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Abstract: Attitude estimation is a basic task for most spacecraft missions in aerospace engineering
and many Kalman type attitude estimators have been applied to the guidance and navigation of
spacecraft systems. By building the attitude dynamics on matrix Lie groups, the invariant Kalman
filter (IKF) was developed according to the invariance properties of symmetry groups. However, the
Gaussian noise assumption of Kalman theory may be violated when a spacecraft maneuvers severely
and the process noise might be heavy-tailed, which is prone to degrade IKF’s performance for attitude
estimation. To address the attitude estimation problem with heavy-tailed process noise, this paper
proposes a hierarchical Gaussian state-space model for invariant Kalman filtering: The probability
density function of state prediction is defined based on student’s t distribution, while the conjugate
prior distributions of the scale matrix and degrees of freedom (dofs) parameter are respectively
formulated as the inverse Wishart and Gamma distribution. For the constructed hierarchical Gaussian
attitude estimation state-space model, the Lie groups rotation matrix of spacecraft attitude is inferred
together with the scale matrix and dof parameter using the variational Bayesian iteration. Numerical
simulation results illustrate that the proposed approach can significantly improve the filtering
robustness of invariant Kalman filter for Lie groups spacecraft attitude estimation problems with
heavy-tailed process uncertainty.

Keywords: spacecraft attitude estimation; variational Bayesian iteration; invariant Kalman filter;
matrix Lie groups; heavy-tailed noise

1. Introduction

The navigation and control operations in aerospace engineering usually require ade-
quate accurate knowledge of spacecraft orientation in space, and attitude determination
from vector observations is usually employed in astronautically applications [1–4]. The
widely used Kalman type filters can infer the state in Euclidean vector space by fusing
attitude dynamic and observation sensor according to their probabilities [5–8]. Recently,
the building of attitude dynamics on matrix Lie groups has been investigated actively for
the navigation and control of spacecraft targets because it can significantly improve the
estimation and control performance to make full use of the geometrical properties of Lie
groups models [9,10].

For attitude estimation, there have already been significant research interests in the
estimation and control of spacecraft targets such as the invariant observers and filters for
attitude dynamics on the special orthogonal group SO(3), or the navigation systems defined
on the special Euclidean group SE(3) [11,12]. Accounting for the geometrical invariance of
symmetry attitude dynamics, the resulted attitude description with rotation matrix on
SO(3) can avoid the trouble of singularities and unwinding encountered when using unit
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quaternion [13] and, to some extent, also contribute to better estimation performance for
attitude determination algorithms [14]. Exploiting the mapping relation between matrix
Lie groups and Lie algebra, invariant Kalman filter (IKF) can convert the attitude dynamics
on SO(3) to Euclidean vector space and mimic classical Kalman filtering steps [15]. IKF is
based on the invariance and log-linearity of symmetry dynamics, which then leads to better
convergence on a much bigger set of state trajectories [16]. In these available researches,
the process noise of attitude dynamical model was assumed to be a concentrated Gaussian
distribution [17,18] and the statistics parameter are also assumed to be accurately given
in advance as required in classical Kalman theory [19,20]. However, due to the presence
of server maneuvers in space missions, there might be some unpredictable disturbances
or outliers that would contaminate the Gaussian distribution and violate the required
assumptions for Kalman filtering on matrix Lie groups.

For Euclidean space filtering problems, some adaptive methods are commonly used
to deal with the trouble of inaccurate/unknown noise parameters [21–23]. Some adaptive
techniques have been designed to estimate online unknown/inaccurate noise parameters,
mainly including innovation-based adaptive methods and multiple model methods [24–26];
nevertheless, the convergence of innovation-based estimation methods cannot be guar-
anteed while the parallel-running multiple filter banks might increase the computational
complexities. The variational Bayesian(VB) iteration-based adaptive methods have also
been employed to jointly determine the system state and inaccurate noise statistics [27–29].
However, these adaptive methods all assume the noise distribution to be Gaussian and
cannot be applied to the filtering cases with heavy-tailed noise. For heavy-tailed system
noises, the Student’s t distribution assumes the distribution of the latent state and system
noises as a joint Student’s t-distribution, and it has been proved to be more suitable to
represent the non-Gaussian probability density function (PDF) [30,31].

To deal with the heavy-tailed process noise caused by severe maneuvering of rigid
bodies, a robust Student’s t-based hierarchical Gaussian system model for the SINS/GPS
integration is presented by modeling the prior probability density function as a Student’s t
distribution and the conjugate prior distributions [21]. To improve the filtering performance
of Student’s t-based methods for cases with both heavy-tailed process and observation
noises, a robust Student’s t-based Kalman filter is proposed employing the variational
Bayesian-based iterative approach in [32]; in the work of [33], by applying the Student’s t
approximate distributions to posterior filtering and smoothing probability density func-
tions, the robust nonlinear Student’s t-based filter and smoother are also presented as the
generalization and extension of the linear Student’s t filtering methods. Note that the
above researches provide a sound theoretical foundation for attitude estimation problems
with heavy-tailed noises, but they are originally designed in Euclidean space systems for
filtering of vector variable states. To the best of our knowledge, for attitude estimation
problem in SO(3), until now there is still no special study on the robust Student’s t-based
adaptive methods for invariant Kalman filtering on matrix Lie groups.

Note that although the available invariant Kalman filter also obeys the basic theory
of classical Kalman filter, the above researches about robust Student’s t-based methods
cannot be directly applied to matrix Lie groups systems. The uncertainty definition of
concentrated Gaussian distribution on matrix Lie groups requires the assumption of noisy
errors being small enough [34,35], which is the condition for first order approximation to
the Baker–Campbell–Hausdorff (BCH) formula [36,37]. For attitude estimation on SO(3)
in aerospace engineering, the presence of heavy-tailed noises and disturbances imposes a
critical constraint on the application of robust Student’s t-based methods to improve the
performance of invariant Kalman filter.

According to the above discussions, it is rather meaningful to investigate the robust
Student’s t-based invariant Kalman filtering method especially for the matrix Lie groups
attitude estimation problems in the presence of heavy-tailed outliers in system process noise.
In this work, for attitude estimation problem with heavy-tailed process noise, this paper
proposes a hierarchical Gaussian state-space model for invariant Kalman filtering, and the
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Lie groups rotation matrix of spacecraft attitude is inferred together with the scale matrix
and dof parameter using the variational Bayesian iteration. Numerical simulation results
illustrate that the proposed approach can significantly improve the filtering robustness
of invariant Kalman filter for Lie groups spacecraft attitude estimation problems with
heavy-tailed process uncertainty.

2. Primaries and Problem Definition
2.1. The Attitude Estimation System on the Special Orthogonal Group SO(3)

Attitude determinition from two vector observations is an important task in most
aerospace engineering. The attitude dynamic on special orthogonal group SO(3) ⊂ R3×3 with
the associated observation vectors can be formulated as the following system model [1,14]

Rk = ExpG(wk)Rk−1Ωk−1 (1)

Yk =

(
y′k
y′′k

)
=

(
RT

k b′ + v′k
RT

k b′′ + v′′k

)
, (2)

where the special orthogonal group SO(3) :=
{

RRT = I3×3, det(R) = 1
}

is the group of
3 × 3 rotation matrices and Rk ∈ SO(3) is the mapping rotation from the body frame of the
spacecraft to the earth-fixed frame at time instant k; Ωk ∈ SO(3) denotes the control rotation;
Yk ∈ R6 is a composition of the vector observations y′k, y′′k ∈ R3 with their respective
observation vector b′ , b′′ ∈ R3; v′k ∼ N

c(v′k; 03×1, Σv′
)
, and v′′k ∼ N

c(v′k; 03×1, Σv′′
)

are
Gaussian white and mutually independent observation noises with N c denoting the
Gaussian distribution. Note that the vector observation based attitude determination is a
common application scenario because the Sun sensor, magnetometer, horizon sensor, and
the gravitational accelerometer are usually equipped by most spacecrafts in astronautical
engineering [1]. A graphical presentation of target application scenario is given in Figure 1.

Figure 1. The vector observations-based attitude determination in astronautical application (permis-
sion granted from [1]).

Note that the additive forms of vector noises in Euclidean space are not supported in
Lie Groups space. The vector process noise wk ∈ R3 is injected through Lie exponential
operator ExpG(·) and, for any w = [w1 w2 w3]

T ∈ R3, the projection between the vector
noise w = [w1 w2 w3]

T ∈ R3 and the associated groups element R ∈ SO(3) are

ExpG(·) : R3 → SO(3), Exp−1
G (·) : SO(3)→ R3 (3)

ExpG(w) := exp(w×) =
∞

∑
m=0

wm
×

m!
= I3×3 +

sin‖w‖
‖w‖ w× + 2

sin(‖w‖/2)2

‖w‖2 w2
×, (4)
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w× =

 w1
w2
w3


×

=

 0 −w3 w2
w3 0 −w1
−w2 w1 0

 ∈ R3×3, (5)

where exp(·) is the matrix exponential operator and w× is the skew-symmetric matrix. The
concept of concentrated Gaussian distribution (CGD) was employed to define the probability
distribution for random variables on matrix Lie groups [19,20,37]. For attitude estimation,
in concentrated Gaussian distribution the groups variable R ∈ SO(3) with mean R ∈ SO(3)
and covariance Σ ∈ R3×3 is defined as

R ∼ G
(

R; R, Σ
)
∈ SO(3) if ξ , Exp−1

G

(
RR−1

)
∼ N c(ξ; 03×1, Σ) ∈ R3 (6)

where G(·, ·) denotes the concentrated Gaussian distribution (CGD). Note that, in the defini-
tion of CGD, the eigenvalues of Σ are assumed to be small enough, i.e., almost all the mass
of the distribution should be concentrated in a small neighborhood around the mean of the
rotation variable [20,37]. A graphical illustration of the relation between the concentrated
Gaussian distribution on matrix Lie groups SO(3) and the classical Gaussian distribution
relation is presented in Figure 2.

Figure 2. The mappings between the probability definition for Lie group rotation matrix R ∈ SO(3)
and the classical Gaussian distribution vector w ∈ R3.

2.2. Model Projection Based on the Invariance Property of Attitude Estimation System

For attitude estimation on SO(3), the usual Kalman filtering methods in Euclidean
vector space could not be applied directly. However, by properly defining the system
variable, the Lie groups dynamic model (1) can be projected into the usual Euclidean space
based on the invariance property. Let R̂k−1 be an estimate for Rk−1 at instant k − 1 and
R̂k = R̂k−1Ωk−1 be the prediction for Rk. Define the invariant error ξk = Exp−1

G

(
R̂kR−1

k

)
,

then the evolution model of invariant error ξk obeys

ξk = Exp−1
G

(
R̂kR−1

k

)
= Exp−1

G

(
R̂k−1Ωk−1

(
ExpG(wk)Rk−1Ωk−1

)−1
)

= Exp−1
G

(
R̂k−1R−1

k−1ExpG(−wk)
)
= Exp−1

G
(
ExpG(ξk−1)ExpG(−wk)

)
= BCH(ξk−1,−wk) = ξk−1 − wk + O

(
|ξk−1|2, |wk|2, |ξk−1||wk|

)
,

(7)

where the BCH(·, ·) of the last step is a first order form of the Baker–Campbell–Hausdorff
(BCH) formula [34–36]. Note that if the norm of the error term ξk and wk are small enough
so that the second order term in (7) could be negligible, then the matrix Lie groups attitude
dynamic (1) for rotation matrix Rk could be approximately converted into the following
linear state space model in Euclidean space for the invariant error ξk

ξk
.
= ξk−1 − wk. (8)

As for observation model (2), the observation sequence Yk can also be reformulated
into a function of the invariant error ξk, i.e., the new innovation sequence zk ∈ R6 [14]
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zk = R̂kYk −
(

b′
b′′

)
=

(
R̂ky′k − b′
R̂ky′′k − b′′

)
= R̂kRT

k

(
b′
b′′

)
−
(

b′
b′′

)
+ R̂k|

(
v′k
v′′k

)
:= Hξξk + Vk, (9)

where H =

(
b′×
b′′×

)
∈ R6×3 and Vk = R̂k|k−1

(
v′k
v′′k

)
∈ R6 are the projected observation

matrix and noise, respectively; note that, since the observation noises v′k, v′′k are isotropic
and mutually independent noises and with R̂kR̂T

k = I3×3, we have ΣV = Cov
(
VkVT

k
)
=

diag(Σv′ , Σv′′ ).
Obviously, based on the definition of the invariant error ξk, the Lie groups dynamics

(1) and observation model (2) could be converted as the Euclidean space model (8) and
(9) for the invariant error ξk (as in Figure 3). Note that both the true rotation state Rk−1 and
the control rotation Ωk−1 do not appear in the converted model (8) and (9); therefore, the
evolving motion of ξk is actually independent of the true trajectory of rotation Rk−1 and
control rotation Ωk−1, which is called the invariance property of symmetry model [15,16].

Figure 3. Projecting the Lie groups model into vector space based on the invariant error.

2.3. The Invariant Kalman Filter for Attitude Estimation

As the consequence of invariance property, for the attitude estimation system, the
probability distribution of rotation state Rk based on the observation Yk is equivalent to
that of the invariant error ξk in R3, constituting the basis of invariant Kalman filter. Then, if
the process noise obeys classical Gaussian distribution, i.e., wk ∼ N c(wk; 03×1, Σw) ∈ R3,
the filtering steps for attitude estimation system on Lie group SO(3) can be implemented
by mimicking that of the classical Kalman filter for invariant error ξk in Euclidean space.

For the attitude dynamic (1) and associated observation (2), invariant Kalman filter
(IKF) aims to recursively predict and correct the estimate for the rotation state. Given the
initial estimate R̂0|0 = ExpG

(
ξ̂0|0

)
R0 for true R0 with error ξ̂0|0 ∼ N c

(
ξ̂0|0; 03×1, Σ0|0

)
, as

the prediction for prior error estimate ξ̂k|k−1 based on (8), the prior error rotation estimate
R̂k|k−1 based on the dynamic model (1) can be implemented as follows

R̂k|k−1 = R̂k−1|k−1Ωk−1 , (10)

where R̂k|k−1 and R̂k−1|k−1 are the prior and posterior error estimate for true rotation
state Rk, respectively; ξ̂k|k−1 and ξ̂k−1|k−1 are associated with the prior and posterior error
estimate for true error ξk. The covariance propagation of rotation group Rk is same as that
of the classical Kalman filter for invariant error ξk based on the evolution model (8),

Σk|k−1 = Σk−1|k−1 + Σw, (11)

where Σk−1|k−1 stands for the covariance of the posterior estimate ξ̂k|k−1 and R̂k|k−1. There-
fore, based on the converted innovation (9), the correction steps of IKF for the rotation state
R̂k|k−1 can be implemented by updating the estimate R̂k|k−1 with innovation sequence zk

R̂k|k = ExpG(Kkzk)R̂k|k−1, (12)
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Kk = Σk|k−1HT/
(

HΣk|k−1HT + ΣV

)
, (13)

Σk|k = Σk|k−1 − Kk HΣk|k−1, (14)

where Kk is the Kalman gain matrix, and the posterior estimate R̂k|k is then updated
with Lie exponential operation of the correction term Kkzk as in (12) [16,17]. A graphical
presentation of the filtering diagram of invariant Kalman filter is presented in Figure 4.

Figure 4. The filtering diagram of the invariant Kalman filter for attitude estimation.

2.4. The Attitude Estimation Problem with the Trouble of Heavy-Tailed Process Noise

Obviously, the invariant Kalman filter (IKF) is a general extension of the Euclidean
space Kalman filter to matrix Lie groups systems based on the invariance property of sym-
metry dynamics [16]. However, for the attitude estimation in aerospace engineering, there
is still some difficulty for practical implementation of the IKF-based attitude estimation
because the presence of heavy-tailed process noise in attitude dynamic might introduce
great challenge and trouble to the theory of IKF:

Firstly, in the filtering step (10)~(14) of IKF, the process noise of attitude was assumed
to be a concentrated Gaussian distribution and the statistics parameter is also required to be
accurately known (as in Figure 4). However, due to the presence of severely maneuvering
operations in space tasks, there might be some unpredictable disturbances or substantial
outliers that would contaminate the Gaussian distribution and violate the assumptions for
Kalman filtering on matrix Lie groups. Therefore, the theoretical foundation for optimal
Kalman filtering is sure to be destroyed, which will degrade the final estimation.

Secondly, for the invariant projection of the Lie groups dynamics (1) into the linear
vector form (8) in Section 2.2, the first order approximation to BCH formula is employed
based on the assumption that both ξk and wk were small enough and the second and
higher order residual could be dropped from (7) to (8). However, for aerospace engineering
applications, the unpredictable disturbances or substantial outliers caused by severely
maneuvering operations might violate this condition and lead to inaccurate approximation
to the system model, which is prone to a potential source of error and influences the
estimation accuracy of IKF.

For attitude determination in astronautical engineering, it is rather meaningful to fur-
ther study Lie groups estimation problems with heavy-tailed process noise and investigate
new robust adaptive version of invariant Kalman filtering methods to improve the filtering
precisions for cases with heavy-tailed process noises.

3. Robust Student’s t Based Invariant Kalman Filter for Attitude Estimation on SO(3)
3.1. Probability View of Attitude Estimation with Heavy-Tailed Process Noise

For attitude estimation, if the process noise wk in dynamic model (1) is heavy-tailed
and contaminated by larger outliers, the Gaussian distribution and concentrated Gaussian
distribution cannot accurately describe the probability distribution of heavy-tailed process
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noise. In this work, to account for the larger outliers due to severely maneuvering, the
probability of the heavy-tailed noise is described as the student’s t distribution

p(wk) = St(wk; 03×1, Σw, τk) =
∫ +∞

0
N c(wk; 03×1, Σw/γw)Γ

(
γw;

τw

2
,

τw

2

)
dγw (15)

where p(wk) denotes the probability density of the process noise wk; St(·; µ, Σ, τ) denotes
the student’s t distribution with mean vector µ, scale matrix Σ, and degree of parameter τ;
γw is an auxiliary random variable in (15); and Γ(γ; α, β) represents the Gamma probability
density function of the scalar γ with α and β as the shape and rate parameter, i.e.,

Γ(γ; α, β) =


βα
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     3 1 3 10
;0 , , ;0 , ; ,

2 2
c w w

k t k w k k w w w wp w w w d
 

   


 
      
    (15)

where  kp w  denotes the probability density of the process noise kw ;  ; , ,t     de-
notes the student’s t distribution with mean vector  , scale matrix , and degree of pa-

rameter  ; w  is an auxiliary random variable in (15); and  ; ,    represents the 
Gamma probability density function of the scalar   with   and   as the shape and 
rate parameter, i.e., 

   
e , 0

; ,

0, 0


   

  



  

 

 (16)

where e  is the natural constant and     represents the Gamma function. Obviously, 
the probability density function of the student’s t distribution can be regarded as the infi-
nite mixture of the classical Gaussian probability density function [21,30]. 

(α)
γαeβγ, γ > 0

0, γ ≤ 0
(16)

where e is the natural constant and
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the probability density function of the student’s t distribution can be regarded as the infi-
nite mixture of the classical Gaussian probability density function [21,30]. 

(·) represents the Gamma function. Obviously, the
probability density function of the student’s t distribution can be regarded as the infinite
mixture of the classical Gaussian probability density function [21,30].

If given the Gaussian approximation of the posterior probability density function
p( ξk−1|z1:k−1) and concentrated Gaussian approximation of posterior p(Rk−1|Y1:k−1) for
instant k−1, the prior probability density function of p( ξk|z1:k−1) and p(Rk|Y1:k−1) for time
instant k can be obtained according to the Chapman–Kolmogorov equation [38,39],

p( ξk|z1:k−1) =
∫

pw(ξk − ξk−1)p( ξk−1|z1:k−1)dξk−1 =
∫

pw(ξk − ξk−1)N c
(

ξk−1; ξ̂k−1|k−1, Σk−1|k−1

)
dξk−1 (17)

p( Rk |Y1:k−1) =
∫

pw

(
Exp−1

G

(
RkΩ−1

k Rk−1

))
p( Rk−1|Y1:k−1)dξk−1 =

∫
pw

(
Exp−1

G

(
RkΩ−1

k Rk−1

))
G
(

Rk−1; R̂k−1|k−1, Σk−1|k−1

)
dRk−1 (18)

where p( ξk−1|z1:k−1) denotes the posterior probability density function of the ξk−1 based
on the innovation sequence zk from time instant 1 to k − 1 and p( Rk−1|Y1:k−1) denotes the
posterior probability density function of rotation Rk based on observation Yk from instant
1 to k − 1. Note that resorting to the equivalence of the Rk and ξk in probability density
function, pw(ξk − ξk−1) = pw

(
Exp−1

G

(
RkΩ−1

k Rk−1

))
is the student’s t distribution p(wk) for system

process noise and so we have p( Rk |Y1:k−1) = p( ξk |z1:k−1). Further, it is evident that the prior
probability p( ξk |z1:k−1) for instant k is not Gaussian but a student’s t distribution with mean
vector parameter ξ̂k|k−1, scale matrix Σk|k−1 and parameter τk, i.e.,

p( Rk |Y1:k−1) = p( ξk |z1:k−1) , St

(
ξk ; ξ̂k|k−1, Σk|k−1, τk

)
=
∫ +∞

0
N c
(

ξk ; ξ̂k|k−1, Σk|k−1/γk

)
Γ
(

γk ;
τk
2

,
τk
2

)
dγk (19)

where ξ̂k|k−1, Σk|k−1, and τk are the mean vector, scale matrix, and degree of freedom parameter
of the prior student’s t distribution p( Rk |Y1:k−1); and γk is the auxiliary random variable.
Employing (15)~(19), the prior student’s t distribution p( Rk |Y1:k−1) can be reformulated into
a hierarchical composition of the Gaussian distributions

p( ξk |γk , z1:k−1) = N c
(

ξk ; ξ̂k|k−1, Σk|k−1/γk

)
, (20)

p(γk) = Γ
(

γk ;
τk
2

,
τk
2

)
. (21)

Attitude estimation aims to propagate the posterior probability density distribution
based on the observation Yk. Since the observation noise in (2) and its equivalent form Vk in
(9) are zero mean Gaussian white sequence with covariance ΣV , the likelihood probability
density function of the innovation sequence zk based on the error ξk is equal to that of
observation Yk given the rotation Rk, i.e.,

p(Yk |Rk) = p( zk |ξk) = N c(zk ; Hξ ξk , ΣV
)

(22)
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where p(Yk |Rk) is the probability density function of Yk given rotation Rk, and p( zk |ξk) is the
probability density function of zk based on error ξk.

Note that the accurate propagation of the probability density function requires accurate
knowledge of scale matrix Σk|k−1 and degree of freedom τk. However, for real engineering
applications in the presence of unpredictable disturbances or substantial outliers, these two
distribution parameters are usually not correct or unavailable in advance. Therefore, from
the view of probability density, the main troubles of attitude estimation with heavy-tailed
process noise are threefold:

(1) With the student’s t distribution process noise, the probability density function
p( ξk |z1:k−1) in classical invariant Kalman filter depends on the auxiliary random vari-
able γk and becomes the hierarchical form p( ξk |γk , z1:k−1) in (20) and (21).

(2) For the unpredictable disturbances or outliers induced by severely maneuvering
operations, the accurate scale matrix Σk|k−1 and degree of freedom γk are usually
unavailable but essential to propagate the posterior estimates.

As a consequence, the heavy-tailed attitude estimation problem cannot be solved with
the invariant Kalman filter in Section 2 since the distribution parameter Σk|k−1 and τk should
be estimated together with the invariant error ξk and the rotation state Rk.

3.2. Prior Probability Definition for the Parameters of Student’s t Distribution

To solve Lie groups filtering problems with Student’s t distribution process noise, this
work aims to estimate the rotation group state Rk together with Σk|k−1 and τk by variational
Bayesian iterations as in Figure 5. The prior distributions of parameter Σk|k−1 and τk based
on all historical observation sequences should be conjugate prior distributions so that their
posterior distribution would maintain the same form as their prior distribution.

Figure 5. The main idea and key innovation of this work to deal with the heavy-tailed attitude
estimation problem on matrix Lie group SO(3).

According to (20) and (21), the estimated scale matrix Σk|k−1 is proportional to the
covariance matrix of Gaussian distribution. Therefore, the commonly used inverse Wishart
distribution and the Gamma distribution of Bayesian statistics are employed as the conju-
gate prior distributions for parameters Σk|k−1 and γk, respectively.

The distribution of scale matrix Σk|k−1 is defined as inverse Winshart distribution
[29,39,40] which is often used as conjugate prior for the covariance matrix of the Gaussian
variable. For attitude estimation problem, the inverse Winshart function of Σk|k−1 can be
written as

p
(

Σk|k−1

)
= IW

(
Σk|k−1; λk , Ψk

)
=
|Ψk |λk/2

∣∣∣Σk|k−1

∣∣∣−(λk+3+1)/2

23λk/2
3 (λk/2)

e
−0.5tr(ΨkΣ−1

k|k−1), (23)
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where IW denotes the inverse Winshart distribution; λk denotes the degrees of freedom; Ψk

is the 3× 3 inverse scale matrix; |·| is the determinant operator; and
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where e  is the natural constant and     represents the Gamma function. Obviously, 
the probability density function of the student’s t distribution can be regarded as the infi-
nite mixture of the classical Gaussian probability density function [21,30]. 

3(·) is the 3-variate
gamma function [29]. For the scale matrix Σk|k−1 ∼ IW

(
Σk|k−1; λk , Ψk

)
, the expectation of the

matrix inverse is E
(

Σ−1
k|k−1

)
= (λk − 3− 1)Ψ−1

k (for λk > 3 + 1) and so we have

E
(

Σk|k−1

)
=

Ψk

(λk − 3− 1)
, if λ > 3 + 1. (24)

The distribution parameter τk can be defined as the Gamma distribution [21],

p(τk) = Γ(τk ; ak , bk), (25)

where ak, bk are respectively the shape and rate parameter of the Gamma distribution τk,
respectively.

In summary, Equations (20)~(25) actually constitute a new student’s t-based hierarchi-
cal Gaussian state-space model for the heavy-tailed attitude estimation problem, whose
diagram is presented in Figure 6. The initialization of the required distribution parameter
is based on the nominal parameter Σk|k−1, which will be discussed later on. Using the above
distribution definition, the rotation state Rk and ξk, the auxiliary random variable γk, the
scale matrix Σk|k−1, and the parameter τk will be jointly estimated based on the newly con-
structed hierarchical Gaussian state-space model by variational Bayesian iterations, which
then leads to the new robust student’s t-based invariant Kalman filter for the heavy-tailed
attitude estimation problem.

Figure 6. Probability view of the proposed filtering method for Student’s t based hierarchical
Gaussian state-space model.

3.3. Variational Beayesian Approximations of Posterior Probability Density Function

To jointly estimate the rotation state Rk, auxiliary random variable γk, scale matrix
Σk|k−1, and parameter τk requires calculating the posterior probability density function
p
(

ξk , γk , Σk|k−1, τk |z1:k

)
. Since the accurate analytical expression of p

(
ξk , γk , Σk|k−1, τk |z1:k

)
is not

available, this work tries to obtain its factored approximate based on variational Bayesian
iterations [38]. i.e.,

p
(

ξk , γk , Σk|k−1τk |z1:k

)
≈ q(ξk)q(γk)q

(
Σk|k−1

)
q(τk), (26)

where q(ξk), q(γk), q
(

Σk|k−1

)
, and q(τk) represent, respectively, the approximate posterior

probability density function of ξk, γk, Σk|k−1, τk; q(ξk), q(γk), q
(

Σk|k−1

)
and q(τk), which can be

determined by minimizing the Kullback–Leibler divergence (KLD) [38,41] between the
factored approximate q(ξk)q(γk)q

(
Σk|k−1

)
q(τk) and the true p

(
ξk , γk , Σk|k−1, τk |z1:k

)
[29,38], i.e.,

{
q(ξk), q(γk), q

(
Σk|k−1

)
, q(τk)

}
= arg min KLD

(
q(ξk)q(γk)q

(
Σk|k−1

)
q(τk)

∥∥∥p
(

ξk , γk , Σk|k−1, τk |Y1:k

))
, (27)
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where KLD(q(x)‖p(x) ) ,
∫

q(x) log q(x)
p(x) dx denotes the KLD between q(x) and p(x). According

to the variational Bayesian iteration, these approximate posterior q(ξk), q(γk), q
(

Σk|k−1

)
, and

q(τk) to (27) satisfy the following equations [21,38]

log q(ξk) = E−ξk

[
log p

(
ξk , γk , Σk|k−1, τk , z1:k

)]
+ cξk , (28)

log q(γk) = E−γk

[
log p

(
ξk , γk , Σk|k−1, τk , z1:k

)]
+ cγk , (29)

log q
(

Σk|k−1

)
= E−Σk|k−1

[
log p

(
ξk , γk , Σk|k−1, τk , z1:k

)]
+ cΣk|k−1

, (30)

log q(τk) = E−τk

[
log p

(
ξk , γk , Σk|k−1, τk , z1:k

)]
+ cτk , (31)

where log(·) denotes the natural logarithm function; E−ξk [·] represents the mathematical
expectation operation for all variables except ξk, while E−γk [·], E−Σk|k−1

[·], and E−τk [·] are with
similar definitions; cξk is the constant with respect to ξk, while cγk , cΣk|k−1

, and cτk are similarly
defined. Obviously, Equations (28)~(31) are coupled and so no analytical solutions to the
above equations exist. Therefore, only the approximate solutions are available and in this
work the fixed-point iterations are employed to determine these parameters [38].

According to the conditional independence properties, the joint probability density
function p

(
ξk , γk , Σk|k−1, τk , z1:k

)
can be factored as follows

p
(

ξk , γk , Σk|k−1, τk , z1:k

)
= p(zk |ξk )p(ξk |z1:k−1, γk )p(γk)p

(
Σk|k−1

)
p(τk)p(z1:k−1) (32)

Then, using (20)~(26), we have

p
(

ξk , γk , Σk|k−1, τk , z1:k

)
= N c(zk ; Hξk , ΣV)N c

(
ξk ; ξ̂k|k−1, Σk|k−1/γk

)
×Γ
(
γk ; τk

2 , τk
2

)
IW
(

Σk|k−1; λk , Ψk

)
Γ(τk ; ak , bk)p(Y1:k−1)

(33)

Using (16) and (24), log p
(

ξk , γk , Σk|k−1, τk , z1:k

)
can be formulated as

log p
(

ξk , γk , Σk|k−1, τk , z1:k

)
= − 1

2 (zk − Hξk)
TΣ−1

V (zk − Hξk)− 1
2 (5 + λk) log

∣∣∣Σk|k−1

∣∣∣− 1
2 tr
(

ΨkΣ−1
k|k−1

)
− 1

2 γk

(
ξk − ξ̂k|k−1

)T
Σ−1

k|k−1

(
ξk − ξ̂k|k−1

)
+ τk+1

2 log γk −
τkγk

2 + τk
2 log τk

2 − log
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where e  is the natural constant and     represents the Gamma function. Obviously, 
the probability density function of the student’s t distribution can be regarded as the infi-
nite mixture of the classical Gaussian probability density function [21,30]. 

( τk
2

)
+(ak − 1) log τk − bkτk + constant.

(34)

3.4. Fixed-Point Iteration of the System State and Distribution Parameters

Based on the conditional independence property of the invariant error ξk and parame-
ters γk, Σk|k−1, and τk, the Equations (28)~(31) can be rewritten with above Equation (34) and
fixed-point methods can be used to obtain the approximate estimates to the invariant error
ξk as well as the parameters γk,Σk|k−1, and τk[21].

3.4.1. Fixed-Point Iteration of the Invariant Error ξk

With (34) and the independence property of γk and Σk|k−1, (28) can be written as

log q(i+1)(ξk) = E(i+1)
−ξk

[
log p

(
ξk , γk , Σk|k−1, τk , z1:k

)]
+ cξk

= − 1
2 (zk − Hξk)

TΣ−1
V (zk − Hξk)− 1

2 E(i)
−ξk

[
γk

(
ξk − ξ̂k|k−1

)T
Σ−1

k|k−1

(
ξk − ξ̂k|k−1

)]
+ cξk

= − 1
2 (zk − Hξk)

TΣ−1
V (zk − Hξk)− 1

2 E(i)
γk [γk ]

(
ξk − ξ̂k|k−1

)T
E(i)

Σkk1

[
Σ−1

k|k−1

](
ξk − ξ̂k|k−1

)
+ cξk

= − 1
2 (zk − Hξk)

TΣ−1
V (zk − Hξk)− 1

2

(
ξk − ξ̂k|k−1

)T(
Σ(i)

k|k−1

)−1(
ξk − ξ̂k|k−1

)
+ cξk

(35)

where q(i+1)(·) is the iterative approximation to q(·) at i + 1th iteration; E(i)
−ξk

[·] represents
the mathematical expectation at ith iteration for variables except the invariant error ξk
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while E(i)
γk [·] and E(i)

Σk|k−1
[·] denote the mathematical expectation at ith iteration for γk and Σk|k−1,

respectively;
_
Σ
(i)

k|k−1 is the modified prior error covariance matrix calculated as

_
Σ
(i)

k|k−1 =
{

E(i)
Σk|k−1

[
Σ−1

k|k−1

]}−1
/E(i)

γk [γk ]. (36)

Then, q(i+1)(ξk) can also be updated as a Gaussian distribution, i.e.,

q(i+1)(ξk) = N c
(

ξk ; ξ̂
(i+1)
k|k , Σ(i+1)

k|k

)
, (37)

where ξ̂
(i+1)
k|k and Σ(i+1)

k|k can be determined by following the update steps

ξ̂
(i+1)
k|k = ξ̂k|k−1 + K(i+1)

k

(
zk − Hξ̂k|k−1

)
, (38)

K(i+1)
k =

_
Σ
(i)

k|k−1 HT
(

H
_
Σ
(i)

k|k−1 HT + ΣV

)−1

, (39)

Σ(i+1)
k|k =

_
Σ
(i)

k|k−1 − K(i+1)
k| H

_
Σ
(i)

k|k−1, (40)

where K(i+1)
k denotes the calibrated Kalman gain matrix at the i + 1th iteration.

3.4.2. Fixed-Point Iteration of the Auxiliary Random Variable γk

Using (34) and conditional independency, the log q(i+1)(γk) in (29) can be rewritten as

log q(i+1)(γk) = E(i+1)
−γk

[
log p

(
ξk , γk , Σk|k−1, τk , z1:k

)]
+ cγk

=
E(i)

τk
[τk ]+1
2 log γk − 1

2

{
E(i)
−γk

[(
ξk − ξ̂k|k−1

)T
Σ−1

k|k−1

(
ξk − ξ̂k|k−1

)]
+ E(i)

τk [τk ]

}
γk + cγk

=
E(i)

τk
[τk ]+1
2 log γk − 1

2

{
tr
(

E(i)
ξk

[(
ξk − ξ̂k|k−1

)(
ξk − ξ̂k|k−1

)T
]

E(i)
Σk|k−1

[
Σ−1

k|k−1

])
+ E(i)

τk [τk ]

}
γk + cγk .

(41)

where E(i)
−γk

[·] represents the mathematical expectation at ith iteration for variables except
the γk while E(i)

τk [·] denotes the mathematical expectation at ith iteration for the parameter τk.
Note that the approximate ξ̂

(i+1)
k|k and Σ(i+1)

k|k updated in (35)~(40) can be used to propagate

Equation (41) and the term E(i)
ξk

[(
ξk − ξ̂k|k−1

)(
ξk − ξ̂k|k−1

)T
]

can be reformulated as

E(i)
−γk

[(
ξk − ξ̂k|k−1

)(
ξk − ξ̂k|k−1

)T
]
= E(i)

−γk

[(
ξk − ξ̂

(i+1)
k|k + ξ̂

(i+1)
k|k − ξ̂k|k−1

) (
ξk − ξ̂

(i+1)
k|k + ξ̂

(i+1)
k|k − ξ̂k|k−1

)T
]

= E(i+1)
−γk

[(
ξk − ξ̂

(i+1)
k|k

)(
ξk − ξ̂

(i+1)
k|k

)T
]
+
(

ξ̂
(i+1)
k|k − ξ̂k|k−1

)(
ξ̂
(i+1)
k|k − ξ̂k|k−1

)T
= Σ(i+1)

k|k +
(

ξ̂
(i+1)
k|k − ξ̂k|k−1

)(
ξ̂
(i+1)
k|k − ξ̂k|k−1

)T (42)

Then (41) could be deduced into

log q(i+1)(γk) =

(
E(i)

τk
[τk ]+3
2 − 1

)
log γk

− 1
2

{
tr
(

Σ(i+1)
k|k E(i)

Σk|k−1

[
Σ−1

k|k−1

]
+
(

ξ̂
(i+1)
k|k − ξ̂k|k−1

)(
ξ̂
(i+1)
k|k − ξ̂k|k−1

)T
E(i)

Σk|k−1

[
Σ−1

k|k−1

])
+ E(i)

τk [τk ]

}
γk + cγk .

(43)

which is actually also a Gamma distribution as (16), i.e.,

q(i+1)(γk) = Γ
(

γk ; η(i+1), θ(i+1)
)

, (44)

where η(i+1) and θ(i+1) are the shape and rate parameter determined by

η(i+1) =
E(i)

τk [τk ] + 3
2

, (45)

θ(i+1) =
1
2

{
tr
((

Σ(i+1)
k|k + U(i)

k +
(

ξ̂
(i+1)
k|k − û(i)

k

)(
ξ̂
(i+1)
k|k − û(i)

k

)T
)

E(i)
Σk|k−1

[
Σ−1

k|k−1

])
+ E(i)

τk [τk ]

}
. (46)
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3.4.3. Fixed-Point Iteration of the Prior Estimate for Covariance Matrix Σk|k−1

With (34), (37), (44) and the independence of ξk and γk, (30) can be rewritten as

log q(i+1)
(

Σk|k−1

)
= E(i+1)

−Σk|k−1

[
log p

(
ξk , γk , Σk|k−1, τk , z1:k

)]
+ cΣk|k−1

= − 1
2 E(i)
−Σk|k−1

[
γk

(
ξk − ξ̂k|k−1

)T
Σ−1

k|k−1

(
ξk − ξ̂k|k−1

)]
− 1

2 (5 + λk)
T log

∣∣∣Σk|k−1

∣∣∣− 1
2 tr
(

ΨkΣ−1
k|k−1

)
+ cΣk|k−1

= − 1
2 (5 + λk)

T log
∣∣∣Σk|k−1

∣∣∣− 1
2 tr
{(

Ψk + E(i+1)
ξk

[ξk ]B
(i+1)
k

)
Σ−1

k|k−1

}
+ cΣk|k−1

(47)

where the term B(i+1)
k is calculated as

B(i+1)
k = E(i+1)

−Σk|k−1

[(
ξk − ξ̂k|k−1

)(
ξk − ξ̂k|k−1

)T
]

= E(i+1)
−Σk|k−1

[(
ξk − ξ̂

(i+1)
k|k + ξ̂

(i+1)
k|k − ξ̂k|k−1

) (
ξk − ξ̂

(i+1)
k|k + ξ̂

(i+1)
k|k − ξ̂k|k−1

)T
]

= Σ(i+1)
k|k +

(
ξ̂
(i+1)
k|k − ξ̂k|k−1

)(
ξ̂
(i+1)
k|k − ξ̂k|k−1

)T
,

(48)

Therefore, using (24) and (47), q(i+1)
(

Σk|k−1

)
is also an inverse Wishart distribution as

q(i+1)
(

Σk|k−1

)
= IW

(
Σk|k−1; λ̂

(i+1)
k , Ψ̂(i+1)

k

)
, (49)

where λ̂
(i+1)
k , Ψ̂(i+1)

k are given as
λ̂
(i+1)
k = λk + 1, (50)

Ψ̂(i+1)
k = Ψk + E(i+1)

ξk
[ξk ]B

(i+1)
k . (51)

3.4.4. Fixed-Point Iteration of the Prior Estimate for Parameter τk

With (34), (37), (44), and (49), (33) can be rewritten as

log q(i+1)(τk) = E(i+1)
−τk

[
log p

(
ξk , γk , Σk|k−1, τk , z1:k

)]
+ cτk

= τk
2 E(i+1)

γk [log γk ]− 1
2 E(i+1)

γk [γk ]τk +
τk
2 log τk

2 − log
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 
      
    (15)

where  kp w  denotes the probability density of the process noise kw ;  ; , ,t     de-
notes the student’s t distribution with mean vector  , scale matrix , and degree of pa-

rameter  ; w  is an auxiliary random variable in (15); and  ; ,    represents the 
Gamma probability density function of the scalar   with   and   as the shape and 
rate parameter, i.e., 

   
e , 0

; ,

0, 0


   

  



  

 

 (16)

where e  is the natural constant and     represents the Gamma function. Obviously, 
the probability density function of the student’s t distribution can be regarded as the infi-
nite mixture of the classical Gaussian probability density function [21,30]. 

( τk
2

)
+ (ak − 1) log τk − bkτk + cτk .

(52)

With Stirling’s equation log
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where e  is the natural constant and     represents the Gamma function. Obviously, 
the probability density function of the student’s t distribution can be regarded as the infi-
nite mixture of the classical Gaussian probability density function [21,30]. 

( τk
2

)
≈
(

τk−1
2

)
log
( τk

2

)
− τk

2 , (52) can be approximated as

log q(i+1)(τk) =

(
ak +

1
2
− 1
)

log τk −
(

bk −
1
2
− 1

2
E(i+1)

γk [log γk ] +
1
2

E(i+1)
γk [γk ]

)
τk + cτk . (53)

Therefore, using (16) and (53), q(i+1)(τk) can be updated as a Gamma distribution, i.e.,

q(i+1)(τk) = Γ
(

τk ; â(i+1)
k , b̂(i+1)

k

)
, (54)

where â(i+1)
k , b̂(i+1)

k are given as
â(i+1)

k = ak +
1
2

, (55)

b̂(i+1)
k = bk −

1
2
− 1

2
E(i+1)

γk [log γk ] +
1
2

E(i+1)
γk [γk ]. (56)

3.5. The Variational Beayesian Iteration Based Robust Student’s t Invariant Kalman Filter

To propagate the approximate posterior distributions, using (44), (49) and (54), the
expectations E(i+1)

γk [log γk ], E(i+1)
γk [γk ], E(i+1)

Σk|k−1

[
Σ−1

k|k−1

]
, and E(i+1)

τk [τk ] can be calculated as follows

E(i+1)
γk [γk ] = η(i+1)/θ(i+1), (57)

E(i+1)
γk [log γk ] = ψ

(
η(i+1)

)
− log θ(i+1), (58)

E(i+1)
Σk|k−1

[
Σ−1

k|k−1

]
=
(

λ̂
(i+1)
k − 4

)(
Ψ̂(i+1)

k

)−1
, (59)

E(i+1)
τk [τk ] = â(i+1)

k /b̂(i+1)
k , (60)
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where ψ(·) represents a digamma function [42]. After N times of fixed-point iterations, the
required posterior probability density function of ξk could be approximated as

q(ξk) ≈ N c
(

ξk ; ξ̂
(N)
k|k , Σ(N)

k|k

)
= N c

(
ξk ; ξ̂k|k , Σk|k

)
, (61)

where ξ̂k|k , Σk|k are respectively the posterior estimate for invariant error ξk and the posterior
estimate error covariance parameter. Then, resorting to the equivalence of probability
distribution, the distributing of the propagated rotation state Rk can be updated as the
concentrated Gaussian distribution with mean being R̂k|k and covariance being Σk|k,i.e.,

q(Rk) = G
(

Rk ; R̂k|k , Σk|k

)
, (62)

R̂k|k = exp
([

K(N)
k

(
zk − Hξ̂k|k−1

)]∧)
R̂k|k−1 = exp

([
K(N)

k

(
zk − Hξ̂k|k−1

)]∧)
R̂k−1|k−1Ωk−1 (63)

where the iterative Kalman gain matrix K(N)
k is calculated in (39). The Equations (62) and

(63) are actually the projection of the Euclidean space Equation (38) into Lie group space.
Therefore, the filtering steps of the proposed approach include the steps (36)~(40),

(42)~(46), (48)~(51), and (54)~(63). The detailed implementation of the proposed method
for attitude estimation is presented in Algorithm 1. For the heavy-tailed attitude estimation,
the nominal Σ̃k|k−1 could be selected as (11) to initialize the filter parameter Ψk and λk; the
invariant error is defined as the Lie exponential error of R̂k−1|k−1 and Rk so it could be
assumed to be zero at the initialization to propagate the prior estimate ξ̂k|k−1 = ξ̂k−1|k−1.

In invariant Kalman filter, the prior error estimate R̂k|k−1 is actually based on all the
historical observations Y1:k−1 before time instant k. In this work, the covariance parameter
Σk|k−1 is also inferred using the historical observations Y1:k−1 until time instant k. As for the
inverse Wishart distribution of Σk|k−1, at time instant k the degree of parameter is set as
λk = k + 4 and the inverse scale matrix parameter is set as Ψk = kΣ̃k|k−1.

In practical numerical integration of the attitude dynamic model, if there exists severe
maneuvering, the system process noise will have a heavy-tailed distribution and the
degree of freedom parameter τk depends on the maneuvering intensity. According to our
experience, the initial estimates for the shape parameter ak and rate parameter bk could be
set as ak/bk ∈ [3, 10] for the iteratively updating âk , b̂k in Algorithm 1.

Algorithm 1. The filtering steps of one time instant in the proposed approach for attitude estimation.

Inputs:R̂k−1|k−1,Σk−1|k−1,ξ̂k−1|k−1,Ωk−1,H,Yk,Σw,ΣV ,λk, Ψk, ak, bk, N
1. Predict the nominal invariant error ξ̂k|k−1 and rotation R̂k|k−1 according to (8) and (10)

ξ̂k|k−1 = ξ̂k−1|k−1,R̂k|k−1 = R̂k−1|k−1Ωk−1

2. Predict the nominal prior error covariance Σ̃k|k−1 according to (11)
Σ̃k|k−1 = Σk−1|k−1 + Σw

3. Calculate the converted innovation according to (9)

zk = R̂k|k−1Yk −
(

b′

b′′

)
4. Initialize the prior parameters

λ
(0)
k = λk,Ψ̂(0)

k = Ψk = (λk − 4)Σ̃k|k−1,E(0)
γk [γk] = 1

5. Calculate initial expectations according to (24) and (25)

E(0)
Σk|k−1

[
Σ−1

k|k−1

]
=
(

λ̂
(0)
k − 4

)(
Ψ̂(0)

k

)−1
,E(0)

τk [τk] = ak/bk

for i = 0:N − 1
6. Update q(i+1)(ξk) = N c

(
ξk; ξ̂

(i+1)
k|k , Σ(i+1)

k|k

)
according to (36)~(40)

_
Σ
(i)

k|k−1 =
{

E(i)
Σk|k−1

[
Σ−1

k|k−1

]}−1
/E(i)

γk [γk], K(i+1)
k =

_
Σ
(i)

k|k−1HT

(
H

_
Σ
(i)

k|k−1HT + ΣV

)−1

,

Σ(i+1)
k|k =

_
Σ
(i)

k|k−1 − K(i+1)
k| H

_
Σ
(i)

k|k−1,ξ̂(i+1)
k|k = ξ̂k|k−1 + K(i+1)

k

(
zk − Hξ̂k|k−1

)
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Algorithm 1: Cont.

7. Update q(i+1)(γk) = Γ
(

γk; η(i+1), θ(i+1)
)

according to (44)~(46)

η(i+1) =
E(i)

τk [τk ]+3
2 ,

θ(i+1) = 1
2

{
tr
((

Σ(i+1)
k|k +

(
ξ̂
(i+1)
k|k − ξ̂k|k−1

)(
ξ̂
(i+1)
k|k − ξ̂k|k−1

)T
)

E(i)
Σk|k−1

[
Σ−1

k|k−1

])
+ E(i)

τk [τk]

}
8. Update q(i+1)

(
Σk|k−1

)
= IW

(
Σk|k−1; λ̂

(i+1)
k , Ψ̂(i+1)

k

)
according to (48)~(51)

B(i+1)
k = Σ(i+1)

k|k +
(

ξ̂
(i+1)
k|k − ξ̂k|k−1

)(
ξ̂
(i+1)
k|k − ξ̂k|k−1

)T
,λ̂(i+1)

k = λk + 1,Ψ̂(i+1)
k =

Ψk + E(i+1)
ξk

[ξk]B
(i+1)
k

9. Update expectations E(i+1)
γk [log γk],E

(i+1)
γk [γk] and E(i+1)

Σk|k−1

[
Σ−1

k|k−1

]
according to (57)~(59)

E(i+1)
γk [γk] = η(i+1)/θ(i+1), E(i+1)

γk [log γk] = ψ
(

η(i+1)
)
− log θ(i+1),

E(i+1)
Σk|k−1

[
Σ−1

k|k−1

]
=
(

λ̂
(i+1)
k − 4

)(
Ψ̂(i+1)

k

)−1

10. Update q(i+1)(τk) = Γ
(

τk; â(i+1)
k , b̂(i+1)

k

)
according to (55) and (56)

â(i+1)
k = ak +

1
2 ,b̂(i+1)

k = bk − 1
2 −

1
2 E(i+1)

γk [log γk] +
1
2 E(i+1)

γk [γk]

11. Calculate the expectation E(i+1)
τk [τk] according to (60)

E(i+1)
τk [τk] = â(i+1)

k /b̂(i+1)
k

end for
12. Update the posterior rotation group and its covariance according to (63)

R̂k|k = exp
([

K(N)
k

(
zk − Hξ̂k|k−1

)]∧)
R̂k|k−1,Σk|k = Σ(N)

k|k

Outputs: R̂k|k,Σk|k

The number of N iterations is also a crucial parameter for proposed approach and,
generally, it should be set to a value larger than the system dimension to guarantee the
local convergence of variational Bayesian iterations; nevertheless, a too larger value is sure
to increase the computational cost for algorithm implementation. The balance between
precision and cost should be considered according to the detailed applications.

4. Numerical Simulations

To further demonstrate the performance of the variational Bayesian iteration-based
invariant Kaman filter, the attitude estimation system (6) (7) is simulated with parameter
Σ0|0 = 0.52362 I3×3, Σ w = 0.017452 I3×3, b′ = [1, 0, 0]T , b′ ′ = [0, 1, 0]T , Σv′ = 0.08732 I3×3, Σv′′ = 0.08732 I3×3. The
real attitude trajectories are generated for 5000 s and the heavy tailed process noise is
generated with heavy tailed outliers according to [42], i.e.,

p( wk) =

N c( wk ; 03×1, Σw) w.p. 1− α%

N c( wk ; 03×1, βΣw) w.p. α%
, (64)

which means that α percentage of process noise is drawn from a Gaussian distribution with
covariance Σw while the covariance of α percentage of process noise is severely increased by
scale parameter β due to the presence of outliers.

As a comparison, the filtering methods of the proposed approach (RSIKF), IKF [14,16]
the Student’s t filter (STF) [43], the Huber-based Kalman filter (HKF) [44], and the
QeIKF [24,25] are conducted together. For HKF, the tuning parameter is set to 1.345
and the number of iterations is selected as 10; in STF the degree of freedom parameter is
selected as 3. In the proposed RSIKF, the filter parameters are set to λk = k + 4, ak = 2, bk = 6,
N = 10. All above filtering methods are implemented with MATLAB codes on a computer
with Intel Core i7-7700 CPU at 3.60 GHz. To compare their performance, the error variable
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in Lie algebra of 5000 random runs is used to calculate the root mean square error RMSEk

during the 5000 runs’ filtering time and average root mean square error ARMSE, i.e.,

RMSEk ,

√√√√ 1
5000

5000

∑
l=1

∥∥∥ξk,l − ξ∗k,l

∥∥∥2
(65)

ARMSE ,

√√√√ 1
5000× 5000

5000

∑
k=1

5000

∑
l=1

∥∥ξ̂k,l − ξk,l
∥∥2 (66)

where ξk,l denotes the true estimate at the k-th time instant of the l-th simulation run and ξ̂k,l

is the corresponding estimate for the true ξk,l ;‖·‖ denotes the Euclidean vector norm.
In this work, three cases of heavy tailed process noises are simulated with α = 5, 20

and β = 100, 1000 to investigate the filtering performance of different methods. The ARMSE

result data of different filtering methods are given in Figure 7 while the RMSEk result data
during the first 500 runs’ filtering processes are presented in Figures 8 and 9.

Figure 7. The ARMSE result of RSIKF with different N for all cases of α and β.

Figure 8. The RMSEk result of different methods for the case of α = 5 and β = 10.
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Figure 9. The RMSEk result of different methods for the case of α = 20 and β = 10.

The ARMSE result of IKF in Figure 7 and RMSEk data of IKF in Figures 8–11 are always
the largest in all methods for all cases, which certifies that the estimation performance of
IKF is severely corrupted by heavy tailed outliers.

Figure 10. The RMSEk result of different methods for the case of α = 5 and β = 100.

Figure 11. The RMSEk result of different methods for the case of α = 5 and β = 100.

In STF, the noise distribution is assumed as a given Student’s t distribution, and the
ARMSE result in Figure 7 and RMSEk in Figures 8–11 is smaller than that of IKF. However,
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since it still requires accurate prior knowledge of the noise distribution parameter, the
unknown or inaccurate parameters still mislead the estimate results.

The QeIKF aims to estimate, online, the unknown noise covariance parameter and
also output better results than IKF and STF; however, it assumes the distribution as an
Gaussian one so its ARMSE result in Figure 7 and RMSEk in Figure 8 for the case α = 5 become
worse than the case of α = 20 in Figure 9; while, as shown in Figures 10 and 11, its filtering
precision would be significantly degraded by large outliers with β = 1000.

HKF shows some robustness to heavy tailed outliers IKF, STK, and QeKF for the
cases of β = 1000 as in Figures 10 and 11. Note that, the estimate given by HKF is rather
conservative and its robustness is at the cost of inferior precision.

In all simulation cases of α and β, the ARMSE and RMSEk result of proposed RSIKF
is always the least one in Figures 7–11, demonstrating its superiority filtering perfor-
mance to the other available methods. For RSIKF, different setting of N from 1~15 are
conducted with all cases of α with the ARMSE result given in Figure 12; obviously, N = 10
already guarantees the iterative convergence and a larger N would significantly increase
the computational cost.

Figure 12. The ARMSE result of RSIKF with different N for the cases of α and β.

5. Conclusions

For aerospace, satellite, and robotics engineering, the matrix Lie groups attitude es-
timation problem with heavy-tailed process noise is investigated. An improved robust
Student’s t invariant Kalman filtering is proposed based on a hierarchical Gaussian state-
space model. The probability density function of state prediction is defined based on
student’s t distribution, while the conjugate prior distributions of the scale matrix and
degrees of freedom (dofs) parameter are respectively formulated as the inverse Wishart and
Gamma distribution. For attitude estimation state-space model, the Lie groups rotation ma-
trix of spacecraft attitude is inferred together with the scale matrix and dof parameter using
the variational Bayesian iteration. The new approach can improve the filtering robustness
of the invariant Kalman filter for Lie groups spacecraft attitude estimation problems with
heavy-tailed process uncertainty. Some further applications of the proposed methods can
also be extended to other problems such as state smoother, parameter identification, state
observers, and so on.
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35. Ćesić, J.; Markovi, I.; Bukal, M.; Petrović, I. Extended Information Filter on Matrix Lie Groups. Automatica 2017, 82, 226–234.

[CrossRef]
36. Kang, D.; Jang, C.; Park, F. Unscented Kalman Filtering for Simultaneous Estimation of Attitude and Gyroscope Bias. IEEE/ASME

Trans. Mechatron. 2019, 24, 350–360. [CrossRef]
37. Bourmaud, G.; Mégret, R.; Arnaudon, M.; Giremus, A. Continuous-Discrete Extended Kalman Filter on Matrix Lie Groups Using

Concentrated Gaussian Distributions. J. Math. Imaging Vis. 2015, 51, 209–228. [CrossRef]
38. Tzikas, D.; Likas, A.; Galatsanos, N. The Variational Approximation for Bayesian Inference. IEEE Signal Process. Mag. 2008, 25,

131–146. [CrossRef]
39. Pavliotis, G.A. Applied Stochastic Processe; Springer: London, UK, 2009.
40. Hagan, T.; Forster, J.J. Kendall’s Advanced Theory of Statistics; Arnold: London, UK, 2004.
41. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2007.
42. Huang, Y.; Zhang, Y.; Li, N.; Chambers, J. A Robust Gaussian Approximate Fixed-Interval Smoother for Nonlinear Systems With

Heavy-Tailed Process and Measurement Noises. IEEE Signal Process. Lett. 2016, 23, 468–472. [CrossRef]
43. Roth, M.; Ozkan, E.; Gustafsson, F. A Student’s t filter for heavy tailed process and measurement noise. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 5770–5774.
44. Karlgaard, C.D.; Schaub, H. Huber-Based Divided Difference Filtering. J. Guid. Control Dyn. 2012, 30, 885–891. [CrossRef]

http://doi.org/10.1109/TCST.2016.2628716
http://doi.org/10.1007/s001900050236
http://doi.org/10.1109/LSP.2015.2490543
http://doi.org/10.1109/LSP.2017.2724848
http://doi.org/10.1109/TAC.2017.2730480
http://doi.org/10.1109/LSP.2018.2889440
http://doi.org/10.1016/j.sigpro.2018.06.014
http://doi.org/10.1109/TAES.2017.2651684
http://doi.org/10.1109/TAES.2016.150722
http://doi.org/10.1109/LSP.2017.2723765
http://doi.org/10.1016/j.automatica.2017.04.056
http://doi.org/10.1109/TMECH.2019.2891776
http://doi.org/10.1007/s10851-014-0517-0
http://doi.org/10.1109/MSP.2008.929620
http://doi.org/10.1109/LSP.2016.2533543
http://doi.org/10.2514/1.27968

	Introduction 
	Primaries and Problem Definition 
	The Attitude Estimation System on the Special Orthogonal Group SO(3) 
	Model Projection Based on the Invariance Property of Attitude Estimation System 
	The Invariant Kalman Filter for Attitude Estimation 
	The Attitude Estimation Problem with the Trouble of Heavy-Tailed Process Noise 

	Robust Student’s t Based Invariant Kalman Filter for Attitude Estimation on SO(3) 
	Probability View of Attitude Estimation with Heavy-Tailed Process Noise 
	Prior Probability Definition for the Parameters of Student’s t Distribution 
	Variational Beayesian Approximations of Posterior Probability Density Function 
	Fixed-Point Iteration of the System State and Distribution Parameters 
	Fixed-Point Iteration of the Invariant Error k  
	Fixed-Point Iteration of the Auxiliary Random Variable k  
	Fixed-Point Iteration of the Prior Estimate for Covariance Matrix k|k - 1  
	Fixed-Point Iteration of the Prior Estimate for Parameter k  

	The Variational Beayesian Iteration Based Robust Student’s t Invariant Kalman Filter 

	Numerical Simulations 
	Conclusions 
	References

