibration suppression in modular
joints [3]. Among the active vibration suppression methods, they can be roughly divided
into trajectory planning and controller designing methods. Trajectory planning includes
online and offline planning. The online planning designs an optimal trajectory to minimize
vibrations, but significant computational resources are required [4]. On the contrary, offline
planning enjoys less computational intensity, but it is generally applicable to repetitive
motion. In addition, it is hard to apply to the scenarios that interact with the unknown
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environment [5–8]. The controller designing methods can be further divided into open-
loop control methods and closed-loop control methods. The input shaping is an open-
loop control method [9]. The key idea is to obtain the control input signal based on the
reference command and vibrations. Then it modifies the input signal after taking the
physical and vibrational properties of the modular joint into account to reduce vibrations.
However, it has trouble withstanding system modeling error, which is sensitive to model
uncertainties [10–12]. The closed-loop control methods have been credited in various
applications as powerful tools to suppress vibrations, such as fuzzy logic and neural
networks. The fuzzy logic controller is usually used to optimize the controller parameters to
achieve vibration suppression. However, it is often hard to design parameters as it requires
expert knowledge about the controlled system [13–15]. The neural network method is a fast
approach for designing controllers without any prior knowledge about system dynamics.
It uses advanced information about the input and output data relationships to compensate
for the joint’s nonlinearities, indirectly reducing the link side vibrations. Nevertheless, it
is time-consuming and computationally complex. Furthermore, limited data information
may lead to bad control performance [16–18].

In addition, there are other popular closed-loop control methods due to their good
robust performance to model uncertainties and external disturbances. The quantitative
feedback theory is based on the Nichols diagram in frequency domain to analyze systems’
closed-loop performance and design the robust controller subsequently. It is robust to
model uncertainties but requires heavy computations [19–21]. The Disturbance Observer
(DOB) based method is robust to exotic disturbances. In this method, the model uncertain-
ties are considered as disturbances, leading to poor tracking performance. Moreover, to
reduce the bound of the robustness and improve the performance, the nominal model in
DOB should be as accurate as possible [22–24]. The Active Disturbance Rejection Control
(ADRC) requires little information about the physical plant. In the framework of ADRC,
the Extended State Observer (ESO) is generally regarded as a fundamental part, which is
used to estimate all measurements relating to system states and lumped disturbances [25].
However, the parameters tuning, especially the bandwidth of the ESO, are intricate and
time-consuming [26,27].

In addition to the methods discussed above, there are some methods based on the
idea of rigid-body velocity. The Self-Resonance Cancellation (SRC) method is a rigid-
body velocity strategy to counteract the system resonance and anti-resonance to reduce
vibrations [28]. It directly obtains the equivalent rigid-body velocity by the weighted
sum of the modular joint’s motor and load inertias without considering the closed-loop
dynamics. So, it is sensitive to model uncertainties. An Equivalent Rigid-Body Observer
(ERBO) method is also used to damp vibrations in [29]. Its observer acquires the equivalent
rigid-body velocity, where the nominal model only includes the rigid-body dynamics
without considering the flexible dynamics. The gain of its observer is affected by the
resonant frequency, which increases the difficulty of gain tuning. Under the premise of
system stability, the gain has to be small, resulting in the limited bandwidth of the observer
and poor robustness to model uncertainties and external disturbances. In addition, it only
works on the residual vibration while it has no effects on the torque ripple because of its
phase adjuster, which reduces the velocity tracking accuracy during uniform motion.

This paper proposes a velocity control method to reduce the sensitivity to model
uncertainties and external disturbances near the system resonant frequency, improving
the robust stability and velocity tracking accuracy. The proposed method mainly includes
a rigid-body state observer and an adjustable damper. The rigid-body state observer is
designed the order of its nominal model as similar to the actual physical plant as possible,
which lets the gain of this observer be pushed higher. Thereby, the high gain increases
the bandwidth of the observer and improves the observation accuracy of the equivalent
rigid-body velocity. Notably, the high gain can attenuate the adverse influences of the
model uncertainties and exotic disturbances near the resonant frequency. In addition,
when the feedback gain of the adjustable damper is tuned to a unique value, the proposed
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method can be equivalent to the SRC method but be more robust and stable. Ultimately, an
adjustable damper combined with the high gain rigid-body state observer adds system
damping to simultaneously reduce the residual vibration during acceleration/deceleration
and torque ripple during low-speed uniform motion. In order to validate the advantages
of this method, the experiments are compared with a PI method and two other rigid-body
velocity methods, such as the ERBO method and the SRC method.

The contributions of this paper are:
1. The designed rigid-body state observer can compensate for model uncertainties,

such as modeling errors and unmodeled system damping.
2. The designed rigid-body state observer combined with the adjustable damper can

improve the robustness to model uncertainties and external disturbances.
3. The proposed method can simultaneously suppress the residual vibration induced

by the system resonant frequency during acceleration/deceleration and torque ripple
caused by the HD during low-speed uniform motion.

This paper is organized as follows. The modular joint is described and modelled in
Section 2. The controller is designed in Section 3. The system identification, controller
parameters analysis and robust stability analysis are arranged in Section 4. Next, the
experiments and results are discussed in Section 5. Finally, Section 6 concludes this paper.

2. System Description and Dynamic Modeling

The modular joint integrates electronics and mechanical components, including a
Permanent Magnet Synchronous Motor (PMSM), HD, shaft, bearings, dual encoders (motor-
side encoder and link-side encoder), torque sensor, and other components, as shown in
Figure 1.
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Figure 1. Section view diagram of the modular joint.

According to Figure 1, a two-inertia model is employed to describe the physical
behavior in Figure 2a. The mathematical model diagram of the two-inertia model is shown
in Figure 2b. Wherein, Jm, Jl , Bm, Bl , θm, θl , and n are the motor inertia, load inertia, motor
viscous damping, load viscous damping, motor position, load position, and reduction
ratio of the HD, respectively. τm, τj indicate the input torque and joint torque. The
drive chain (includes torque sensor and HD) is modelled as a linear spring K and viscous
damper D. Furthermore, dm is the motor-side external disturbances, such as the modeling
errors, nonlinear frictions, and unmodeled system damping. dl is the link-side external
disturbances, such as the imprecise load inertia and unmodeled nonlinear environmental
damping. eTE′ is the transmission error of the HD, whose dominant frequency is twice
related to the motor velocity [30].



Machines 2021, 9, 194 4 of 19Machines 2021, 9, x FOR PEER REVIEW 4 of 19 
 

 

 
(a) (b) 

Figure 2. Two-inertia model diagrams of the modular joint. (a) Free body diagram. (b) Mathematical 
model diagram. 

In general, the dynamic equations of the modular joint are expressed as a two-inertia 
model, as shown in the following [31]: 

j
m m m m m m

m mTE TE
j l l

j l l l l l

d J B
n

e eK D
n n n n

d J B

τ
τ θ θ

θ θτ θ θ

τ θ θ

′ ′

+ − = +

  
 = − + + − +      

+ = +

 

 

 

 (1)

The parameters mτ , md , mθ , TEe ′ , mJ , mB  are defined as m mnτ τ= , m md nd= , 

m m nθ θ= , TE TEe e n′= , 2
m mJ n J= , 2

m mB n B= . Therefore, the dynamic equations can be 
simplified to (2). 

( ) ( )
m m j m m m m

j m l TE m l TE

j l l l l l

d J B

K e D e

d J B

τ τ θ θ

τ θ θ θ θ

τ θ θ

+ − = +

= − + + − +

+ = +

 

  
 

 (2)

Moreover, to further simplify the modular joint’s model, the external disturbances 
and the transmission error of HD are temporarily omitted. Consequently, the transfer 
function from input torque mτ  to motor velocity mθ  and link velocity lθ  in Laplace do-
main are given in (3) and (4), respectively. 

2 2 2

2 2 2

1 1(s) m a r
TM

m m l a r

s
P

J J s s
θ ω ω
τ ω ω

   +
= = ⋅  + +   


 (3)

2

2 2

1 1(s) l r
TL

m m l r

P
J J s s

θ ω
τ ω

   
= = ⋅   + +  


 (4)

where ( ) ( ),a l r m l m lK J K J J J Jω ω= = + . 

  

Figure 2. Two-inertia model diagrams of the modular joint. (a) Free body diagram. (b) Mathematical model diagram.

In general, the dynamic equations of the modular joint are expressed as a two-inertia
model, as shown in the following [31]:
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τj
n = Jm
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θm + Bm
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θm
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(

θm
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n

)
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n

)
τj + dl = Jl
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θl + Bl

.
θl

(1)

The parameters τm, dm, θm, eTE′ , Jm, Bm are defined as τm = nτm, dm = ndm, θm =
θm/n, eTE = eTE′/n, Jm = n2 Jm, Bm = n2Bm. Therefore, the dynamic equations can be
simplified to (2).

τm + dm − τj = Jm
..
θm + Bm

.
θm

τj = K(θm − θl + eTE) + D
( .

θm −
.
θl +

.
eTE

)
τj + dl = Jl

..
θl + Bl

.
θl

(2)

Moreover, to further simplify the modular joint’s model, the external disturbances and
the transmission error of HD are temporarily omitted. Consequently, the transfer function
from input torque τm to motor velocity

.
θm and link velocity

.
θl in Laplace domain are given

in (3) and (4), respectively.

PTM(s) =

.
θm

τm
=

(
1

Jm + Jl

1
s

)
·
(

s2 + ωa
2

ωa2
ωr

2

s2 + ωr2

)
(3)

PTL(s) =

.
θl
τm

=

(
1

Jm + Jl

1
s

)
·
(

ωr
2

s2 + ωr2

)
(4)

where ωa =
√

K/Jl , ωr =
√

K(Jm + Jl)/(Jm Jl).

3. Controller Design

In order to suppress the residual vibration during acceleration/deceleration and
torque ripple during low-speed uniform motion, a robust velocity control method is
proposed in this paper. The method mainly includes a rigid-body state observer, an
adjustable damper, and a controller C, as shown in Figure 3. The error between link
velocity and rigid-body velocity is additionally fed back beside the link velocity feedback.
The motor and link velocity can be acquired from the motor-side and link-side encoders
of the modular joint, which is estimated by the differentiation of the motor position and
link position. The rigid-body velocity is a nominal velocity of the modular joint, which
can be derived from (3) and (4) as 1/((Jm + Jl)s). However, in a two-inertia system, the
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rigid-body velocity cannot be measured directly by sensors. Therefore, how to acquire the
rigid-body velocity is the fundamental issue that needs to be first considered.
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Figure 3. Block diagram of the proposed controller.

A rigid-body state observer is designed to obtain the equivalent rigid-body velocity.
Then, based on the designed observer, an adjustable damper feeds back the error between
link velocity and the observed equivalent rigid-body velocity to a controller C.

3.1. Rigid-Body State Observer Design

In earlier works, the modular joint system is described as a simplified two-inertia
model in (2). Figure 4 shows the rigid-body state observer, where the nominal model Jn is
the sum of motor inertia and load inertia, expressed as Jn = Jm + Jl. Firstly, we assume that
there is no error between the physical model J and the nominal model Jn, so J = Jn.
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The closed-loop feedback value g of this observer, marked in Figure 4, can be expressed as:

g = τm

(
T
Js
− Tn

Jns

)
Kn =

τm

Jns
(T − Tn)Kn (5)

The transfer function R from the actual rigid-body velocity
.
θr to the observed rigid-

body velocity
.
θr
′ is given as:

R =

.
θr
′

.
θr

=

J
Jn

s + KnT

s + KnTn
=

s + KnT
s + KnTn

(6)

The nominal model Tn is designed as Tn = T in the rigid-body state observer. In this
case, the closed-loop feedback value g in (5) becomes g = 0, which means the gain Kn can be
infinite theoretically. Similarly, the observed rigid-body velocity always equals the actual
rigid-body velocity as R = 1 with any gain Kn in (6). Under the premise of system stability
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and R = 1, the model uncertainties and external disturbances can be effectively cancelled
with a sufficiently high gain Kn.

In order to avoid the identification of Tn, Tn is designed to be unity in [29], where the
nominal model of its observer only contains the rigid-body dynamics. In this observer, the
closed-loop feedback value g in (5) becomes:

g =
τm

Jns
(T − Tn)Kn =

τm

Jns
(T − 1)Kn (7)

The transfer function R in (6) becomes:

R =

.
θr
′

.
θr

=
s + KnT
s + KnTn

=
s + KnT
s + Kn

(8)

From (7), the gain Kn is affected by the resonant frequency, which leads to difficulty
in Kn tuning. Particularly, the system may become unstable during high acceleration and
deceleration. Thus, the gain Kn has to be small enough to ensure the system stability, which
unfortunately causes the poor robustness to model uncertainties and exotic disturbances.
In addition, the observed rigid-body velocity in (8) is also influenced by the resonant
frequency, which reduces the observation accuracy of the equivalent rigid-body velocity.
This further weakens the vibration suppression performance in the outer loop.

Considering the robust stability of the system to model uncertainties and exotic
disturbances, the nominal model Tn is designed as:

Tn = T =
s2 + ωa

2

s2 + ωr2
ωr

2

ωa2 (9)

Actually, there are unavoidable model uncertainties on the physical plants regarding J
and T. The rigid-body state observer based on H∞ norm optimization can strictly guarantee
robust stability to the model uncertainties [23]. Suppose that the model uncertainties can
be treated as a multiplicative perturbation in (10), where the perturbation ∆(s) and Ω(s)
are assumed to be stable. So, J and T are represented as:

J(s) = Jn(s)[I + ∆(s)]
T(s) = Tn(s)[I + Ω(s)]

(10)

The rigid-body state observer is robust stable if:

σ1(∆(jω) · Kn(jω)) < 1
σ2(Ω(jω) · Kn(jω)) < 1

, ∀ω (11)

where σ1(·) and σ2(·) represent the maximum of singular value.
However, the rigid-body state observer is only a part of the overall control system.

Robust stability to model uncertainties should be considered with the outer loop. To com-
prehensively analyze the model uncertainties, define γ(s) as the total model perturbation,
expressed as:

γ(s) = ∆(s) + Ω(s) (12)

The transfer function from the output of the total model perturbation γ(s) to its
input is:

ζ(s) =
CKeKnPTM − C(Ke + 1)(s + KnTn)PTL

C(Ke + 1)(s + KnTn)PTL − CKe(Jn−1 + KnPTM)− (s + KnTn)
(13)

Suppose γ(s) is bounded by the upper limit function λU(s) as:

|γ(jω)| ≤ |λU(jω)|, ∀ω. (14)
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Then, satisfaction of the following condition guarantees the robust stability of the
whole closed-loop system:

‖λU(s) ·
CKeKnPTM − C(Ke + 1)(s + KnTn)PTL

C(Ke + 1)(s + KnTn)PTL − CKe(Jn−1 + KnPTM)− (s + KnTn)
‖

∞
< 1 (15)

3.2. Adjustable Damper Design

During the adjustable damper design, some assumptions are prepared for simplifying
the analysis of the closed-loop performance of the controller. The physical plants J and T
are assumed to equal the nominal models Jn and Tn without model uncertainties, shown
as (16).

J(s) = Jn(s)
T(s) = Tn(s)

(16)

Under these assumptions, the observed velocity
.
θr
′

in the rigid-body state observer is
equal to the actual velocity

.
θr, directly calculated in (17) without the control parameter Kn.

.
θr
′

τm
=

.
θr

τm
=

(
1

Jm + Jl

1
s

)
=

1
Jns

(17)

Therefore, with the assumptions in (16), the adjustable damper can be designed

separately without considering the control parameter Kn. Define the velocity error
.
θ̃

between the desire velocity
.
θd and link velocity

.
θl as

.
θ̃ =

.
θd −

.
θl , marked in Figure 3. Thus,

the open-loop transfer function from
.
θ̃ to

.
θl is given as:

Popen(s) =

.
θl
.
θ̃

=
C
Jns

ωr
2

s2 + ωr2 (18)

The closed-loop transfer function from
.
θ̃ to

.
θl is given as:

Pclose(s) =

.
θl
.
θ̃

=
C
Jns

ωr
2

s2 − KeCs + ωr2 (19)

Compared (19) with (18), the closed-loop transfer function adds a damping term–KeCs
to the modular joint system. As the gain Ke is negative, the system damping is increased.
When the modular joint moves during acceleration and deceleration, the added damping
term can suppress the residual vibration. Meanwhile, the increased system damping also
can eliminate the torque ripple during the low-speed uniform motion to advance the
velocity tracking accuracy.

In addition, the modular joint also experiences external disturbances, including motor-
side exotic disturbances dm and link-side exotic disturbances dl, as shown in Figure 3.

The sensitivity function DM from dm to
.
θl is:

DM =

.
θl
dm

=
ωr

2s + (CKe + KnTn)ωr
2

s4 + as3 + bs2 + cs + d
(20)

where a = CKe + KnTn,
b = ωr

2(ωa
2 − CKeKn

)
/ωa

2,
c = (C + 2CKe + KnTn)ωr

2,
d = CKn(Tn + TnKe − Ke)ωr

2.
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The sensitivity function DL from dl to
.
θl is:

DL =

.
θl
dl

=
s4 + as3 + ωr

2s2 + (CKe + KnTn)ωr
2s

s4 + as3 + bs2 + cs + d
(21)

where a = CKe + KnTn,
b = ωr

2(ωa
2 − CKeKn

)
/ωa

2,
c = (C + 2CKe + KnTn)ωr

2,
d = CKn(Tn + TnKe − Ke)ωr

2.
These external disturbances unavoidably degrade the velocity control accuracy, espe-

cially when the tracking velocity changes sharply. Therefore, the robustness to external
disturbances near the resonant frequency should be considered.

4. Controller Analysis

To analyze the proposed controller’s robustness performance and velocity tracking
accuracy, the dynamic parameters of the controlled object—modular joint need to be
identified first. The modular joint installed some loads is publicized in Figure 5. The
installed loads compose the modular joint’s load inertia.
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4.1. System Identification

The experimental platform includes a modular joint, a 24 V power, a Copley driver, a
dSPACE real-time control system, several loads, and a MATLAB data processing system,
as shown in Figure 5.

The sampling frequency is set as 1 kHz. The gear ratio n of HD is 160. The torque
constant of motor is 0.17 N·m/A. The input saturation current is set to be 10 A. The
maximum allowable desire velocity is 1.64 rad/s. The motor velocity and link velocity are
obtained by the differentiation of the motor position and link position, which are measured
by the motor-side encoder and link-side encoder, respectively.

A swept sine signal from 0.5 Hz to 60 Hz with a load inertia Jl = 2.26 kg·m2 is applied
to identify the modular joint’s open-loop dynamic characteristics. According to system
identification results, the modular joint’s frequency responses from input torque to motor
velocity and link velocity are displayed in Figure 6a,b, respectively.

The blue dash-dot lines are the results of the system identification experiments. The
red thick solid lines are fitted frequency responses of the established two-inertia model.
Whereas, the actual modular joint’s dynamic model is subjected to several nonlinear and
time-varying factors, such as the nonlinear frictions and viscous damping effects in the
motor-side and transmission part, and the varying efficiency of the HD (60–75% depending
on ratio, velocity, and lubricant). In particular, the stiffness and damping of the HD
are related to the motion velocity. Therefore, the established two-inertia model cannot
accurately fit the experimental results, especially the phase [32]. However, the system’s
anti-resonant frequency and resonant frequency can be well fitted at 19 Hz and 21.8 Hz,
proving that the two-inertia model can reflect the joint’s dynamic characteristics. The
dynamic parameters of the modular joint can be identified in Table 1.
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Figure 6. Modular joint frequency responses. (a) From input torque to motor velocity. (b) From input
torque to link velocity.

Table 1. Identified modular joint’s dynamic parameters.

Symbol Name Value Unit

Jm Motor inertia 7.34 kg·m2

Bm
Motor viscous

damping 33.28 N·m·s/rad

Jl Load inertia 2.26 kg·m2

Bl
Load viscous

damping 5.00 N·m·s/rad

K Joint stiffness 32,500.00 N·m/rad
D Joint damping 10.00 N·m·s/rad

4.2. Controller Parameters Analysis

To meet the rapid response of the modular joint, it is necessary first to ensure the
velocity response performance. Based on the Integral of Squared Error (ISE) criterion [33],
the controller C is designed as a proportional and integral controller, tuned as Kp = 160 and
Ki = 1200.
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Since the rigid-body state observer and the adjustable damper are designed separately,
the control parameter Kn of the observer and Ke of the adjustable damper can also be
designed separately. As the rigid-body state observer is shown in Figure 4, the transfer

function from motor velocity
.
θm to the observed velocity

.
θm
′

can be expressed in (22).

.
θm
′

.
θm

=
Knωr

2s2 + Knωr
2ωa

2

ωa2s3 + Knωr2s2 + ωr2ωa2s + Knωr2ωa2 (22)

With the identified modular joint’s dynamic parameters listed in Table 1, the bode
plots from motor velocity to the observed velocity are obtained under the different control
parameter Kn in Figure 7. With the gain Kn increasing from 100 to 1000, the bandwidth of
the rigid-body state observer increases.
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In addition, as the value of the control parameter Ke changes, the open-loop and

closed-loop frequency responses from velocity error
.
θ̃ to link velocity

.
θl are shown in

Figure 8. With the absolute value of the gain Ke increasing, the vibration magnitude at
resonant frequency decreases accordingly. When the added damping is too small, such as
Ke = −0.1, the vibrations cannot be suppressed effectively because of the limited damping
added. When the added damping is too large, such as Ke = −2, the system response slows
down, meanwhile low-frequency uncertainty increases.
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Figure 8. Bode plots from velocity error to link velocity with different parameter Ke.

The most conservative condition to ensure the controlled system is stable with little
vibration is to let the amplitude ratio of the closed-loop frequency response in (19) be 0 dB
at the resonant frequency, as expressed in (23).

20 log10(Pclose(jωr)) = 0dB

Pclose(jωr) =
.
θl.
θ̃

∣∣∣∣
s=jωr

= 1 (23)
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The theoretical value of Ke from (23) can be calculated as −1. Considering the model
uncertainties and nonlinear damping effects, the parameter Ke needs to be adjusted in a
small range around−1 in actual experiments. Most importantly, in order to meet the robust
stability condition of the whole closed-loop system as designed in (15), the controller’s
parameters of the proposed method are designed in Table 2.

Table 2. Controller parameters of the proposed method.

Symbol Name Value

Kp Proportional gain of C 160
Ki Integral gain of C 1200

Kn
Gain of rigid-body state

observer 600

Ke Gain of adjustable damper −1.2

4.3. Robust Stability Analysis

Further to analyze the robust performance of the rigid-body state observer, the model
perturbations ∆(s) of Jn and Ω(s) of Tn are separately considered. In this paper, the model
uncertainties mainly refer to the modeling errors, unmodeled system damping, system
identification errors, even the imprecise motor and load inertia.

T∆(s) is the transfer function from the output of the model perturbation ∆(s) to its
input. TΩ(s) is the transfer function from the output of the model perturbation Ω(s) to its
input. With the proposed method, the transfer function T∆(s) and TΩ(s) can be expressed
as (24) and (25), respectively.

T∆(s) =
s

s + KnTn(s)
(24)

TΩ(s) =
KnTn(s)

s + KnTn(s)
(25)

For a fair comparison, optimal controller parameters are employed in the ERBO method,
SRC method, and the proposed method, respectively. The bode plots of the transfer function
T∆(s) and TΩ(s) with these three methods are compared in Figure 9a,b, respectively.
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From Figure 9a, the SRC method is susceptible to the model uncertainties of Jn,
especially at the low-frequency band and anti-resonant frequency. Compared with the
ERBO method, the proposed method reduces the sensitivity to the model uncertainties
near the resonant frequency, increasing system robustness. Although it improves the
sensitivity near anti-resonant frequency, the characteristic of anti-resonance makes the
system unresponsive, which means this introduced shortcoming is not that serious.

From Figure 9b, the ERBO method is susceptible to the model uncertainties of Tn,
especially near the resonant frequency and high frequency. The SRC method is derived
from the model Jn in an open-loop, which is little related to the model uncertainties of Tn.
Compared with the ERBO and SRC methods, the proposed method significantly reduces
the sensitivity to model uncertainties near the resonant frequency and high frequency.

In addition, robust performance to model uncertainties can be verified with a specific
physical indicator. Under the premise of ensuring that the dynamic parameters in Table 1
and controller parameters in Table 2 remain unchanged, the total model perturbation γ(s)
is simulated by changing the load inertia. The closed-loop transfer function from desire
velocity

.
θd to link velocity

.
θl is expressed in (26).

.
θl
.
θd

=
Cωr

2

Jns(s2 − KeCs + ωr2) + Cωr2 (26)

As the load inertia changes within Jl ± 30%, the frequency response of the closed-loop
transfer function in (26) is shown in Figure 10.
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Compared to the open-loop frequency response, the oscillation magnitude of closed-
loop near resonant frequency can be damped effectively. With the load inertia increasing,
the system resonant frequency decreases accordingly. It is obvious that the closed-loop
system is robust and stable to the load inertia changing.

What’s more, the modular joint is also influenced by the motor-side and link-side
external disturbances. In order to analyze the robustness to external disturbances of the
proposed method, Figure 11a,b, respectively, show bode plots of the sensitivity functions
DM and DL, expressed in (20) and (21). The ERBO method and SRC method are also
compared and discussed following.

In particular, according to the feedback signals, when the feedback gain Ke of the
adjustable damper is tuned to −1, the proposed method can be equivalent to the SRC
method. Fortunately, the proposed method contains a closed-loop rigid-body state ob-
server and an adjustable damper, which ensures the system robust stability performance.
Justifiably, from the bode plots of these three methods, the SRC method behaves with
the worst robustness on the low-frequency domain. The ERBO method behaves with the
worst robustness near the resonant frequency. Compared with the SRC method and ERBO
method, the proposed method is the most robust to the external disturbances, especially
near the resonant frequency, which means its ability to work against exotic disturbances
during high acceleration and deceleration is stronger than the other two methods.
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5. Experiments

In this section, some experiments are carried out to verify the vibration suppression
effects and the robust performance of the proposed method. The experimental platform
has been exhibited in Figure 5.

5.1. Performance of Vibration Suppression

In experiments, the desire velocity is a step waveform to simulate the accelerated
motion so that its spectrum overlaps the system resonant frequency. During this motion,
the residual vibration is easy to be induced by the system resonant frequency. Therefore,
a desire velocity of 0.33 rad/s is stepped from 0 at 0.1 s, then keeps uniform motion for
1.4 s. In 1.5 s, the desire velocity stepped from 0.33 to 0.85 rad/s instantaneously and then
maintained uniform motion for 1 s. Figure 12a shows entire velocity tracking process, and
the corresponding input current response is shown in Figure 12b.

Under the premise of unsaturated input current, the proposed method is compared
with the PI method, ERBO method, and SRC method under their respective optimal con-
troller parameters. In order to intuitively compare and quantify the vibration suppression
effects, the average oscillation of the PI method is used as the benchmark, and the other
average oscillations of the ERBO method, SRC method, and proposed method can be
expressed as a percentage, respectively.

From Figure 12a, during the transient phase at 0.33 rad/s, the percentage reduction in
residual vibration with the ERBO method, SRC method, and proposed method is 45.7%,
62.9%, and 70.2%, respectively. During the uniform motion phase at 0.33rad/s, the modular
joint is influenced by a torque ripple, which is twice the tracking velocity frequency. The
percentage reduction in the torque ripple with the ERBO method, SRC method, and
proposed method is 14.9%, 70.2%, and 76.3%, respectively. Next, during the transient
response from 0.33 to 0.85 rad/s, the residual vibration with the ERBO method, SRC
method, and proposed method reduces 65.8%, 74.0%, and 86.3%, respectively. Whereas
there is no effect on the torque ripple during the uniform motion at 0.85 rad/s because
the twice frequency of 0.85 rad/s is larger than the system resonant frequency, which is
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submerged in noises. Due to the better stability of the proposed method, its controller
parameters can be tuned higher, which leads to a larger overshoot of its transient response.
Fortunately, its vibration suppression ability will be stronger, which lets the residual
vibration attenuate faster. Meanwhile, the torque ripple becomes much smaller than the
other two methods.
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As Figure 12b shows, there is around 0.6 A offset of the input current during the
uniform motion to overcome the joint’s frictions. Compared to the PI method, the residual
vibration at the transient response of 0.33 rad/s with the ERBO method, SRC method,
and proposed method reduces 51.1%, 86.1%, and 93.2%, respectively. The torque ripple at
0.33 rad/s reduces 23.0%, 91.2%, and 91.2%, respectively. Similarly, the residual vibration
during the transient response from 0.33 to 0.85 rad/s reduces 56.6%, 70.6%, and 80.1%,
respectively. Notably, the input current of the proposed method is smaller than the other
two methods at the transient response. It means that the proposed method is energy-saving
while ensuring the vibration suppression effects.

To avoid losing generality, the vibration suppression effects at other desire velocities,
such as 0.20 rad/s, 0.46 rad/s, 0.66 rad/s, are also verified in experiments. The percentage
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of reduction oscillations with the ERBO method, SRC method, and proposed method with
respect to the PI method are summarized in Table 3.

Table 3. Reduction of oscillations compared with the Proportional-Integral method.

Desire
Velocity
(rad/s)

Method

Reduction Percentage of
Link Velocity (%)

Reduction Percentage of
Input Current (%)

Residual
Vibration

Torque
Ripple

Residual
Vibration

Torque
Ripple

0.20
ERBO 26.7% 5.2% 32.1% 6.3%
SRC 43.2% 32.8% 68.3% 32.8%

Proposed 51.1% 46.2% 69.8% 46.2%

0.33
ERBO 45.7% 14.9% 51.1% 23.0%
SRC 62.9% 70.2% 86.1% 91.2%

Proposed 70.2% 76.3% 93.2% 91.2%

0.46
ERBO 52.1% 47.6% 52.6% 48.3%
SRC 64.3% 62.4% 80.2% 74.9%

Proposed 77.4% 66.2% 90.6% 77.6%

0.66
ERBO 58.6% 90.6% 55.1% 83.1%
SRC 68.5% 81.3% 78.9% 73.8%

Proposed 81.5% 81.3% 85.0% 73.8%

0.85
ERBO 65.8% no effect 56.6% no effect
SRC 74.0% no effect 70.6% no effect

Proposed 86.3% no effect 80.1% no effect

From experiment results, the torque ripple usually occurs during the low-speed
uniform motion. When the twice-frequency of motion velocity overlaps the resonant
frequency, the dominant vibration is caused by resonance modes. In this case, the torque
ripple will submerge in noises. All in all, the proposed method has better suppression
effects on these two kinds of vibrations than the ERBO method and SRC method.

5.2. Robustness to Model Uncertainties

In this section, the load inertia changes to act on the model uncertainties. When the
load inertia fluctuates, the resonant frequency of the controlled system changes accordingly.
To experimentally verify the robustness of model uncertainties, the load inertia can be
changed by adding or subtracting the weights at the end of the connecting rod. When
the load inertia increases 15% (Jl = 2.60 kg·m2) and decreases 15% (Jl = 1.92 kg·m2) from
the initial value (Jl = 2.26 kg·m2), the system resonant frequency decreases to 20.7 Hz
and increases to 23.3 Hz accordingly. With the modular joint’s dynamic parameters listed
in Table 1 and the controller parameters listed in Table 2, repeated velocity tracking
experiments from 0.33 to 0.85 rad/s under three different load inertias are shown in
Figure 13.

After experimental verification, with the load inertia changing in the range of Jl ± 15%,
the proposed method still can suppress residual vibration and torque ripple. The effects of
the proposed method contain in a band. Refer to the simulation analysis in Figure 10, the
proposed method is robust to model uncertainties, which is simulated by the load inertia
changing in experiments.

5.3. Robustness to External Disturbances

Moreover, to verify the robust performance to external disturbances, an impulse input
current is triggered at 0.02 s with an amplitude of 6 A to act the external disturbances when
the modular joint is held at the neutral position, as shown in Figure 14.
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When the fluctuation of link velocity is decaying within 10% after the impulse input
current disturbing, the settling time of the PI method, ERBO method, SRC method, and
the proposed method are 0.531 s, 0.343 s, 0.192 s, and 0.123 s, respectively. The percentage
reduction in settling time with the ERBO method, SRC method, and proposed method with
respect to the PI method are listed in Table 4.

Table 4. Reduction of settling time compared with the PI method.

ERBO Method
(%)

SRC Method
(%)

Proposed Method
(%)

Percentage reduction
in settling time 35.4% 63.8% 76.8%

Refer to the robust stability analysis in Figure 11, the proposed method is the most
robust to external disturbances among these three methods, especially near the system
resonant frequency. The experiments in Figure 14 show that the proposed method takes
the least time to settle down, which confirms the theoretical analysis.
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6. Conclusions

A vibration controller is proposed to improve the modular joint’s robustness to model
uncertainties and external disturbances, confirmed by several relevant experiments. In
this method, the equivalent rigid-body velocity is designed to be obtained by a high
gain rigid-body state observer. The observer’s high gain can significantly improve the
robustness to model uncertainties and exotic disturbances, especially near the resonant
frequency. Meanwhile, the high gain increases the bandwidth of the observer and the
observation accuracy of the equivalent rigid-body velocity. In addition, an adjustable
damper based on the high gain rigid-body state observer adds system damping, effectively
reducing the residual vibration induced by the system resonant frequency during accel-
eration/deceleration and torque ripple caused by the harmonic drive during low-speed
uniform motion simultaneously. Compared with a PI method and the other two rigid-body
velocity methods—the ERBO method and the SRC method—the proposed method has
better vibration suppression effects when the velocity changes abruptly. Moreover, it has
superior velocity tracking accuracy during low-speed uniform motion. In the future, a
fuzzy logic combined with the H∞ theory will be used to design the observer’s gain and
the adjustable damper’s gain, allowing the controller to be adaptive to the load inertia
changing in a wider range. Hence, the proposed method is expected to achieve vibration
suppression in a manipulator whose posture changes, leading to the load inertia varying
in real-time.
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