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Abstract: Gravity balancing techniques allow for the reduction of energy consumptions in robotic
systems. With the appropriate arrangements, often including springs, the overall potential energy
of a manipulator can be made configuration-independent, achieving an indifferent equilibrium for
any position. On the other hand, such arrangements lose their effectiveness when some of the
system parameters change, including the mass. This paper proposes a method to accommodate
different payloads for a mechanism with a single degree-of-freedom (DOF). By means of an auxiliary
mechanism including a slider, pulleys and a counterweight, the attachment point of a spring is
automatically regulated so as to maintain the system in indifferent equilibrium regardless of the
position, even when the overall mass of the system varies. Practical implications for the design of the
mechanism are also discussed. Simulation results confirm the effectiveness of the proposed approach.

Keywords: gravity balancing; zero free-length spring; adjustable payload; indifferent equilibrium

1. Introduction

Constant force mechanisms exert forces with predetermined magnitude and direction,
regardless of the mechanism configuration [1,2]. A common application of such systems
in robotics is passive gravity balancing for manipulators. With no gravity-related burden
on the actuators, these only need to compensate for inertial effects, resulting in reduced
energy consumptions and a smaller actuator size (hence less weight and cost).

Passive gravity balancing is widely used in plenty of fields, including industry [3],
medicine [4] and even everyday objects such as Anglepoise lamps [5,6]. Many literature
contributions describe clever designs to achieve passive gravity balancing using counter-
weights [7], cams and springs [8–12]. In most spring-based designs, springs are assumed
to have zero free length, i.e., to exert a force proportional to their length, rather than to
the displacement with respect to a neutral position. While zero-free length springs do
not physically exist, there are interesting solutions to mimic such a behavior with real
springs [13–16]. Another practical aspect of gravity balancing is the need for auxiliary links.
Such links are normally used to build parallelograms required to effectively anchor some
springs, especially in serial manipulators [17]. Ref. [18] shows how to achieve static balanc-
ing without auxiliary links if the manipulator has a limited number of degrees of freedom.
Interestingly, Ref. [19] proposes a generic solution avoiding auxiliary links, which, however,
might be difficult to implement and might reduce the workspace of the manipulator.

The vast majority of the existing solutions assume that the weight of the system is
fixed. Once the gravity balancing system is designed, it will keep the system in indifferent
(neutral) equilibrium indefinitely. But in practice, the load might change, e.g., due to
different payloads applied to the system during its operation. In that case, the system
would no longer be in indifferent equilibrium. In principle, for a single Degree of Freedom
(DOF) mechanism, it is sufficient to move one of the attachment points of the spring by
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a certain amount. However, this requires some calculations and manual intervention on
the spring, which is practically inconvenient. Moreover, depending on the application, the
forces applied by the spring might be significant. Ref. [20] suggests changing the stiffness
of the spring, not by physically changing the spring, but through the idea of a virtual
spring, practically obtained by two real springs and a pantograph mechanism. Ref. [21]
proposes the use of a movable counterweight. Ref. [22] suggests installing two orthogonal
springs and modifying their position. In [23], a self-regulating system is proposed, which
requires moving the pivot of the link, which is also required by [24]. In recent works,
the usage of gear springs modules has been investigated for the balancing against the
gravity of planar articulated robotic arms [25] and of delta parallel robots [26]. In [27], non-
linear spring configurations have been employed for the gravity compensation of robotic
manipulators. In [28], a system combining a spring and a counterweight is employed.
Ref. [29] proposes an analysis that explicitly divides parameters in payload-dependent
and payload independent. Interestingly, Ref. [30] proposes a self-regulator mechanism for
a 1-DOF link that does not require manual locking/releasing interventions. However, it
requires changing the kinematics of the system, provoking a significant decrease in terms
of workspace.

This paper presents a self-regulating mechanism for a 1-DOF link that allows for a
change in the configuration of the system in order to accommodate different payloads,
without the need of recalculating relevant parameters of the balancing system and then
amending it accordingly. Practically, the mechanism is able to vary the position of one of
the spring anchor points, exactly as required to balance the system with the new payload,
without additional springs or manual intervention on the existing spring. The key features
of the proposed approach, compared to similar works in the literature, are that the kine-
matics of the system is not affected, nor is the workspace of the system, and the pivot point
of the link is not required to move.

The remainder of the paper is structured as follows. Section 2 presents the main
principles and an analysis of the internal forces of a balanced single DOF link. Section 3
describes the proposed self-regulating mechanism and the required procedure to use it.
After some remarks, Section 4 presents a simulation case-study. The main conclusions of
the paper are presented in Section 5.

2. Balancing a Single DOF Link: Force Analysis

The system studied in this paper is a planar link with mass m, with a rotational degree
of freedom defined by a hinge in point O (Figure 1). The distance between O and the center
of mass of the link, C, is c. To balance the system regardless of the configuration ϑ, a zero
free-length spring, with stiffness k, is anchored between point A (frame) and point B (link),
defined respectively by the distances a and b with respect to the pivot O.Machines 2021, 9, x FOR PEER REVIEW 3 of 10 

 

 

 
Figure 1. Single DOF link with balancing zero free-length spring. 
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Figure 1. Single DOF link with balancing zero free-length spring.
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The total potential energy of the system, Etot, is the sum of potential energy of the link
and the elastic potential energy of the spring [8]:

Etot = mcgcosϑ +
1
2

k
(

a2 + b2 − 2abcosϑ
)

(1)

To ensure that the system is in indifferent equilibrium, i.e., by imposing δEtot
δϑ = 0 ∀ ϑ:

mcg = kab (2)

It is convenient to study the effects of the (zero free-length) spring force on the frame
(A) and on the link (B). As shown in Figure 2, in points A and B the force is:

F = kx (3)

where the spring length is:

x =
√
(a2 + b2 − 2ab cos ϑ) (4)
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Figure 2. Analysis of the forces applied by the spring to the link and frame.

The force F at point A may be split into Fx and Fy, whose expressions are not reported
for the sake of brevity. More interestingly, the force F at point B can be conveniently
split into:

Ft = kx cos(π − ϑ− ϕ)

= kx

√
1− a2(sin ϑ)2

x2

= k
√

x2 − a2(sin ϑ)2

(5)

Fn = kx sin(π − ϑ− ϕ) = ka cos ϑ (6)
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3. Self-Regulating Mechanism

If the mass m changes, either the length a or b (or potentially both) should change to
keep Equation (2) satisfied, maintaining the system in indifferent equilibrium. Theoretically,
changes in m could also be accommodated by changing the stiffness k, but that would
imply replacing the spring with another one each time the payload changes, which is
impractical.

It is customary to consider variable payloads applied at potentially different positions
along the link. Figure 3 shows the link with the addition of a generic payload ∆m at point
W, i.e., at distance w from O.
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Again, to ensure that the mechanism remains in indifferent equilibrium, some of the
spring anchoring points should be amended. This can be done by moving point B along
the link. By adding the potential energy contribution of ∆m to Equation (1), Equation (2)
changes into:

(mc + ∆mw)g = ka(b + ∆b) (7)

indicating that b should be changed into b + ∆b. Clearly, if ∆m = 0, then ∆b = 0 and
Equation (7) is reduced to Equation (2). Rearranging Equation (7) for ∆b:

∆b =
∆mwg

ka
(8)

showing a linear relationship between ∆b and ∆m (note that in case b is fixed and a is
changed into a + ∆a, one obtains ∆a = ∆mwg

kb ).
To achieve this, point B can be anchored to a slider able to move along the link,

i.e., allowing a variable b, regulated by an auxiliary mechanism. Such mechanism is made
of two pulleys and a counterweight (Figure 4a). One pulley has radius R and is fixed to the
frame. The other pulley has radius r and is integral with the link, in such a position that
the slider and the pulley are connected by means of a wire parallel to the link. Another
wire is used to attach the counterweight, with initial mass M (the procedure to determine
M is in Section 4), to the fixed pulley.
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By using Equation (8) in Equation (11), and accounting for Equation (10): 𝑘 ∆𝑚𝑤𝑔𝑘𝑎 𝑟 = ∆𝑚𝑔𝑅 (12)
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Figure 4. (a) The system is in indifferent equilibrium, and the auxiliary mechanism is fixed to the
frame; (b) The link is fixed on the auxiliary mechanism. (c) Variation of the load on the link and
variation on the counterweight. (d) The system is in the new configuration of equilibrium, and the
auxiliary mechanism is fixed on the frame.

The procedure can be summarized as follows (Figure 4):

- Bring the link to the position ϑ = π (Figure 4a)
- Connect the link to the pulley with radius R and release the slider, which will not

move because of Equation (10) (Figure 4b)
- Add the new payload ∆m to the link, and add the same amount to the counterweight

(Figure 4c)
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- Lock the slider to the link and the pulley with radius R to the frame
- The link is now in indifferent equilibrium with the new payload, and can move where

required (Figure 4d)

The purpose of the counterweight is to fully balance the force Ft when the payload
is changed. Otherwise, ∆m would balance Ft and move point B in an unpredictable
manner. To ensure that the system is still in indifferent equilibrium with the new payload,
Equation (8) must be satisfied, i.e., a specific ∆b is required.

According to Equation (5), Ft depends on the configuration of the link, ϑ. So, a
reference configuration for the link needs to be defined. In this paper, the reference position
is defined as ϑ = π (Figure 4b). From Equations (4) and (5):

Ft
(
ϑ
)
= kx = k(a + b) (9)

The moment balance around the pulley axis, when the two pulleys are fixed together, is:

k(a + b)r = MgR (10)

which provides a relationship between the initial mass of the counterweight, M, and the
radiuses r and R.

Once the payload ∆m is added, the moment balance equation reads:

k(a + b + ∆b)r = MgR + ∆mgR (11)

By using Equation (8) in Equation (11), and accounting for Equation (10):

k
∆mwg

ka
r = ∆mgR (12)

which is simplified as:
w
a
=

R
r

(13)

4. Remarks and Simulation Results

The self-regulating mechanism allows us to vary the payload on the link while keeping
the system in indifferent equilibrium. Essentially, three values need to be determined (M,
r, R) while respecting two constraints (Equations (10) and (13)). M can be immediately
obtained as:

M =
ka (a + b)

w
=

kr (a + b)
R

(14)

Hence, practically, the radiuses R and r must be chosen, ensuring their ratio is w/a
according to Equation (13).

Interestingly, the maximum payload that can be applied depends on the difference
between the length of the link and the initial value of b, since any payload produces an
increase of b, ∆b, as in Equation (8). It is more realistic to assume that the slider position
cannot travel further than w:

b + ∆b ≤ w (15)

Consequently, the maximum applicable payload, ∆mMAX , can be calculated combin-
ing Equations (15) and (8) and rearranging for ∆m:

∆m ≤ ∆mMAX =
ka(w− b)

wg
=

ka
g

(
1− b

w

)
(16)
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Further interesting considerations can be made studying the effect of the additional
payload on the length of the spring: by using Equation (8) into (4), considering that b is
replaced by (b + ∆b):

x =

√√√√(a2 +

(
b +

∆mwg
ka

)2
− 2a

(
b +

∆mwg
ka

)
cos ϑ

)
(17)

which implies, for the same ϑ, an increase of x with ∆m. This is also clear observing Figure 1
and bearing in mind that the presence of ∆m causes an increase of b. As discussed above,
∆b is limited, and this is reflected in the spring length.

To validate the presented approach, a simple simulation is carried out for a system
with the sample parameters listed in Table 1. The simulation includes the following steps:

Table 1. Parameters of the simulated system.

Quantity Symbol Value and Unit

Mass of the link m 3 kg
Distance between point O and W w 0.35 m
Distance between points O and A a 0.1 m
Distance between points O and B b 0.06 m

Distance between O and C c 0.2 m
Radius of pulley integral with the frame R 0.035 m

Radius of the pulley integral with the link r 0.01 m
Spring stiffness k 981 N/m

I. The link (in indifferent equilibrium since mcg = kab ), with no payload, is at ϑ = 60◦

for 4 s.
II. Some payload needs to be added. The link moves to the configuration ϑ = 180◦

in 10 s.
III. The link is connected to the pulley with radius R the slider is released and the new

payload, ∆m = 1 kg, is added. The mass of the counterweight is increased by the
same amount. As a result, the slider moves to ∆b = 35 mm. All of this takes 3 s.

IV. The slider is locked and the pulley with radius R is disconnected—this takes another 3 s.
V. The link is then required to reach the configuration ϑ = 340◦ in 10 s, and then it stays

in that position for a while.

Figure 5 depicts the trends of the most relevant quantities. Specifically, Figure 5b
shows the gravitational potential energy, Ep, the elastic potential energy, Ee, and the total
energy, Et = Ep + Ee. During step I, obviously, they are constant. While ϑ varies in step
II (Figure 5a, between 4 and 14 s), so do Ep and Ee, with their sum remaining constant,
showing that the system is in indifferent equilibrium. At the end of step III, both Ep
and Ee increase due to the variation of ∆b and ∆m, respectively (Figure 5c). During step
5 (Figure 5a, between 20 and 30 s), again, Ep and Ee vary as ϑ varies, while Et remains
constant at the value reached at the end of step III. This demonstrates that the system is
again in indifferent equilibrium. Finally, Figure 5d shows the length of the spring which,
according to Equation (17), is affected by both ϑ and ∆m. The design phase of the spring
(e.g., wire diameter, coil diameter, number of coils, etc.) will need to take into account the
potential variation in spring length, along with structural resistance considerations.
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Figure 5. Results of the simulation: (a) link configuration; (b) potential energy, elastic energy and
total energy; (c) variation ∆b and payload ∆m; (d) spring length x.

5. Conclusions

This paper presented a method to achieve passive gravity balancing for a 1-DOF
link while accounting for variations of the payload. During standard operation, the
manipulator is in neutral equilibrium, i.e., it will not move from whatever configuration
the user puts it in. When the payload needs to be changed, the link is brought to a specific
configuration, and then an auxiliary mechanism is exploited to automatically regulate
one of the attachment points of the spring. Then, the link with the new payload is in
equilibrium, again, regardless of the configuration.

Simulation results confirmed the effectiveness of the proposed approach in a generic
scenario characterized by different link configurations and payloads.

Future works will be devoted to the development and to the validation of a physical
prototype of the proposed architecture. The possibility of modifying the proposed approach
to overcome the use of counterweights will be investigated.
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