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Abstract: A crane system often works in a complex environment. It is difficult to model or learn
its true dynamics by traditional system identification approaches. If a dynamics model is created
by minimizing its prediction error, its use tends to introduce inaccuracies and thus lead to subop-
timal performance. Is it possible to learn the dynamics model of a crane that can achieve the best
performance, instead of learning its true dynamics? This work answers the question by presenting a
performance-driven model predictive control (P-MPC) algorithm for a two-dimensional underactu-
ated bridge crane. In the proposed dual-layer control architecture, an inner-loop controller uses a
proportional–integral–derivative controller to achieve anti-sway rapidly. An outer-loop controller
uses MPC to ensure accurate trolley positioning under control constraints. Compared with classical
MPC, this work proposes a data-driven method for plant modeling and controller parameter up-
dating. By considering the control target at the learning stage, the method can avoid adjusting the
controller to deal with uncertainty. We use Bayesian optimization in an active learning framework
where a locally linear dynamics model is learned with the intent of maximizing control performance
and then used in conjunction with optimal control schemes to efficiently design a controller for a
given task. The model is updated directly based on the performance observed in experiments on
the physical system in an iterative manner till a desired performance is achieved. The controller
parameters and prediction models of the best closed-loop performance can be found through contin-
uous experiments and iterative optimization. Simulation and experiment results show that we can
explicitly find the dynamics model that produces the best performance for an actual system, and the
method can quickly suppress swing and realize accurate trolley positioning. The results verified its
effectiveness, feasibility, and superior performance on comparing it with state-of-the-art methods.

Keywords: anti-sway; data-driven approach; machine learning; performance-driven model predictive
control; underactuated bridge crane

1. Introduction

A mechanical system with fewer drivers than the degree of freedom is called an under-
actuated one [1]. The reduction of drivers can make them light and flexible. Therefore, it is
widely used in industry [2]. Underactuated systems are often divided into two categories.
The first contains underactuated mechanical systems with restricted movement [3,4], in-
cluding a mobile robot, shuttle, underwater vehicle, and underwater underactuated robot.
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They cannot move sideways, or they must follow a fixed trajectory. The second covers
underactuated mechanical arm type systems, mainly including different types of cranes
(such as bridge, cantilever, and tower cranes), the inverted pendulum system, the ball
and beam system, the translational oscillator with rotating actuator, and the pendulum
robot. The state of this type of system is analogous to a shift from a connecting rod or a
rotation. The reduction of the number of drivers can increase coupling among the sys-
tem components and the complexity of the system, making its controller design more
difficult. In recent decades, the underactuated mechanical system’s control problem has
been a long-term challenging problem in control engineering. Moreover, under particular
circumstances, a fully actuated system may become an underactuated system when any
actuator partially fails, or a running trajectory is fixed. Therefore, the in-depth study of
underactuated mechanical systems is of essential theoretical and practical significance.

As a typical underactuated mechanical arm system, a bridge crane is an essential
means of cargo transportation. It is widely used in construction sites, ports, production
workshops, warehouses, and other industrial fields [5]. Its main control objectives can be
summarized as accurately transporting goods to a target location and suppressing load
swing as much as possible. The payload’s swing angle must be small enough to avoid
accidents in the process of transportation. Suppose that a bridge crane’s swing is too large
then in that case, it affects its operational safety and production efficiency. Due to the lack of
several actuators, its payload swing angle is underactuated, making such an angle difficult
to control. How to suppress payload swing and ensure a trolley’s accurate positioning
is an important yet challenging issue to be addressed. The coupling or accompanying
nonholonomic constraints on a crane system state increases the difficulty in designing an
underactuated crane control system.

In recent years, researchers have made some noticeable progress in controlling bridge
cranes. An in-depth analysis of their dynamics has been conducted and a reasonable
motion trajectory for their trolley while considering the load swing angle is planned [6–8].
Ouyang et al. proposed an s-shaped motion trajectory generation method that could
realize anti-sway [6]. Jaafar et al. proposed a feedforward command shaping method of
anti-sway for a bridge crane system [9], which requires fewer sensors than some existing
methods. These methods [6–9] are all open-loop control-based ones and fail to deal with
external disturbance. Some closed-loop feedback control methods have been proposed
to deal with external disturbance to such a system [10]. The common method is to use
proportional–integral–derivative (PID) controllers [11]. Some control algorithms based on
state observers are proposed to handle partially unmeasurable states [12,13]. To reveal the
effects of unknown disturbances on cranes, Zhang et al. proposed a finite-time trajectory
tracking control method based on a state observer [13]. Some complex control methods
have been proposed, e.g., passivity-based control schemes in [14,15] and a Lyapunov-based
controller in [16]. However, such types of controllers have some inherent defects, e.g.,
difficult controller design and a narrow scope of application. Some robust controllers have
also been proposed to control cranes, such as sliding mode control (SMC) methods [17–25].
The work [19] proposed an integral-barrier Lyapunov function (IBLF)-based control method
to suppress the undesirable vibrations of the flexible crane system with a boundary output
constraint. However, it needs precise partial-ordinary differential equations. Besides, there
are some crane system control schemes combined with artificial intelligence, such as fuzzy
logic-based [26,27] and neural network-based control [28,29]. These methods draw on
human experience to help improve the control performance of a crane.

Most of the methods mentioned above can implement anti-swing. However, they fail
to guarantee that such swing is always within its allowable range [30]. Due to the limited
power of the crane’s actuator, the large control input tends to cause actuator saturation,
thereby reducing control performance and even causing safety problems.

Model predictive control (MPC) can predict the state of a system and handle various
constraints. It has been applied to the control problem of bridge cranes [30–35]. For
example, to deal with constraints, Chen et al. proposed a novel MPC algorithm for
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2-D overhead cranes [30], which could deal with actuator saturation. By combining
multivariable MPC with particle swarm optimizer (PSO), Smoczek et al. proposed a novel
anti-sway method [31]. The methods [30,31] are based on an accurate linearized model.
Their application is limited due to model error between the linearized models and their
modeled crane systems. Meanwhile, an MPC algorithm requires a high-precision model to
achieve superior closed-loop performance.

In adaptive control, model parameters are generally updated to obtain a good pre-
diction model but not necessarily to maximize control performance. Aiming at finding
the best predictive model and parameters of a controller from experimental data, we pro-
posed a control method based on performance-driven MPC, which directly considers the
crane’s control target at a learning stage. This method requires us to continuously conduct
experiments and collect closed-loop data. Although this work is for a small-scale physical
crane (e.g., 1:10 size crane) instead of an actual large-scale crane, we can obtain sufficient
closed-loop data for a large-scale crane and synthesize a controller by the proposed method.
Through continuous iteration and optimization of parameters, the controller for the best
performance can be learned and then applied. The performance-driven MPC algorithm
framework is shown in Figure 1. It mainly includes three modules: a closed-loop exper-
imental module, a closed-loop control module, and a Bayes-based controller parameter
optimization and model learning module [36]. Following [37], we designed a dual-layer
control architecture. An inner controller aims to quickly suppress the swing angle, while
an outer one can handle control constraints and state ones. The merits of this paper can be
summarized as follows.
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Figure 1. Performance-driven MPC algorithm framework. 
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Figure 1. Performance-driven MPC algorithm framework.

(1) This work proposes a conversion method to construct a new state augmented
system for solving the problem where classical MPC fails to deal with underactuated
systems [31,38]. Although a bridge crane’s structure is different from other types of
underactuated systems, the dual-layer control architecture in this article can also be applied
to other underactuated systems.

(2) Compared with classical MPC algorithms, which require a precise linearization
model of a plant to achieve high closed-loop performance, this work proposes a method
that does not need specific knowledge of system dynamics characteristics. Using the exper-
imental data for parameter tuning, we can synthesize a controller of excellent performance
to achieve fast and accurate trolley positioning and anti-swing control objectives. From the
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application point of view, the control method is based on data, thereby making it highly
applicable to various industrial systems.

The rest of this article is made up as follows. Section 2 briefly introduces the classic
MPC and Bayesian optimization. Section 3 introduces a controller’s design, including
the parameterization method of each layer of the controller. Section 4 introduces the
method of optimizing the parameters based on the data combined with Bayes optimization.
Section 5 presents simulation, experimental and comparison results. Section 6 concerns the
conclusion.

2. Classic MPC and Bayesian Optimization for a Bridge Crane

This section briefly reviews the methods of classic MPC and Bayesian optimization.

2.1. Classic MPC for Bridge Crane

MPC has gained significant success in recent decades and has become an important
control method for handling system constraints [31] as well as a common approach for
crane anti-sway. A discrete crane’s dynamics can be described as follows:

x(k + 1) = f (x(k), u(k), k, w(k)) (1)

where u(k) ∈ Rnu , x(k) ∈ Rnx and w(k) ∈ Rnw are a crane’s input, state, and noise
sampled at time k, respectively. nu, nx, and nw are the number for input, state, and noise,
respectively.

Classical MPC schemes do not consider any uncertainty for a prediction model. They
rely on feedback and the next sampling result to resolve the following problem to compen-
sate for the uncertainty of feedback:

J∗ = minimize
U

l f (xN|k, uN|k, k + N) +
N−1

∑
i=0

l(xi|k, ui|k, k + i) (2)

s.t. xi+1|k = f
(

xi|k, ui|k, k + i
)

U =
[
u0|k, · · · , uN|k

]
∈ Uj(j = 1, · · · , ncu)

X =
[

x0|k, · · · , xN|k

]
∈ Xj(j = 1, · · · , ncx)

xN|k ∈ X f

x0|k = x(k)

(3)

where U is a control vector. X is a state vector, and l(x i|k, ui|k , k + i) is a cost function at
time k. ncu and ncx are the number of elements in input sets and state sets. Usually, a cost
function is a weighted quadratic cost suitable for tracking tasks. In many MPC formulas,
the terminal components lf and Xf are generally imposed for meeting system stability
requirements. The MPC control law can be obtained by solving Equation (2), resulting in

u∗(x(k), k) = u∗0|k (4)

where u∗0|k is the first element of the computes optimal control sequence U∗ applied to the
crane at time step k.

2.2. Bayesian Optimization for a Bridge Crane

Bayesian optimization is a standard method for training models in machine learning.
The objective function’s minimal value can be found by establishing a substitute function
(probability model) via the MPC objective function’s past evaluation results. So, we can use
Bayesian optimization to optimize the crane model parameters and controller parameters.
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Assume that a hyperparameter vector of the bridge crane is X = (x1, x2, . . . , xn).
Different super parameters lead to different effects. Bayesian optimization assumes that
there is a functional relationship between the super parameters and the loss function.

Suppose that there is a function f : x −→ R , x ⊆ X. The optimization problem can
be described as:

x∗ = argmin
x∈X

f (x) (5)

Initializing the data-set D = {(xi, yi), . . . , (xn, yn)}. We can assume f ~ GP(µ, κ) (GP:
Gaussian process, µ : mean, and κ: covariance kernel). The forecast also obeys a normal
distribution, i.e.,

p(y
∣∣x, D) = N (y

∣∣µ̂, σ̂2)

y = (y1 · · · yi)
T

µ̂ = k(x)T(K + σ2
n I)−1y

σ̂2 = κ(x1, x)− k(x)T(K + σ2
n I)−1k(x)

xi ← argmax
x∈X

S(X, p(y|x, D))

(6)

where σ̂ is a covariance matrix, µ̂ is a mean vector, k is the covariance matrix of test sample
input and training sample input. K is the covariance matrix between training sample
inputs, respectively.

In the next step, we need to select the parameters X that satisfy (5) based on the calcu-
lated hypothetical model, then bring the hyperparameters into the network for training,
and finally obtain output yi, and update the data set D = {DU(xi, yi)}.

In this paper, we need to consider the balance between exploration and exploitation,
and they are defined as follows:

Exploitation: Based on the data collected in the past, search in the area with higher
mean value to optimize the performance index, with a high probability of obtaining better
results. Note that with such a search it is easy to fall into the local optimum.

Exploration: Learn more about J in a larger variance area of parameter space.
The acquisition function can be selected in a variety of ways, such as Expected Im-

provement (EI) and Probability of Improvement. The EI algorithm can balance between
exploration and exploitation [39–43]. Thus, the EI acquisition function used in this paper
is introduced here. Assuming f̌= min f , and f̌ represent the minimum value of f , the
utility function is defined as follows: u(x)= max (0, f̌ − f (x)), acquisition function can
be defined as:

aEI(x) = E[u(x)|x, D] =
∫ ∨f
−∞ (

∨
f − f )N ( f ; µ(x), k(x, x))d f

= (
∨
f − µ(x))Φ( f ; µ(x), k(x, x))+
k(x, x)N ( f ; µ(x), k(x, x))

(7)

The point that makes the αEI value maximal is the best point by calculation.

3. Control Architecture

This section presents a dual-layer, multi-rate, tracking control structure, as shown in
Figure 2. The inner loop uses a PID controller to achieve rapidly anti-sway at sampling
time Ts. To effectively deal with system state constraints and control ones, the outer loop
uses MPC to effectively solve an online constraint optimization problem at sampling time
TMPC (TMPC = NTs with N ∈ N). p(t) and θ(t) are the crane’s position and vertical direction
angle of the payload, respectively. e(t) is the tracking error of the inner loop system s. r(t)
is the reference value. us(t) and u*(t) are the inputs to the inner-loop system s and real
input to a crane. As ∈ R2×2, Bs ∈ R2×1, Cs ∈ R2×2 and Ds ∈ R2×1 are prediction model
parameters. ν = [νP νI νD] is a parameterized vector of a PID controller. NP and NC are
MPC parameters.



Machines 2021, 9, 177 6 of 17

Machines 2021, 9, x FOR PEER REVIEW 6 of 18 
 

 

MPC to effectively solve an online constraint optimization problem at sampling time TMPC 

(TMPC = NTs with N∈N). p(t) and θ(t) are the crane’s position and vertical direction angle of 
the payload, respectively. e(t) is the tracking error of the inner loop system s. r(t) is the ref-
erence value. us(t) and u*(t) are the inputs to the inner-loop system s and real input to a crane. 
As∈ℝ2×2, Bs∈ℝ2×1, Cs∈ℝ2×2  and Ds∈ℝ2×1  are prediction model parameters. 𝜈 =[νP νI νD] is a parameterized vector of a PID controller. NP and NC are MPC parameters. 

MPC PID Crane
-

S

+

+

+

( )r t
( )e t *( )u t

( )p t

( )tθ
( )su t

[ , , ]P I Dv v v[ , ]P CN N

[ , , , ]s s s sA B C D

 
Figure 2. Proposed dual-layer control architecture. 

3.1. Inner PID Controller Parameterization 
An inner PID controller is parameterized as a vector ν ∈ ℝ ν . The discrete transfer 

function at the sampling time Ts can be defined as: 

d

d

( 1)1( , )
1 1PID P I s D

s

N zG z k T
z z N T

υ υ υ −= + +
− − +   

(8)

where ν = [νP νI νD]is a parameterized vector of a PID controller. A filter is added to the 
differential term (Nd ≫ 1) for suppressing the high-frequency gain of noise. Nd’s value has 
little effect on the overall performance. Thus, there is no need to optimize it. 

3.2. Outer MPC Controller Parameterization 
Consider a one-input and two-output (OITO) plant S as the prediction model of an 

inner closed-loop system. ys∈ℝ and y= p
θ ∈ℝ are the input and output states, respec-

tively. Considering discrete sampling time Ts, we have the following discrete state-space 
representation: 

*

( 1) ( ) ( )
( ) ( )

( )
( )

s s s

s s s

t A t B y t
y C t D y t

y t
y

u t

ξ ξ
ξ

+ = +
 = +

 
=  
   

(9)

where ξ∈ℝnξ is the system state that has the transfer functions with the same poles of a 
crane model. To realize the learning of the parameters of a predictive model, we parameter-
ize As∈ℝ2×2, Bs∈ℝ2×1, Cs∈ℝ2×2 and Ds∈ℝ2×1 into a vector µ∈ℝ . 

At time t = nTMPC (n∈N), the outer MPC solves the following optimization problem: 

1

2

{ ( | )} , 1

* 2

1

2 2

1

min ( ( ) ( ))

( ( ) ( | ))

( ( | ) ( 1| ))

p

Nc
s k

p

p

N

y r
y t k t k

N

u s r
k
N

u s s
k

J Q y t+k t y t k t

Q u t k t u t k t

Q u t k t u t k t Q

ε

εε

=+ =

=

Δ
=

= | − + |

+ + | − +

+ + − + − +






 

(10)

Figure 2. Proposed dual-layer control architecture.

3.1. Inner PID Controller Parameterization

An inner PID controller is parameterized as a vector ν ∈ Rnν . The discrete transfer
function at the sampling time Ts can be defined as:

GPID(z, k) = υP + υI Ts
1

z− 1
+ υD

Nd(z− 1)
z− 1 + NdTs

(8)

where ν = [νP νI νD] is a parameterized vector of a PID controller. A filter is added to the
differential term (Nd � 1) for suppressing the high-frequency gain of noise. Nd’s value
has little effect on the overall performance. Thus, there is no need to optimize it.

3.2. Outer MPC Controller Parameterization

Consider a one-input and two-output (OITO) plant S as the prediction model of an

inner closed-loop system. ys ∈ R and y=
[

p
θ

]
∈ R are the input and output states,

respectively. Considering discrete sampling time Ts, we have the following discrete state-
space representation: {

ξ(t + 1) = Asξ(t) + Bsys(t)

y = Csξ(t) + Dsys(t)

y =

[
y(t)

u∗(t)

] (9)

where ξ ∈ Rnξ is the system state that has the transfer functions with the same poles
of a crane model. To realize the learning of the parameters of a predictive model, we
parameterize As ∈ R2×2, Bs ∈ R2×1, Cs ∈ R2×2 and Ds ∈ R2×1 into a vector µ ∈ Rnµ .

At time t = nTMPC (n ∈ N), the outer MPC solves the following optimization problem:

J = min
{ys(t+k|t)}Nc

k=1,ε
Qy

Np

∑
k=1

(y(t + k|t)− yr(t + k|t)) 2

+ Qu

Np

∑
k=1

(us
∗(t + k|t)− ur(t + k|t)) 2

+ Q∆u

Np

∑
k=1

(us(t + k|t)− us(t + k− 1|t)) 2 + Qεε
2

(10)

s.t. y = S(µ, ys(t + k
∣∣t)), k = 1, · · · , Np

∨
y− λyε ≤ y(t + k

∣∣∣∣t) ≤ ŷ− λyε, k = 1, · · · , Np

∨
us − λuε ≤ u(t + k

∣∣∣t) ≤ ûs − λuε, k = 1, · · · , Np

∆
∨
us − λ∆uε ≤ ∆us(t + k

∣∣∣t) ≤ ∆ûs − λ∆uε, k = 1, · · · , Np

us(t + Nc + k
∣∣t) = us(t + Nc

∣∣t), k = 1, · · · , Np − Nc

(11)
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where ∆us(t + k | t), y(t + k | t ) and us(t + Nc | t ) are the kth control increment, output

and input of plant S at time t, respectively. ŷ = [5, 0.2, 10] and
∨
y = [0, −0.2, −10] are the

upper and lower bounds of the output, ûs = 10 and ǔs = −10 are the upper and lower
bounds of input, ∆ûs = 1 and ∆ǔs = −1 are the upper and lower bounds of the control
increment. ur is an input reference, and yr is an output reference. Np is the prediction
horizon, and Nc is the control horizon. Qy, Qu, Q∆u and Qε are the non-negative weights of
output, input, control increment, and a relaxation factor, respectively. ε is the corresponding
relaxation positive factor. λy, λu and λ∆u are the coefficients of the ε. According to the
standard MPC design, there is a hard constraint Nc ≤ Np that needs to be enforced in the
parameter learning.

In this paper, we only consider Np and Nc as the tuning parameters, which significantly
impact on the closed-loop control performance. We define the overall vector of tuning
parameters as a η =

[
µT Np Nc

]T (η ∈ Rnµ ×R×R), nµ is the number of parameters in the
controller. We use empirical values instead of learning the parameters by optimization for
λy, λu, λ∆u, Qy, Qu, Q∆u and Qε in this paper to reduce the number of parameters to be
tuned.

4. P-MPC Parameter Tuning

The designed architecture of a controller and controller parameterization was intro-
duced in the previous section. This section introduces a closed-loop performance function
and parameter tuning method based on Bayesian optimization.

4.1. Closed-Loop Performance Index

To realize the trolley accurately positioning and the payload anti-swing, the following
evaluation function J is designed for accurately evaluating the performance of a closed-loop
control algorithm.

J(yT , uT ; η, υ)

= log[ 1
T

T
∑

t=1
(2
∣∣p(t)− rp

∣∣+0.5
∣∣θ(t)− rθ

∣∣) ]
+ log[ 1

T

T
∑

t=1
τ(p(t)) + 1]

(12)

τ(p) =

{
20(|p|−pset), |p|> pset

0, |p|≤ pset
(13)

where (yT ,uT) is the measured signal of output and input at sampling time t = 1, . . . , T,
respectively. T is the duration of the closed-loop simulation. vi and ηi are the i-th Bayesian
optimization results of v and η. io is the optimal solution index. τ is a penalty function
that considers the physical constraints on the positioning of trolley pset. This function will
hopefully limit the overshoot of the trolley displacement and prevent the occurrence of
safety accidents. The crane’s displacement and swing angle data are obtained through
closed-loop simulation experiments.

The closed-loop performance J is calculated according to (12). The parameter opti-
mization problem of the controller can be described as follows:

min
η,υ∈D

J(yT , uT ; η, υ) (14)

where D is the set of controller parameter candidates.

4.2. P-MPC Controller Parameter Tuning

The Bayesian optimization algorithm has two steps:
1. Construct a Gaussian process regression model [40] and update its parameters

through a sampling dataset D; and
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2. Build an extracting function to guide the next sampling step, which is referred to as
extraction/collection for short.

A controller parameter tuning problem can be solved by minimizing (14). In this
paper, we use a Bayesian optimization (BO) strategy to do so. Similar to the work [37],
parameter tuning is summarized in Algorithm 1. Our goal is to update effectively the
hyperparameters when new data is observed.

Algorithm 1 P-MPC Controller Parameter Tuning

Input: data-set with controller parameters, input, and output
1. Initialize data-set with parameters and performance as

D ←−
{
(νm, ηm), Jm

}
2. For i = m, . . . , Nmax − 1 do

2.1 Train a GP approximating J according to data set D
2.2 Design the AC function α(ν, η | D) according to GP
2.3 Calculate the next controller parameters:

υi+1, ηi+1 ← argmax
υ,η

α(υ, η|D)

2.4 Perform an experiment and calculate the performance index Ji+1
2.5 Augment the data set D:

D ← D ∪
{
(υi+1, ηi+1), Ji+1

}
2.6 Exit for loop if the termination criterion is met:

3. Calculate the best parameters νo and ηo :
io = argmax

i
Ji

Output: optimal controller parameters νo and ηo.

In this paper, we assume that the cost Ji corresponding to controller parameters (ν, η)
obeys Gaussian distribution which has two advantages for our work according to [39,40]:

1. The Gaussian regression model is more accurate than such regression models as
principal component regression and least squares.

2. It allows priors of a hyperparameter to be defined or a particular structure of a
covariance function to be constructed. This feature can help us achieve controller parameter
optimization by using the prior experimental data. These advantages enable us to introduce
domain knowledge into a GP model to improve its accuracy.

According to the past evaluation results of the objective function, Bayesian optimiza-
tion can establish a substitute function (a probability model) for minimizing the value of
the objective function [41–43]. The acquisition function α(·) is constructed based on a GP
model learning step, i.e., (10), and the parameters of the next controller can be selected
by maximizing the acquisition function α(·). The initial point’s quality directly affects the
convergence rate of the algorithm and the quality of the final solution. The acquisition
function often produces an optimal local solution. Therefore, we need to balance the
exploration and development of the parameters. We adopted the acquisition function EI
in this paper, which has a unique advantage in balancing exploration with exploitation of
parameters [42]. Although our proposed method can find the parameters that make the
control performance optimal, its optimality requires theoretical proof and that remains
open [43].

The algorithm is initialized by selecting m > 1 different (for example, m can be ran-
domly selected or set to a fixed value) controller parameter combination values. Then, we
conduct a closed-loop experiment for each pair of parameters (νi,ηi) to collect data and
calculate the performance index Ji by Equations (12) and (13) for constructing the initial set
D ←−

{
(νm, ηm), Jm

}
of parameters and performance. In practice, if safety constraints

are violated, the experiment is interrupted, and a very large cost is allocated to Ji. We
repeat the above steps and iterate the experiment until the stop condition is met. In each
iteration, the following two steps are executed:
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4.2.1. Learning a GP Model

We fit J to the available data set D ←−
{
(νm, ηm), Jm

}
, and J ~ GP(µ0, κ) (µ0: zeros

mean, κ((υ, η), (υ, η)):covariance kernel). The posterior distribution J(yT , uT ; ηo, υo) is
defined as follows:

J(yT , uT ; ηo, υo) ∼ N(µi(υ
o, ηo), σ2

i (υ
o, ηo))

µi(υ
o, ηo) = kT

i (Ki + σ2
e I)−1 J(1 : i)

σ2
i (υ

o, ηo) = κ((υo, ηo), (υo, ηo))− kT
i (Ki + σ2

e I)−1ki + σ2
e

(15)

where ki ∈ Ri is the covariance matrix of test and training sample inputs. Its n-th element
is κ((νo, ηo), (νn, ηn)). K ∈ Ri×i is a covariance matrix among training sample inputs. Its
[n, m]-th entry has K((νn, ηn), (νm, ηm)). I represents an identity matrix. σ2

e represents the
variance of additive (Gaussian) noise. The covariance function κ((ν, η), (υ, η)) for the GP
can be chosen as a radial basis function

κ((υ, η), (υ, η))

= σ2
0 exp(− 1

2 [υ
T − υT ηT − ηT]W[υT − υT ηT − ηT]

T
)

(16)

where σ2
0 is the prior covariance of the function that can control the degree of local corre-

lation, and W is a weight matrix. They can be computed by maximizing the likelihood
function as follows

L(J(1 : i)
∣∣υ(1 : i), η(1 : i), σ0, W, σe)

= − 1
2 log det(Ki + σ2

e I)

− 1
2 JT

(1 : i)(Ki + σ2
e I)−1 J(1 : i)− i

2 log 2π

(17)

4.2.2. Parameter Tuning by Bayesian Optimization

The next controller’s parameters (νi+1, ηi+1) can be selected by maximizing the acqui-
sition function α(ν, η | D ):
where Y and X are the domain of ν and η, respectively.

(υi+1, ηi+1) = argmax
υ∈Y,η∈X

α(υ, η|D) (18)

The exploration step chooses a point with a high mean of parameters. The exploitation
step chooses a point with a large variance of parameters, which can avoid the algorithm’s
falling into local optimal parameters and increase the chance of finding the best perfor-
mance controller parameters [39–43], i.e.,

α(υ, η|D) = EI(υ, η)

=

{
(µi(υ, η)− Ĵ)Φ(Z) + σi(υ, η)φ(Z) σi(υ, η) > 0
0 σi(υ, η) = 0

(19)

Z =
J − µi(υ, η)

σi(υ, η)
(20)

where Ĵ = min
j=1,...,i

J(yT , uT ; υj, ηjυ) is an optimal value for the previous i iterations of the

objective function. Φ and φ are the probability density function and the cumulative density
function of the standard normal distribution, respectively.
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5. Simulation and Experiment Results

In this section, the dynamics of a bridge crane is first described. Simulations are
provided next to verify the performance of the proposed control method.

5.1. Bridge Crane Dynamics

A bridge crane is usually composed of wire, payload, and trolley. Its corresponding
2-D simplified physical model is shown in Figure 3 [31–35]. The dynamic equation is
defined as follows:

F = (m + M)
..
x−m

..
lsinθ −ml

..
θcosθ − 2m

.
l

.
θcosθ + ml

.
θsinθ + γ

.
x (21)

0 = ml2
..
θ + 2ml

.
lθ −m

..
xlcosθ + mglsinθ + ς

.
θ (22)

where M = 5 Kg and m = 5 Kg denote the mass of trolley and payload, respectively. θ
is the vertical direction angle of the payload. g = 9.81 m/s2 represents the gravitational
acceleration. l = 1 m is the length of the hoisting rope, which is fixed during transportation.
γ = 0.1 is the friction between the trolley and the platform. ς = 0.1 is the friction between
payload and air. F denotes a driving force, and x is the horizontal displacement; O and
pset are the trolley’s starting and target points, respectively. According to our method,
we do not need to know the dynamic characteristic of a bridge crane. The dynamic
Equations (21) and (22) are only used for producing closed-loop experimental data.
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5.2. Simulation Results

MATLAB/Simulink was used to conduct simulations. We conducted 200 closed-
loop experiments and collected data for calculating control performance and expanding a
historical database. Based on database prior data, we can use BO to optimize the controller
parameters. The system is initialized at [x(0)

.
x(0) θ(0)

.
θ(0)] = [0 0 0 0] for each experiment.

The sample time is Ts = 0.1 s and TMPC = 1 s (n = 10). The closed-loop performance of
each experiment is shown in Figure 4. We set the current test point as a blue cross, the
current best point up to iteration i as the black line, and the best closed-loop performance at
iteration 92 as a red square. We select the parameters with the best closed-loop performance
to verify the algorithm’s feasibility and effectiveness under the following conditions.

Case 1: pset = 3 m.
Case 2: pset = 5 m.
PID and its improved algorithm are currently the primary methods in the application

of anti-sway. Model predictive control equivalent input disturbance (EID for short) is
currently the best MPC method in the application of anti-sway [35]. Thus performance-
driven MPC (P-MPC for short) proposed in this work is compared with the classical
double-closed-loop PID (PID for short) [44] and EID.
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During the transportation process, the output signals x, θ, and input force F are
disturbed by an additive white Gaussian noise.

In the early iteration stage, the closed-loop performance index J of the system is very
large. After accumulating specific closed-loop data, BO can find better parameters. It can
be seen from Figure 4 that the performance index decreases faster after the 20th experiment.
As the number of experiments increases, the closed-loop performance J of the experiment
becomes lower and lower. The rest of the experiments are focused on the low-cost area.
After the 92nd iteration experiments, J no longer declines. Hence, the parameters at the
92nd can be selected as the best experimental parameters.

From Figures 5 and 6, the swing angle is always within 7◦ in the entire transportation
process of the trolley by using the proposed method. When the trolley reaches the target
location, the whole process only takes 8 s. After that, the swing angle oscillates within 2◦.
The entire transportation process is smooth. The algorithm can restore payload to normal
swing quickly while achieving precise positioning and finally maintaining a small angle
fluctuation. Besides, the three kinds of approaches of performance comparisons can be
seen from Figures 5 and 6. The control performances are shown in Tables 1 and 2. We can
see that P-MPC has the best performance. They all take the same time for the trolley to
carry the goods to the target point. In Case 1, the maximum swing angle of PID is 12◦.
The maximum swing angle of the EID is 7◦. The maximum swing angle of P-MPC is only
3.5◦, which is significantly smaller than the others. In Case 2, the maximum swing angle
of PID is 27◦. The maximum swing angle of EID is 12◦, and the maximum swing angle of
P-MPC is only 7◦, which is also much smaller than its two peers. We can compute that the
P-MPC method’s closed-loop performance is 0.021 for Case 1 and 0.477 for Case 2, which is
much better than its peers 0.366, 0.491 for Case 1 and 0.743, 0.796 for Case 2. Comparing
experimental results of the different methods, the proposed P-MPC is the best solution for
safety and efficiency in real applications.
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Table 1. The Comparison of the Three Approaches for Case 1.

Approaches Maximum Swing
Angle

Transporting
Time

Closed-Loop
Performance

P-MPC 3.5◦ 8 s 0.021
EID 7◦ 8 s 0.366
PID 12◦ 8 s 0.491
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Table 2. The Comparison of the Three Approaches for Case 2.

Approaches Maximum Swing
Angle

Transporting
Time

Closed-Loop
Performance

P-MPC 7◦ 8 s 0.477
EID 12◦ 8 s 0.743
PID 27◦ 8 s 0.796

5.3. Experiment Results

A lab was specially built to validate the proposed method, as shown in Figure 7. The
experimental platform used three Alternating Current (AC) asynchronous motors to drive
the trolley to move on the track. The maximum speed was 0.2 m/s. Due to the limitation
of the experimental site, the track length of the crane was 5.5 m, the actual usable length
was 5 m, and the maximum lifting rope length was 3 m. The maximum payload mass
was 1 t. The moving distance sensor used in this experiment could achieve an accuracy
of 1 mm. Using the aircraft altitude angle sensor, the dynamic swing angle and the static
swing angle accuracy could reach 0.01◦. The friction coefficient was 0.2. The swing angle
of the payload was required to remain within ±50 mm after the mechanism stopped in 5 s.
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As same as for the simulation, we conducted 200 closed-loop experiments and col-
lected data to calculate the control performance and to expand the historical database.
Based on the database prior data, we can use BO to optimize the controller parameters.
The system is initialized at [x(0)

.
x(0) θ(0)

.
θ(0)] = [0 0 0 0] for each experiment. The

sample time is Ts = 0.003 s and TMPC = 0.03 s (n = 10). The closed-loop performance of
each experiment is shown in Figure 8. We set the current test point as a blue cross, the
current best point up to iteration i as the black line, and the best closed-loop performance
at iteration 170 as a red square. Then, we selected the parameters with the best closed-loop
performance to verify the algorithm’s feasibility and effectiveness under the following
conditions.

Case 3: pset = 4.5 m.
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As same as for the simulation, the closed-loop performance index J of the system is
very large in the early iteration stage. After accumulating specific closed-loop data, BO can
find better parameters. It can be seen from Figure 8 that the performance index decreases
faster after the 15th experiment. As the number of experiments increases, the closed-loop
performance J of the experiment becomes lower and lower. The rest of the experiments are
focused on the low-cost area. After the 170th iteration experiment, J no longer declines.
Hence, the parameters at the 170th can be selected as the best experimental parameters.

From Figure 9, the swing angle is always within 1◦ in the entire transportation process
of the trolley when using the proposed method. When the trolley reaches the target location,
the whole process only takes 20 s. After that, the swing angle oscillates within 0.1◦. The
entire transportation process is smooth. The algorithm can restore payload to normal
swing quickly while achieving precise positioning and finally maintaining a small angle
fluctuation. Besides, the three kinds of approaches of performance comparisons can be
seen in Figure 9. The control performances are shown in Table 3. We can see that P-MPC
has the best performance. They all take the same time for the trolley to carry the goods
to the target point. In Case 3, the maximum swing angle of PID is 2.5◦. The maximum
swing angle of the EID is 1.5◦. The maximum swing angle of P-MPC is only 1◦, which is
significantly smaller than the others. We can compute that the P-MPC method’s closed-loop
performance is 0.003 for Case 3, which is much better than its peers 0.015, 0.042 for Case 3.
Comparing experimental results of the different methods, the proposed P-MPC is the best
solution for safety and efficiency in real applications.

Table 3. The Comparison of the Three Approaches for Case 3.

Approaches Maximum Swing
Angle

Transporting
Time

Closed-Loop
Performance

P-MPC 1.0◦ 20 s 0.003
EID 1.5◦ 20 s 0.015
PID 2.5◦ 20 s 0.042
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6. Conclusions

This work proposed a performance-driven MPC algorithm for an underactuated 2-D
bridge crane system. We could find the best performance MPC controller with predictive
model and controller parameters from closed-loop experimental data to deal with unknown
dynamic systems. The proposed method can effectively deal with the system’s various
constraints that do not cause the controller to saturate. Thus, it is easy to apply it to actual
cranes. The simulation results show that this method can achieve high-precision position-
ing of the trolley and rapid anti-sway of payload, while outperforming the traditional PID
controller and EID controller. Our future work will focus on the stability analysis of the pro-
posed method in this paper. We should clarify the least number of closed-loop experiments
required to construct a stable and reliable controller. It is necessary to construct a more
accurate nonlinear model for large scale cranes, thereby improving the controller’s robust-
ness and stability in application. Our future work aims to promote P-MPC to 3D cranes,
carry out a feasibility analysis of optimization results, and focus on chance-constrained
stochastic control in the P-MPC framework. The model does not necessarily provide the
highest input/output data fit result but yields a good controller corresponding to the best
closed-loop performance. Moreover, P-MPC can be extended to solve different control
problems, e.g., the inverted pendulum system, the ball and beam system, a translational
oscillator with a rotating actuator, and a power-line inspection robot [45–48]. Engineers
who only have little knowledge of control theory can use our method to design a controller
with the highly desired performance.
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