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Abstract: The vibrations of a Cartesian cutting machine caused by the pneumatic tool are studied
with a sub-system approach. The cutting head is modeled as an equivalent robot arm which is
able to mimic the measured resonances. The Cartesian structure is modeled according to the mode
superposition approach. A global analytical model is obtained coupling the aforementioned models,
and is solved in MATLAB. The full model is able to predict the variations in the response of the
machine to tool excitation that are caused by the motion of the head along the rails of the Cartesian
structure. Comparisons with experimental results are made.

Keywords: vibrations; Cartesian robot; cutting machine

1. Introduction

The Cartesian structure is widely used in robotics and automatic machines. The
Cartesian structure offers some advantages, since it is stiffer than a jointed arm structure
and kinematically simpler. In many applications, the Cartesian structure can be very
large with strokes of many meters and may experience very large accelerations. In other
applications, the tool mounted on the Cartesian structure may generate large forces or high
frequency vibrations that increase noise emission. In these conditions, the analysis and
control of vibrations becomes an important issue for a Cartesian structure, as well.

The first research studies on this topic were carried out in the last few years of the
past century by some authors that highlighted the configuration-dependent vibration
characteristics of these machines [1,2] and the effect of the modes of vibration of the
structural elements on the robot’s performance [1]. A detailed review on dynamic analysis
of robots with flexible links can be found in Reference [3]. In Reference [4], modal analysis
techniques were adopted to study the dynamic response of a high speed Cartesian robot
excited by severe inertia forces. In Reference [5], the problem of analyzing the configuration-
dependent natural frequencies of a Cartesian Robot was tackled using a FE model to
perform simulations in a discrete number of points of the workspace and a regression
algorithm to estimate the continuous distribution of natural frequencies.

Today, there are various methods for the dynamic analysis of flexible Cartesian robot,
which can be grouped into three families: the FE based methods, the Jacobian methods and
the matrix structural analysis (MSA) methods [6,7].

The FE methods, such as in Reference [5], are based on FE analysis of the components
of the robot, they may lead to cumbersome numerical models. The Jacobian methods
are based on the Jacobian matrix and on compliant virtual joints that mimic the actual
compliance of the machine [8,9]. MSA methods are similar to the FE methods, but make
use of larger elements obtained by means of static condensation [7,10]; this approach
reduces the computational burden of FE methods, but may require complex mathematical
manipulations.
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In recent years, many studies focused also on the development of control strategies
able to achieve in Cartesian robots position control and vibration damping at the same
time [11,12]. In particular, in Reference [13], a specific non-linear control was developed to
dampen the vibrations of the end-effector caused by the flexibility of the last link and by fast
motion in a perpendicular direction. A similar problem was tackled in Reference [12], since
each subsystem of a Tripteron robot was modeled as a flexible link driven by a prismatic
actuator. In the same way, Reference [14] focused on a control strategy that allows vibration
avoidance, but this approach is suitable only for machines that operate with point-to-point
movements; in Reference [15], a control strategy was applied to cornering applications
(i.e., the movement of a Cartesian machine where speed direction changes are required).
Finally, in Reference [16], a Cartesian-guided tripod dynamic model was studied, and the
vibrations were damped by means of a control strategy.

This paper addresses a different problem: the reduction of high frequency vibrations
generated by a pneumatic tool mounted on the last link of a Cartesian cutting machine. In
this case, the motion caused by the prismatic actuators of the machine does not generate
vibrations of the last link but can lead to variations in the response of the structure to
high frequency vibrations, since the workspace is rather large, and beam flexibility is
not negligible.

The complexity of the Cartesian machine is reduced by means of a mathematical
model adopting a subsystem approach, which aims to model each component of the
machine with the simplest model that retains the main characteristics of the component.
This model can be used to simulate different machines and for specific actions, such as
structural modifications. The cutting head is modeled as an equivalent robotic system with
lumped compliances that mimic the actual compliance properties that were experimentally
identified. This approach is similar to the aforementioned Jacobian methods [9]. The
moving rail, which has a limited cross section in order to reduce the inertial effects on
the actuators, is modeled as a flexible continuous system with the mode superposition
approach. Finally, a global analytical model is obtained coupling the aforementioned
models and is solved in MATLAB.

The paper is organized as follows.
In the next section, the Cartesian cutting machine is described, and the vibration

control problem is stated.
The mathematical model of the machine is developed and discussed in Section 3.
In Section 4, experimental tests are presented; they are aimed at identifying the

properties of the subsystems of the machine and are carried out with a specific modal
analysis approach (selective modal analysis [17]) that allows separation of the contributions
of the various machine subsystems.

In Section 5, a best fitting method is used to identify model parameters from experi-
mental tests; then, the model is validated.

In Section 6, the model is used for analyzing the influence of the modes of vibration of
the Cartesian structure on the dynamic response of the cutting head.

In Section 7, the mathematical model is used for assessing the effectiveness of a tuned
vibration absorber (TVA), designed to cancel the main resonance of the cutting head.

Finally, conclusions are drawn in Section 8.

2. The Cartesian Cutting Machine

The machine considered in this work is built to cut sheets of different materials,
particularly cloth ones. The machine can be seen in Figure 1.
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Figure 1. The machine RAPTOR-HI-2.5 built by Cutting Trading International.

It is constituted of a Cartesian machine that operates over a conveyor belt, supported
by four (4) pillars. The sheets are unrolled over the belt and are cut by a cutting head
mounted on the moving rail. This rail is supported at both sides by linear guides. Electric
motors coupled to elliptical racks drive the moving rail and the cutting head, which are
supported by ball bearing guides. The presence of cables and their support should be taken
into account, since they can involve different responses to vibrations on each side of the
sliding rail.

The cutting tool moves in the vertical direction and is controlled by means of a
pneumatic system that, by means of a valve at the input of the tool, inflates and deflates at
high frequency air inside a cylinder. This mechanism can guarantee high cutting speed
but, at the same time, generates vibrations that may cause annoying noise, especially at
high frequencies.

The machine is modular, so it can be sized to overcome different customer needs.
Figure 2 shows a simplified scheme of the cutting machine. The cutting head is rather

bulky and is supported by ball bearings. The cutting tool is connected to the head by means
of a cantilevered slot. This design allows a quick replacement of the cutting tool, which is
very useful, but slot deformability makes possible a rotation of the tool with respect to the
head in the presence of an eccentric cutting force.

(a) (b)

(c)
Figure 2. Simplified scheme: (a) Cutting machine, (b) cutting head (front view), (c) cutting head (side
view).
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The moving Y-rail has to operate at high speed in order to improve productivity; for
this reason, it is made of an aluminum profile having a limited cross section. Therefore, the
influence of the deformability of the moving rail has to be taken into account in the model
of the machine.

Conversely, the Z-rails, which are fixed, are made of steel and are very bulky and
stiff. There are no practical and theoretical reasons that limit the stiffness of the fixed rails,
their cross section can be further increased, if needed, and the number of supports can be
increased, if a larger machine has to be developed.

It is worth noticing that most of the aforementioned characteristics (e.g., the large
stiffness of the fixed rails) can be generalized to other Cartesian cutting machines extending
the validity of the developed model.

Some preliminary experimental tests showed the main features of the vibrations of
this machine [18]:

• the presence of an important periodic force in the vertical direction with fundamental
frequency of 217 Hz, caused by the operation of the cutting tool;

• the presence of two resonances of the tool at 215 and 248 Hz, respectively, and
vibrations at these frequencies showed the largest amplitudes in the vertical direction,
relevant amplitudes in the Z direction, negligible amplitudes in the Y direction, and a
coupling between the X and Z directions; and

• the variation of measured vibrations in the workspace of the machine.

3. Mathematical Model

The mathematical model aims at predicting the response of the cutting machine in
the frequency band that includes the maximum excitation for every configuration of the
Cartesian robot. The whole cutting machine is divided into two subsystems: the cutting
head and the moving rail.

3.1. Cutting Head Model

The preliminary tests reported in Reference [18] showed vibrations in the X and Z
directions. They can be related to bending of the moving rail, to slot deformation that
leads to a rotation of the tool (rotation θ2 in Figure 3a), and to bearings compliance that
leads to a rotation of the cutting head (rotation θ1 in Figure 3a) The definition of the
centers of rotation is very difficult, since they are related to the specific deformation pattern.
Therefore, adopting a grey box approach, the cutting head is modeled as an equivalent
jointed-arm robot having 3 Degrees of Freedom; see Figure 3.

Two DOFs are associated to rotations θ1 and θ2 of the joints with respect to the reference
configuration, and the third DOF is associated to vertical translation of the robot base xb,
which is due to the compliance of the rail. The two links having lengths l1 and l2 are
mass-less and have two tip masses (m1 and m2, respectively). Two torsional springs (kθ1
and kθ2) represent joint compliance. In parallel with the springs, there are two rotational
dampers (with damping coefficients cθ1 and cθ2), which represent joint damping and are
not shown in Figure 3. Stiffness kθ1 is related to the stiffness of the cutting head and to
the stiffness of the bearing of the prismatic joint between the Y-rail and the cutting head.
Mass m1 is related to the mass of the cutting head. Stiffness kθ2 is chiefly related to the
connection between the cutting head and the tool, and mass m2 is related to the mass of
the tool. The joint variables that define the reference configuration of the vibrating robot
are important. In particular, joint variable θ01 chiefly defines the ratio between vertical (X)
and longitudinal (Z) accelerations, whereas joint variable θ02, which is the relative angle
between link 2 and link 1 in the reference condition, defines the importance of the inertial
cross coupling between the joints [19].
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(a) (b)
Figure 3. (a) Physical scheme of the cutting head on the Y-rail; (b) gray-box model of the
cutting machine.

The adopted robotic model is more suitable than a linear model consisting of two
lumped masses moving along the X and Z directions, since, in this model, vibrations in
the X and Z directions would be completely un-coupled. This behavior is not realistic in
the present case, since the compliances of the cutting head generate two rotations in the
vertical plane causing coupled displacements in the X and Z directions.

Two external forces act on the equivalent robot. Force Fx is the force in the vertical
direction caused by the cutting process, whereas force Fbx is the force exerted by the Y-rail
on the cutting head.

The equations of motion are derived with the Lagrange method and are expressed in
matrix form, and gravity forces are neglected:m11 m12 m13

m21 m22 m23
m31 m32 m33


θ̈1
θ̈2
ẍb

+

cθ1 0 0
0 cθ2 0
0 0 0


θ̇1
θ̇2
ẋb

+

kθ1 0 0
0 kθ2 0
0 0 0


θ1
θ2
xb

 =


Q1
Q2
Qb

. (1)

Mass matrix is symmetric and includes the inertial cross-coupling terms (the terms
outside diagonal): m2[l2

1 + l2
2 + 2l1l2cos(θ02)] + m1l2

1 m2l2[l2 + l1cos(θ02)] m2l2cos(θ01 + θ02) + (m1 + m2)l1cos(θ01)
m2l2[l2 + l1cos(θ02)] m2l2

2 m2l2cos(θ01 + θ02)
m2l2cos(θ01 + θ02) + (m1 + m2)l1cos(θ01) m2l2cos(θ01 + θ02) m1 + m2

. (2)

The damping and stiffness matrices are simple diagonal matrices. The vector at the
right-hand side includes the effect of the cutting force and of the reaction force that the
Y-rail exerts on the cutting head.

Q1
Q2
Qb

 =


Fx[l1cos(θ01) + l2cos(θ01 + θ02)]

Fx[l2cos(θ01 + θ02)]
Fx + Fbx

. (3)

There are four unknowns: θ1(t), θ2(t), xb(t), and Fbx(t).
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3.2. Y-Rail Model

Figure 4 represents the model of the moving Y-rail in the vertical plane X-Z that
contains the excitation force due to the cutting process (in X direction).

Figure 4. Model of the Y-rail.

The Y-rail, which dominates the vibrational behavior of the Cartesian robot, is modeled
as a distributed parameter system by this equation:

EI
∂4w(y, t)

∂y4 + cs I
∂5w(y, t)

∂y4∂t
+ µ

∂2w(y, t)
∂t2 = Rbx(t)δ(y− yb), (4)

where w(y, t) is the vertical displacement of any point along the Y-rail, EI is the bending
stiffness of the cross-section of the rail, µ is the mass per unit length, and cs is the strain-rate
damping coefficient. At the right-hand side, there is the forcing term due to the interaction
with the cutting head, which is located in position yb:

Rbx(t) = −Fbx(t), (5)

and δ is the Dirac delta function.
It is worth noticing that the displacement of the robot base is:

xb(t) = w(yb, t). (6)

Displacement w(y, t) can be expressed according to the mode superposition approach as:

w(y, t) =
∞

∑
r=1

φr(y)ηr(t), (7)

where ηr(t) is the r-th modal coordinate, and φr(y) is the r-th mass-normalized mode of
vibration. The modes of vibration can be obtained solving the free vibration problem with
proper boundary conditions, which are pinned ends in the present case, since the Z-rails
can be considered rigid bodies. These modes of vibration hold true even if the beam is pro-
portionally damped. The modes of vibration are associated with the natural frequencies:

ωr =
( rπ

L

)2
√

EI
µ

, (8)

where L is rail length.
If (7) is inserted into (4), the equation of forced vibrations is transformed into a set of

second order ordinary differential equations:

d2ηr(t)
dt2 + 2ζrωr

dηr(t)
dt

+ ω2
r ηr(t) = Rbxφr(yb) r = 1, ..., ∞, (9)

in which ζr is modal damping ratio. Actually, if only m modes of vibration of the Y-rail
belong to the frequency band of interest, the vibration of the Y-rail can be represented by m
equation, such as (9).
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3.3. Coupled Model

The model of the equivalent robot is coupled with the model of the beam,
considering that:

xb(t) =
m

∑
r=1

φr(yb)ηr(t). (10)

A system of 3 + m linear differential equations in 3 + m unknowns is obtained, the
unknowns being θ1(t), θ2(t), Fbx(t), η1(t), ..., ηm(t).

Since the third equation of the equivalent robot makes it possible to express Fbx(t) as a
function of the other variables, a final system of 2 + m linear differential equations in 2 + m
unknowns is obtained. The system is recast in matrix form and implemented in MATLAB.
Then, a harmonic forcing function in x direction is used to calculate the forced response:

Fx(t) = F0xeiωt, (11)

where F0x and ω are the amplitude and frequency of the cutting force.
The frequency response functions between the coordinates (physical and modal) and

the cutting force are calculated solving the linear system with ω in the range 0− 1884 rad
s .

The FRFs between X and Z displacements of the tool are calculated according to the
following equations:

αXX(ω) = αθ1X · l1 cos(θ01) + (αθ1X + αθ2X) · l2 cos(θ01 + θ02) + αxbX , (12)

αZX(ω) = −αθ1X · l1 sin(θ01)− (αθ1X + αθ2X) · l2 sin(θ01 + θ02), (13)

where αθ1X and αθ1X are the FRFs between the rotations θ1, θ2, and the cutting force in the
X-direction, whereas αxbX is the FRF between the displacement xb and the cutting force.

The cutting force in x direction shows a small eccentricity with respect to the center
of the Y-beam; therefore, further studies will include the effect of torsion deformability,
as well.

4. Experimental Tests

The dynamic properties of the cutting machine have been identified with the selective
modal analysis approach [17,20,21]. This method aims at finding particular configurations
of the machine in which only the stiffness properties of a specific subsystem (a joint or a
flexible link) are important. In the present case, the Frequency Response Fuctions of the
cutting head are measured when the cutting head is located at the border of the workspace
and nearly above one of the steel pillars that support the rails. This configuration minimizes
the influence of bending deformability of rails.

The tests were carried out using an instrumented hammer for modal testing (PCB
086C03) and a triaxial accelerometer (PCB 356A17) with sensitivities of 0.25 mV

N and 50 mV
m/s2 ,

respectively. The signals from the hammer and the accelerometer were acquired by means
of the DAQ module NI 9234, using the software Signal Express. The sampling rate in the
time domain was set to 4000 Hz, whereas the frequency resolution was 0.5 Hz. The PSD of
the hammer force showed relevant amplitudes in the range of frequency of interest and the
first minimum above 400 Hz.

The measurement points were defined both on the tool and on the rails of the Cartesian
machine (Figure 5). This is due to the necessity of assessing the influence of the machine
components on the vibrations of the tool.

As can be inferred from Figures 6 and 7, the tests for measuring the FRFs on the rails
were taken in the worst possible scenario, the one in which the Y-rail and the cutting head
are centered on Z-rail and Y-rail, respectively. There are three (3) measurement points on
the Z-rail and six (6) on the Y-rail. The Y-rail has more points because it is more flexible,
and its compliance is directly linked to vibrations of the tool. The red dot in Figures 6 and 7
represents the excitation point that is fixed. Excitation direction is always perpendicular to
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the rail (X-axis). Measurement direction X is always perpendicular to the rail. The FRFs are
calculated averaging the response of three hammer blows.

(a) (b)
Figure 5. Experimental setup on the machine. Measurement point: (a) on the tool, (b) on the rail.

Figure 6. Measurement points on Z-rail, with the red one corresponding to excitation.

Figure 7. Measurement points on Y-rail, with the red one corresponding to excitation.

In Figure 8a,b, the FRFs of Z-rail measured in two different points (1 and 2) caused
by the excitation on point 1 are shown. In both FRFs, the first peaks occur at about 30 and
50 Hz, but they are much smaller, and amplitudes tend to increase at high frequency.

(a) (b)
Figure 8. FRFs of Z-rail (Figure 6): (a) direct (excitation 1X, response 1X), (b) cross (excitation 1X, response 2X).
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Considering Y-rail, Figure 9a,b show an high peak at about 23 Hz, both in the direct
and in the cross FRFs. Moreover, the magnitude is higher than the ones measured on
Z-rail. It is important to notice the presence of some peaks around 200 Hz because, at this
frequency, noisy vibrations appear.

(a) (b)
Figure 9. FRFs of Y-rail (Figure 7): (a) direct (excitation 4X, response 4X), (b) cross (excitation 4X, response 5X).

In conclusion, it can be stated that Y-rail can have an important influence on the
vibrations of the cutting head, whereas the contribution of Z-rail is very weak, confirming
the hypothesis shown in the definition of the mathematical model in Section 3.

Considering the cutting head, the tests were performed hitting the tool along its
vertical (X-axis) and measuring the response vertically (along the accelerometer X-axis)
and radially (along the accelerometer Z-axis), following the scheme of Figure 10.

Figure 10. Excitation and measurement point on cutting head.

The cutting head was then moved around the table and different tests were carried
out. In Figure 11, the testing positions of the cutting head are shown. The cutting head is
displayed in the most central position that could be reached by the instrument without
dismounting the conveyor belt. It is named the center-center (CC) position. The measured
FRFs for some of the points are shown in Figures 12–14.

Figure 11. Measure positions for the cutting head, where F = front, C = center, B = back, and R = right.
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(a) (b)
Figure 12. FRFs with the cutting head in the back-right (BR) position. Response in (a) X direction and (b) Z direction.

(a) (b)
Figure 13. FRFs with the cutting head in the center-center (CC) position. Response in (a) X direction and (b) Z direction.

(a) (b)
Figure 14. FRFs with the cutting head in the center-right (CR) position. Response in (a) X direction and (b) Z direction.
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In agreement with the previous results [18], the direct FRFs show the presence of two
close resonance peaks in the range 200–300 Hz, the former with a frequency of 215 Hz, and
the latter with a frequency of 248 Hz. The relative magnitude of the two peaks depends on
the position of the cutting head in the Cartesian workspace. Cross FRFs show a resonance
peak at 215 Hz.

5. Identification and Validation of the Mathematical Model

A best fitting process requires a first guess vector of design variables. The design
variables of the equivalent robot model of Figure 3 are: l1, l2, m1, m2, kθ1 , kθ2 , cθ1 , cθ2 , θ01, and
θ02. First, guess values of these variables are found considering that two close resonance
peaks are obtained when a main vibrating system with natural frequency Ω = 2π fn is
coupled with an ancillary oscillator (AO) tuned to the same frequency. Analytical and
experimental results show that the original resonance peak at Ω is substituted by two new
resonance peaks, the former at lower frequency, and the latter at higher frequency [22,23].
The frequency interval between the two peaks depends on the ratio between the masses
of the AO and of the main system (mass ratio). Since the masses and the stiffnesses are
related through the natural frequency, the mass ratio can be transformed into a stiffness
ratio. To obtain the first guess values of the design parameters, some further simplifications
are made: l1 = l2 = l, θ01 = 0, and θ02 = π

2 . With the last assumptions, vertical vibrations
depend on θ1, whereas longitudinal vibrations depend on θ1 + θ2.

Since the identification is performed when the cutting head is in a corner of the
workspace, where the rails reach the maximum stiffness, the motion of the Y-beam is
neglected, and the equations of motion of the free undamped vibration of the equivalent
robot become: [

2m2l2 + m1l2 m2l2

m2l2 m2l2

]{
θ̈1
θ̈2

}
+

[
kθ1 0
0 kθ2

]{
θ1
θ2

}
=

{
0
0

}
. (14)

The terms of the mass matrix can be expressed as functions of the natural frequencies
of the main system and of the AO, which are tuned to the same value Ω = 2π fn. The
natural frequency of the main system is:

Ω =

√
kθ1

m1l2 . (15)

Hence, m1l2 =
kθ1
Ω2 .

The natural frequency of the AO is:

Ω =

√
kθ2

m2l2 . (16)

Hence, m2l2 =
kθ2
Ω2 .

The mass matrix of the coupled system becomes:

[M] =

2
kθ2
Ω2 +

kθ1
Ω2

kθ2
Ω2

kθ2
Ω2

kθ2
Ω2

. (17)

If stiffness kθ1 is expressed as a function of stiffness kθ2 :

kθ1 = κkθ2 , (18)
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the natural frequencies of the coupled system depend only on Ω and κ and are given by
these simple equations:

f1,2 = fn

√
1∓ 1√

κ + 1
. (19)

Therefore, looking at the measured FRF, it is possible to find the frequency of the
minimum ( fmin) between the close peaks and the frequency interval between them. The
frequency of the minimum (230 Hz in the present case; see Figure 12a) is used to define
the tuning frequency fn = fmin. Then, from Equation (19), a value of κ giving an interval
between the resonance peaks of the system equal to the measured one can be found. The
other first guess parameters are found, giving meaningful values to lengths and masses.
Damping coefficients are calculated according to the following equation:

ci = ζi2
√

kθi mil2 i = 1, 2, (20)

and assigning both to the main system and to the AO a damping ratio ζi = 0.1.
The optimization algorithm uses the fmincon function available in MATLAB. This

function finds the scalar or the vector X which minimizes the objective function FUN. In
this case, the aim of the optimization is to determine the values of the design variables
which minimize the difference between the measured FRFs, the direct FRF HXX(ω) and
the cross one HZX(ω), and the corresponding FRFs, αXX(ω), and αZX(ω), calculated by
means of the mathematical model. Hence, the function FUN to be minimized is:

FUN = CX · (k2
X · α2

XX(ω)− H2
XX(ω)) + CZ · (k2

Z · α2
ZX(ω)− H2

ZX(ω)), (21)

where CX and CZ are two coefficients which adjust the influence of the FRFs, whereas kX
and kZ are two scale factors. The default algorithm interior-point, a primal-dual method,
was used to minimize the function FUN, and no further options were specified in the
fmincon function.

The fmincon function starts the research of the optimum values of the parameters from
the first guess values X0 of the design variables. The solution X of the problem is found
within the range defined by the lower (LB) and upper (UB) limit, that is:

LB ≤ X ≤ UB. (22)

No other constraints (linear and non-linear constraints) were specified in the
fmincon function.

The calculation of the analytical FRFs is based on the 2 DOF model of the equivalent
robotic system, and this implies that the measured FRFs used for the determination of the
parameters of the model must be independent from the stiffness of the rails. Hence, the
optimization algorithm is applied to the FRFs measured in the back-right (BR) position of
the working table. The first guess values X0 of the design variables, defined through the
approach described in the previous section, are summarized in Table 1.

Table 1. First guess values of the design variables.

m1 m2 l1 l2 θ01 θ02 k1 k2 c1 c2
[kg] [kg] [m] [m] [deg] [deg] [Nm−1] [Nm−1] [Nsm−1] [Nsm−1]

24 0.5 0.1 0.1 0 90 522,100 10,442 36.84 0.72

The values of the upper and lower limit of the values of the design variables are
summarized in Table 2.
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Table 2. Lower and upper limit.

Limit m1 m2 l1 l2 θ01 θ02 k1 k2 c1 c2
[kg] [kg] [m] [m] [deg] [deg] [Nm−1] [Nm−1] [Nsm−1] [Nsm−1]

Lower 23 0.4 0.09 0.09 0 90 469,890 9397.8 29.48 0.58
Upper 25 0.6 0.11 0.11 10 110 574,310 11,486.2 44.21 0.87

The optimized values of the design variables, generated by means the fmincon function
assuming CX = 1, CZ = 0.25, kX = 1, and kZ = 0.1, are summarized in Table 3.

Table 3. Optimized values of the design variables.

m1 m2 l1 l2 θ01 θ02 k1 k2 c1 c2
[kg] [kg] [m] [m] [deg] [deg] [Nm−1] [Nm−1] [Nsm−1] [Nsm−1]

24.88 0.60 0.097 0.096 0.65 110.00 522,100 10,442 44.20 0.58

Figure 15 compares the measured FRFs with the numerical FRFs that are obtained
introducing the values of Table 3 in the 2-DOF equivalent robotic model.

Figure 15. Comparison between the measured FRFs with the FRFs resulting from the optimization
algorithm fmincon.

Figure 15 shows that the optimization algorithm leads to numerical FRFs which fit
very well the measured FRFs. The resonance frequencies are matched, and the trends at
the borders of the frequency range are also reproduced with high accuracy.

6. Effect of Cutting Head Position

Once defining the parameters of the equivalent robotic model, it is possible to de-
velop the coupled model which accounts for rail dynamics. Figure 16 compares the
measured FRFs in different positions of the working table with the FRFs predicted by the
coupled model.
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Figure 16. Comparison between the measured FRFs and the numerical FRFs in different positions of
the working table.

Figure 16 shows that the model fits the measured FRFs with good accuracy, and the
mean modulus of the error of the model in the frequency range (150–300 Hz) is shown
in Table 4.

Table 4. Mean modulus of the error in the frequency range (150–300 Hz) between the model fit and
the experimental data (Figure 16).

Position Mean Error [g/N]

Center center 0.0176
Center right 0.0207
Front center 0.0267
Front right 0.0292

The FRFs change with the position of the cutting head along the Y-rail; hence, the
dynamics of the rail have an important effect on the whole behavior of the system. The
vibration of the cutting head excites different modes of the Y-rail, and the excited modes
depend on the position of the head. Figure 17 represents the first four vibration modes of
the rail.

A mode of the rail is excited only if the cutting head is not located at a node of the
mode. This means that the vibration of the cutting head will excite only the odds modes
of the rail (1st and 3rd) when the cutting head is in the front-center (FC) or back-center
(BC) position (see Figure 11), since those positions correspond to the nodes of the even
modes (2nd and 4th). Figure 18a shows the FRFs between the rth modal coordinate and
the excitation force, when the cutting head is in the front-center (FC) position (or likewise
in the back-center (BC) position), whereas Figure 18b refers to the cutting head in the
center-center (CC) position, which is approximately at xb = L/3.
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Figure 17. Vibration modes of the Y-rail. From top to bottom: first, second, third and fourth vibration
mode.

(a) (b)
Figure 18. FRFs of the modal coordinate ηr. (a) Cutting head in the front-center (FC) position (xb = L/2). (b) Cutting head
in the center-center (CC) position (xb = L/3).

In Figure 18a, the FRFs relative to the even modes are negligible, since these modes
are not excited by the vibration of the cutting head which is located at the node of the mode.
For the same reason, in Figure 18b, the third mode is not excited and the corresponding
FRF is negligible. This behavior can also be seen in the natural frequencies of the system.
Table 5 summarizes the natural frequencies of the Y-rail without the cutting head, whereas
Table 6 summarizes the natural frequencies of the coupled model, which considers the
Y-rail and the cutting head, when the cutting head is in the front-center (FC) or back-center
(BC) position and when it is in the center-center (CC) position.
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Table 5. Natural frequencies of the Y-rail without the cutting head.

Mode Natural Frequency [Hz]

1 31.7
2 126.8
3 285.3
4 507.1

Table 6. Natural frequencies of the Y-rail with the cutting head in different positions.

Mode Natural Frequency in FC or BC [Hz] Natural Frequency in CC [Hz]

1 24.5 25.7
2 126.8 107.9
3 210.6 216.7
4 220.8 285.3
5 409.1 317.2
6 507.1 549.9

Table 6 highlights that, when the cutting head is located at a node of a vibration mode
of the Y-rail, the vibration mode of the Y-rail is not altered, and the natural frequency of
that mode remains unchanged. Indeed, when the cutting head is in the CC position, which
corresponds to a node of the third mode, only the natural frequency of the third mode
remains unchanged.

Figure 19 shows the FRF between the acceleration ẍb and the cutting force in the
X-direction, assuming the cutting head in center-center (CC) position.

Figure 19. FRF between the acceleration ẍb and the cutting force in the X-direction, assuming the
cutting head in center-center (CC) position.

The figure corroborates the previous results, since the first two peaks in the FRF are
correlated with the first and second vibration mode of the Y-rail with the cutting head in
CC position. The vibration mode relative to the third mode of the Y-rail is not excited;
hence, it does not appear in the FRF. The third and fourth peaks in the FRF are related to
the coupled dynamics between the Y-rail and the equivalent robotic arm, whereas the last
peak is due to the fourth vibration mode of the Y-rail.
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It is worth noting that the numerical FRF of Figure 19 cannot be compared with the
experimental FRF of Figure 9, since, in numerical simulations, the exciting force is applied
on the tool.

7. Example of Application of the Mathematical Model: Vibration Control by Means of
a Dynamic Vibration Absorber

One of the possible applications of the proposed model is related to vibration control.
In order to reduce the magnitude of the vibrations, structural modifications are usually
made. When the excitation frequency is constant, such as in the present case, a typical
structural modification is the introduction of a Tuned Vibration Absorber (TVA). This
analysis can be performed using the Sherman-Morrison method [24,25], already shown
in References [18,26], which makes it the calculation of the FRF of the modified system
possible, starting from few FRFs of the original system and the dynamic stiffness of the
lumped element zl(ω) (the TVA). Therefore, starting from the FRFs of the proposed model,
it is possible to simulate the effect of the TVA by means of simple calculations.

If the TVA is placed at the rth coordinate, each element apq(ω) of the receptance matrix
can be modified as follows:

apqm(ω) =
apq(ω) + zl(ω)(arr(ω)apq(ω)− apr(ω)arq(ω))

1 + zl(ω)arr(ω)
, (23)

where zl(ω) can be calculated as:

zl(ω) =
(−ω2maka − iω3maca)

(ka −ω2ma + iωca)
. (24)

If the TVA is tuned at a specific frequency fN , and mass ma is as a fraction of the mass
of the tool M (usually around 0.05÷0.1 M), the stiffness of the TVA can be calculated from
the natural frequency of the TVA:

ka = ma(2π fN)
2. (25)

Moreover, damping ca can be calculated according to the damping ratio ζa of the
material used for the TVA (for a steel beam, 0.01 ÷ 0.05):

ca = 2ζa
√

kama. (26)

As an example, a TVA installed on the cutting machine (specifically, on the tool),
designed for controlling vibration in the X direction, is considered. Experimental tests
and numerical simulations have shown how the FRF slightly changes when the cutting
head moves along the rails; however, it is not possible to perform structural modifications
on-the-fly, to account for such FRF changes. Therefore, the TVA has to be appropriately
tuned to obtain good results in all the positions of the machine.

Using the FRF predicted by the mathematical model and the Sherman-Morrison
method, a parametric analysis was carried out varying the tuning frequency in the range
210 ÷ 250 Hz and the damping ratio in the range 0.01 ÷ 0.05. The best results were found
with the parameters listed in Table 7.

Table 7. Parameters of the TVA.

fN [Hz] ζa ma [kg] ca [Ns/m] ka [N/m]

212 0.04 0.08 8.52 14,195

Figure 20 shows that, both in the central position and in the lateral position, the TVA
is able to minimize the amplitude of the FRF at the forcing frequency of the tool (217 Hz).
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The TVA introduces a peak at lower frequencies. This is a well-known behavior of TVAs
that is not harmful in this case, since the excitation frequency is rather constant.
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Figure 20. Comparison between the FRF of the model (blue) and the predicted FRF (orange),
considering a vibration absorber tuned at fN = 212 Hz, in two different positions of the cutting head.
Dashed line shows the working frequency.

8. Conclusions

A model of the cutting machine is needed to control vibrations and noise in the whole
workspace. The experimental test carried out with the modal analysis approach showed
that: the fixed rails are very stiff, the moving rail has important resonances in the band
of frequency of interest, and the cutting head has two important modes of vibration that
can be excited by the pneumatic tool. The mathematical model of the cutting machine is
composed of a modal model of the moving rail and of an equivalent robotic model of the
cutting head, whose parameters are found by means of a best fitting method that uses only
two measured FRFs. This model is able to predict the vibrations of the machine in various
locations of the workspace and to assess the usefulness of vibration control strategies, such
as the installation of a TVA in the tool. The increase in the number of measurement points
in the cutting head does not appear very useful, since it could give more information about
this vibrating system, but it would require long machine stop times, since many panels and
accessories have to be removed to place the accelerometer on the structure of the cutting
head. Conversely, the introduction of non-linear elements in the model appears more
useful, since the tests showed some asymmetries (e.g., between the left and right side of
the machine) that could be modeled only by a non-linear model.
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