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Abstract: Most lower limb rehabilitation robots use fixed training trajectories and lack participation
of physiotherapists. In addition, there is a lack of attention on combining direct teaching function
with rehabilitation robots, which enables physiotherapists to plan trajectories directly. In this paper,
an adaptive direct teaching function with variable load that can be applied to the sitting/lying lower
limb rehabilitation robot-II (LLR-II) is proposed. First, the structural design and electrical system of
LLR-II are introduced. The dynamic equation of LLR-II considering joint flexibility is derived and
analyzed. Then, the impact of joint flexibility on LLR-II is reduced by introducing the intermediate
input variables. Based on this, the control law of the dragging teaching stage and the replay stage
in the direct teaching function with variable load is designed and the adaptive control strategy
eliminates the influence of different patients. In addition, the control law is simulated and verified.
Finally, some preliminary experiments of the adaptive direct teaching function with variable load on
LLR-II are carried out, and the results showed that the control law has good performance, which lays
the foundation for future work.

Keywords: lower limb rehabilitation robot; adaptive control; direct teaching function; variable load;
joint flexibility

1. Introduction

More than 15 million people around the world suffer strokes every year, and about
5 million of them are permanently disabled, according to the World Health Organization
(WHO). A stroke causes damage to the nervous system and leads to patients losing some
or all of the ability of their lower limbs, which influences their quality of life [1–3]. The
lower limb rehabilitation robot is an application of robotic technology for patients with
lower limb dysfunction [4]. In recent years, several kinds of lower limb rehabilitation (LLR)
robots have been developed [5]. These can be divided into single degree-of-freedom gait
trainers [6], wearable gait trainers [7,8], suspended gait trainers [9–12], and sitting/lying
gait trainers [13,14]. Carleton University proposed a virtual gait rehabilitation robot
(ViGRR) for bed-ridden stroke patients, which can provide average gait motion training
and other targeted exercises, such as leg press, stair stepping, and motivational gaming [15].
M. Bouri et al. developed a new rehabilitation robot called Lambda. The patient’s hip,
knee, and ankle can be mobilized conveniently based on two translational articulations
and one rotational for ankle mobilization, for carrying out rehabilitation, fitness, or high-
level sport training [16]. Switzerland proposed a suspended gait trainer called Lokomat,
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whose left and right mechanism legs assist patients to simulate the walking gait of healthy
people and restore the control ability of the nervous system [17,18]. Yildiz University
of Science and Technology in Turkey made a sitting/lying gait trainer, Physiotherabot,
to assist patients to do passive training and active training [19]. The Swortec company
developed an advanced sitting gait trainer called MotionMaker [20], which consists of
two robotic orthoses comprising motors and sensors, and a control unit that manages the
transcutaneous electrical muscle stimulation with real-time regulation. A new applicable
sitting/lying lower limb rehabilitation robot (LLR-II) is proposed in this paper. Compared
with the above sitting/lying rehabilitation robots, it can adjust the leg length by motors
and transfer the patient without the assistance tool by a multifunctional seat.

Teaching control is one of the control strategies for LLR robots, which enables the phys-
iotherapist to conduct gait planning. As for the indirect teaching control, Zhao et al. [21–23]
proposed a teaching strategy for a planar three degrees of freedom (DoF) LLR robot based
on acceleration sensors. The physiotherapist drags the patient to train, and the motion
information is extracted by the external accelerometers placed on the patient’s lower limbs.
Guo et al. [24,25] proposed a novel physiotherapist interaction gait planning method in-
cluding a multi-joint wearable teaching device with adjustable operating force and an
LLR robot. The physiotherapist can operate the teaching device to plan a personalized
trajectory and perceive the interaction force from patients. Feng et al. developed a graphic
teaching method for a planar 3-DoF LLR robot [26,27]. The physiotherapist can draw any
personalized teaching trajectories by the touch screen to conduct gait planning. However,
for the indirect teaching method by a wearable device wearing on the patient or the phys-
iotherapist, it takes much time and effort to put on and take off the device. For the indirect
teaching method by graphics, there is a lack of interactive participation of the physiother-
apist. As for the direct teaching control, the physiotherapist conducts gait planning by
dragging the robotic arm directly. Emken et al. proposed a direct teaching method for
gait training of a lightweight planar 2-DoF LLR robot [28]. The motor is in release state
when the physiotherapist drags the robotic arm. Sun et al. proposed a direct teaching
method to program the ankle’s complex motion path in a 3-RSS/S ankle rehabilitation
parallel robot [29]. The controllers release drive voltages which enable torque motors to
rotate freely with the outside force on the cranks. Neither of them uses force sensors and
the physiotherapist must overcome the weight of the robotic arm. Yang et al. proposed
a direct teaching method for a horizontal 3-DoF terminal traction LLR robot based on a
six-dimensional terminal force sensor [30]. The physiotherapist drags the sensor at the
end of the robot to conduct gait planning. However, the patient is not on the robot during
this process. It cannot adapt to the weight of lower limbs of different patients. In this
paper, a new adaptive direct teaching control is proposed. It enables the physiotherapist
to conduct gait planning by dragging the robotic arm directly. In addition, it is adaptive
for the weight of robotic arm and lower limbs of different patients, so that it can adapt to
different patients on the robot during the teaching process.

This paper presents an adaptive direct teaching function with variable load that can
be applied on the LLR-II shown in Figure 1. It enables physiotherapists to plan trajectory
directly by dragging the robotic arm in the dragging teaching stage and then drives patients
to train based on the teaching trajectory in the replay stage. The structural system and the
electrical system are introduced, and the human–machine interaction mechanics model
considering joint flexibility is analyzed. Based on this, the control law of the adaptive
direct teaching function with variable load is designed and the simulation results verify
the correctness of the control law. Finally, experiments with two subjects involved have
been completed and proved that the physiotherapist can plan personalized trajectories for
different patients based on the proposed adaptive direct teaching function with variable
load on the LLR-II.
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Figure 1. Prototype of the LLR-II. LLR-II: The Sitting/Lying Lower Limb Rehabilitation Robot.

The rest of this paper is organized as follows. Section 2 introduces the LLR-II, including
the structural design, the electrical system and the human–machine interaction mechanics
model considering joint flexibility; Section 3 presents the control law of the adaptive
direct teaching function with variable load and the related simulation; Section 4 shows the
preliminary experiments conducted on the LLR-II and the related analysis; finally, Section 5
concludes this study and provides suggestions for future work.

2. LLR-II Rehabilitation Robot
2.1. Structural Design and Electrical System

Based on modular design principle, LLR-II consists of five parts including left mech-
anism leg module, right mechanism leg module, multifunctional seat, control box and
touch screen.

As shown in Figure 2a, in order to correspond to human joints of the hip, knee, and
ankle, the mechanical leg is designed as a 3-DOF mechanism with electrically adjustable
length of thigh and calf. As shown in Figure 2b, in order to enhance the stability of frame
and reduce the weight of the two mechanism leg modules, the hip motor (SMP8024B,
by Shanghai Mindong Mechanism Electron Co., Ltd., Shanghai, China) is installed on
the frame below the hip rotation axis and connected with the input end of the hip joint
through a synchronous belt, and transmits motion through the hip harmonic reducer
(LHSG-40-100-C-III, by Suzhou Shiyue Transmission Technology Co., Ltd., Suzhou, China).
In order to solve the excessive driving power of the hip joint, the knee motor (SMP8024B,
by Shanghai Mindong Mechanism Electron Co., Ltd., Shanghai, China) is installed at the
back of the hip rotation axis to balance part of the weight of the mechanical leg. The
ankle motor (TBM-6025-A, by Hangzhou Mosen Electromechanical Technology Co., Ltd.,
Hangzhou, China) is directly connected to the ankle harmonic reducer (HMHS-20-100-1,
by Shanghai Haiju Electrical Technology Co., Ltd., Shanghai, China) to ensure the ankle
module is lightweight and compact. In order to guarantee the safety of training, variable
joint limitation including fastened limit groove and driven limit groove was designed.
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Figure 2. (a) Human–machine structure of leg mechanism, (b) structural layout of leg mechanism module.

In order to detect dynamic information of thigh and calf accurately and sensitively, two
joint torque sensors (M2210B, by Junde Technology Co., Ltd., Shenzhen, China) are installed
at the output end of the harmonic reducer in the hip joint and knee joints respectively. A
three-dimensional force sensor (R121C, by Changzhou Right Measurement and Control
System Co., Ltd., Changzhou, China) is installed at the output end of the ankle joint to
detect dynamic information of the foot pedal. The profile and detailed parameters of main
sensors are shown in Figure 3a. With the thigh push rod (LEC606-1000-100-7-24-235-DW,
by Suzhou Yuancheng Mingchuang Technology Co., Ltd., Suzhou, China) and the calf push
rod (LEC606-1000-100-7-24-200-DW, by Suzhou Yuancheng Mingchuang Technology Co.,
Ltd., Suzhou, China) installed inside the mechanical leg, LLR-II can fit patients of different
heights. With the electric push rod (LEC606-1000-60-7-24-195-DW, by Suzhou Yuancheng
Mingchuang Technology Co., Ltd., Suzhou, China) installed in the direction of the human
coronal axis at the bottom of the frame, LLR-II can fit patients of different sizes. In addition,
as shown in Figure 3b, the multifunctional seat can be extended and retracted through
an electric push rod (LEC606-1000-265-7-24-400-DW, by Suzhou Yuancheng Mingchuang
Technology Co., Ltd., Suzhou, China) to facilitate patients to get on and off the robot.
Meanwhile, the seat is adjustable in height through a lifting column (DC24V, 3000N load,
8 mm/s speed, by Yueqing Xunchi Electric Co., Ltd., Yueqing, China) to align the hip axis
of rotation of the patient and LLR-II.
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Electrical control system of LLR-II contains the central control, human–machine
interaction control, sensing feedback control and motion control, as shown in Figure 4. The
human–machine interaction system displays the operation interface of control system and
feeds back training status to the physiotherapist. The motion control system realizes the
function of patients’ getting on and off the robot and rehabilitation training. The sensor
system receives the value of sensors including pressure sensors (RX-M3232L, by Rouxi
Techonology Co., Ltd., Changzhou, China, potentiometers (KTC2-100 mm, by Miran
Technology Co., Ltd., Shenzhen, China), encoders (8 bits, RS485 Modbus, RTU 24 V,
by Realwetech Techonology Co., Ltd., Beijing, China) and angle sensors (LVT416T, 0~±180◦,
by Msensor Technology Co., Ltd., Wuxi, China). Based on the physiotherapist’s instruction,
and sensing system’s feedback, the central control system guides the motion control system
to complete tasks of planning and training.
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2.2. Human–Machine Interaction Mechanics Model Considering Joint Flexibility

As shown in Figure 5a, the joint torque sensor mainly changes resistance value through
deformation, which leads to a voltage change on both sides of the sensor and feeds back
a torque value for each joint. As shown in Figure 5b, the harmonic reducer is mainly
composed of rigid gear, flexible gear and a harmonic generator. When the joint is in motion,
the driving end drives harmonic generator to rotate, and the flexible wheel deforms
accordingly. After deformation, the partial teeth of the flexible gear mesh with the partial
teeth of the rigid gear to complete the transmission of motion. Therefore, the torque sensor
and harmonic reducer mentioned above result in LLR-II’s joint flexibility.
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2.2.1. Lagrange Functions Considering Joint Flexibility

The joint flexibility of the hip and knee is generated by a joint torque sensor and
harmonic reducer in series. The joint flexibility of ankle is generated by harmonic reducer
independently. In the modeling process, the joint flexibility of hip, knee and ankle is unified
and expressed by a series linear spring of virtual rigid reducers. The linear spring stiffness
in the ankle joint model is the harmonic reducer stiffness, and the linear spring stiffness in
the hip and knee joint model is the series stiffness of the joint torque sensor and harmonic
reducer. The relationship is expressed as:

1
ki

=
1

ksi
+

1
khi

(1)

where, ki represents the total stiffness of linear spring, ksi the represents stiffness of torque
sensor, and khi represents the stiffness of harmonic reducer.

A flexible joint model is established in Figure 6a. τmi represents the output torque
of the permanent magnet synchronous motor i. Jmi represents the rotational inertia of the
permanent magnet synchronous motor i. mri represents the rotor mass of the permanent
magnet synchronous motor i. θri represents the rotation angle of the permanent magnet syn-
chronous motor i. τci represents the output torque of the permanent magnet synchronous
motor i through the virtual rigid reducer. θi represents the rotation output angle of the
permanent magnet synchronous motor i through the virtual rigid reducer. Ni represents
the reduction ratio of the virtual rigid reducer i. ki represents the stiffness coefficient of the
linear spring i. τi represents the torque of joint i. Ili represents the rotational inertia of link i
and mli represents the mass of link i. Besides, θi = Niθri and τci = Niτmi.
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Figure 6. (a) The flexible joint model of LLR-II; (b) the three-link model of LLR-II.

On the premise that the control effect is not affected during modeling, it is usually
assumed that:

1. The motor rotor is an axisymmetric rigid body.
2. The joint electrodynamics is fast enough compared with its mechanical dynamics,

and the influence of motor dynamics is not considered in flexible joint model.
3. Joint deformation is regarded as a linear torsion spring in the range of linear elasticity.

The dynamic characteristics of LLR-II will change due to the difference in patients,
so the dynamic equation deduced is under no load. It can be simplified into a three-link
model as shown in Figure 6b, where li represents the length of link i, di represents the
distance between the mass center of link i and the rotation center of joint i. The dynamic
equation of LLR-II deduced by Lagrange method is expressed as:
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{
L = K− P

Qi =
d
dt

∂L
∂

.
Θi
− ∂L

∂Θi

(2)

where, L represents the Lagrange function; K represents the total kinetic energy; P repre-
sents the total potential energy; Qi represents the generalized force and Θi represents the
generalized coordinates.

For LLR-II considering joint flexibility, there are two groups of generalized coor-
dinates. One is the rotation angle coordinates of the motor through virtual rigid re-
ducer θ =

[
θ1 θ2 θ3

]>, and the other is the rotation angle coordinates of each link

q =
[

q1 q2 q3
]>.

Different from rigid robots, the total kinetic energy K of LLR-II is composed of the
kinetic energy Kmi of each joint motor and the kinetic energy Kli of each link. The total
potential energy P of LLR-II is composed of the total gravitational potential energy Pg
generated by each link and motor, and the total elastic potential energy Pk generated
by each joint. Therefore, the Lagrange function of LLR-II considering joint flexibility is
expressed as:

L = K − P = (Km1 + Km2 + Km3 + Kl1 + Kl2 + Kl3) − (Pg + Pk). (3)

2.2.2. Dynamics Equation of Motor End Considering Joint Flexibility

For the generalized coordinate θ =
[

θ1 θ2 θ3
]>, the corresponding generalized

torque is the output torque τci of the motor through virtual rigid reducer. The dynamic
equation can be established by the Lagrange method. The output torque τc of the motor
of the hip, knee, and ankle joints through the virtual rigid reducer can be obtained by
consolidating τc1, τc2 and τc3 into matrix form:{

τci =
d
dt

∂L
∂

.
θi
− ∂L

∂θi

τc = J
..
θ+ S

..
q + K(θ− q)

(4)

where, J represents the matrix of rotational inertia,
..
θ represents the angular acceleration

matrix of each joint motor through virtual rigid reducer, S represents the matrix of coupling,
..
q represents the angular acceleration matrix of each link, K represents the equivalent
stiffness matrix, θ represents the angle matrix of each joint motor through virtual rigid
reducer, q represents the angle matrix of each link and τc represents the torque matrix
generated by each motor through the virtual rigid reducer.

The coupling terms are much smaller than the other terms, so it is ignored. Then the
motor end dynamic equation of LLR-II considering joint flexibility is simplified as:

τc = J
..
θ+ K(θ− q) (5)

2.2.3. Dynamics Equation of Link End Considering Joint Flexibility

For the generalized coordinate q =
[

q1 q2 q3
]>, the corresponding generalized

torque is the human–machine interaction torque τexti applied at each link. The dynamics
equation can be established by Lagrange method.

The human–machine interaction torques of each link τext1, τext2, and τext3 can be
obtained and reduced to a matrix as:{

τexti =
d
dt

∂L
∂

.
qi
− ∂L

∂qi

M(q)
..
q + S>

..
θ+ C(q,

.
q)

.
q + g(q) = τext + K(θ− q)

(6)

where, M(q) represents the inertial matrix,
.
q represents the velocity coupled vector matrix,

g(q) represents the gravity matrix, τext represents the human–machine interaction torque
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matrix, θ represents the position matrix of each joint motor through virtual rigid reducer,
and q represents the position matrix of each link.

The coupling term is far less than other terms, so it is ignored. Then the link end
dynamic equation of LLR-II considering joint flexibility is simplified as:

M(q)
..
q + C(q,

.
q)

.
q + g(q) = τext + K(θ− q) (7)

3. Control Law of the Adaptive Direct Teaching Function with Variable Load

The adaptive direct teaching function with variable load contains the dragging teach-
ing stage and the replay stage, as shown in Figure 7. In the dragging teaching stage, the
physiotherapist directly imposes human–machine interaction force on the robotic arm.
Then, the system generates and records the teaching trajectory. In the replay stage, the
system assists patients to train according to the teaching trajectory.
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Figure 7. Rehabilitation process of the adaptive direct teaching function with variable load.

3.1. Analysis of Factors Affecting Joint Flexibility and Ways of Intermediate Output Variables

Each joint of LLR-II has certain joint flexibility due to the use of torque sensors and the
harmonic reducer, which makes it a rigid-flexible coupling nonlinear system. And there is
a certain steady-state error and jitter while training. Therefore, the joint flexibility must be
restrained before the control law is designed. Both sides of the link end dynamic equation
and the motor end dynamic equation are multiplied by Jacobian inverse transpose matrix
J(q)−> and we can get:{

Fext + Kx(θ− q) = Mx(q)
..
q + Cx(q,

.
q)

.
q + gx(q)

Fc = Jx
..
θ+ Kx(θ− q)

(8)

where J(q)−>τext = Fext, J(q)−>τc = Fc, J(q)−>M(q) = Mx(q), J(q)−>C(q,
.
q) =

Cx(q,
.
q), J(q)−>g(q) = gx(q), J(q)−>K = Kx and J(q)−> J = Jx.
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Since (8) is derived in joint space, it is applicable to multiple-degree of freedom systems
as well as single-degree of freedom systems, so the equivalent plane model of a single
flexible joint can be obtained, as shown in Figure 8a. There are two main factors affecting
joint flexibility including joint stiffness Kx and equivalent inertia moment Jx. If the joint
stiffness Kx is increased or the equivalent inertia moment Jx is reduced, the influence of
joint flexibility can be weakened.
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The increase of joint stiffness Kx can be achieved by adding passive flexible elements
to the joint through mechanical design. However, this is complex, and the suppression
effect is limited by machining accuracy and assembly error.

The reduction of equivalent inertia moment Jx can be achieved by introducing an
intermediate input variable. A large number of experiments have been done on DLR
flexible joint robots, which can effectively suppress the influence of joint flexibility. The
equivalent plane model of a flexible single joint with reduced inertia moment is shown in
Figure 8b. After the inertia moment of motor end is reduced to Jθx, the motor can be kept
in balance by introducing the intermediate input variable ux. Then, the balance equation of
the motor in equivalent plane model of flexible single joint, and the relationship between
the intermediate input variable ux and the output force Fc at motor end can be expressed as:{

ux = Jθx
..
θ + Kx(θ − q)

Fc = Jx
Jθx

ux + (1− Jx
Jθx

)Kx(θ − q)
(9)

By extending the equivalent plane model of a flexible single joint to multiple degrees
of freedom, the system equation of LLR-II that introduces the intermediate input variables
can be expressed as: 

τext + τ = M(q)
..
q + C(q,

.
q)

.
q + g(q)

u = Jθ

..
θ+ τ

τc = (J Jθ
−1)u + (I − J Jθ

−1)τ
τ = K(θ− q)

(10)

3.2. Control Law of Dragging Teaching Stage

The position-based impedance control has a good robustness which can effectively
compensate for the dynamic parameter identification error and the influence of friction.
Therefore, the position-based impedance control form is chosen to design the control law
of dragging teaching stage.
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3.2.1. Control Law of Dragging Teaching Stage with No Load

LLR-II is a human–machine coupling system. When dragging the robotic arm with
patients to teach, the system cannot obtain accurate dynamic equations due to the differ-
ences between patients. Thus, the influence of patients is ignored first and the control law
of dragging teaching stage with no load is designed.

It is necessary to establish the mapping relationship between the human–machine
interaction torque and the speed of each link through target impedance characteristics.
For different patients, the speed of each link is variable to adapt to different disease levels
under the same human-machine interaction torque. For same patient, the speed of each link
is variable according to the magnitude of human-machine interaction torque. Meanwhile,
the inherent inertia should remain unchanged to prevent excessive motor output gain.
Therefore, the target impedance characteristics of the dragging teaching stage and the
expected positions of the system under different human-machine interaction torques qd are
defined. Besides, the control law for realizing the target impedance characteristics ũtt is
defined as: 

τext = M(q)
..
q + C(q,

.
q)

.
q + Bθ

.
qd

qd = 1
Bθ

∫ t
0

[
τext −M(q)

..
q− C(q,

.
q)

.
q
]
dt

ũtt = Kp(qd − q) + Kd(
.
qd −

.
q) + g(q)

(11)

where, Bθ represents the coefficient of the expected speed
.
qd. Kp represents the proportional

term coefficient matrix and Kd represents the coefficient matrix of the derivative term, which
are both positive definite matrixes.

Take the state space variable of dynamic equations as x1 = q, x2 =
.
q, x3 = θ, x4 =

.
θ.

Then, the state space variable equations of LLR-II are expressed as:
.
x1 = x2

.
x2 = M(x1)

−1[τext + K(x3 − x1)− C(x1, x2)x2 − g(x1)].
x3 = x4.

x4 = J−1τc − J−1K(x3 − x1)

(12)

Each joint has four state space variables (θi,
.
θi, qi,

.
qi), and the control law ũtt cannot

meet the requirements of system stability. Therefore, the position of the link under quasi-
steady-state is estimated online by detecting the output position θ of the motor through
the virtual rigid reducer to improve the control law ũtt[31].

When the LLR-II is in a quasi-steady state, the acceleration
..
q and the velocity

.
q of

the link end are both zero, and the relationship between θ and q can be obtained. There
is a unique q corresponding to any given θ in the workspace, as shown in (13). After
establishing the functional relationship between q and θ, its inverse solution is taken,
and the link end position q(θ) is online estimated by the motor through virtual rigid
position θ [31].

Since hl
−1(θ) is not easy to solve, the value of q(θ) can be obtained through iteration

for any given joint angle q̂. The iterative equation is obtained. They are expressed as:
K(θ− q) = g(q)

θ = hl(q) = q + K−1g(q)
q(θ) = q = hl

−1(θ)
q̂l,i+1 = Tl(q̂l,i)

(13)

where, Tl(q) = θ− K−1g(q) and q̂l,i is the i’th iteration value.
In the actual control, considering high real-time requirements of position-based

impedance control form, the initial iteration value q̂l,0 is set to be the initial position.
Satisfactory results can be obtained after one or two iterations.

The control law utt of the dragging teaching stage with no load consists of two parts
according to above derivation. One is the input item ug, which offsets the influence of each
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link’s gravity, and the other is the input item uimp, which makes each link obey the target
impedance characteristics.

The gravity compensation term ug in the control law of the dragging teaching stage
with no load and the target impedance characteristics can be obtained. Since the expected
position qd under different human–machine interaction moments is solved, the impedance
term uimp in the control law of dragging teaching stage with no load can be obtained. They
are written as: 

ug = g[q(θ)]
τext = M(q(θ))

..
q(θ) + C(q(θ),

.
q(θ))

.
q(θ) + Bθ

.
qd

uimp = KP[qd − q(θ)] + KD

[ .
qd −

.
q(θ)

] (14)

Finally, the control law utt of the dragging teaching stage with no load is expressed as:

utt = ug + uimp = g[q(θ)] + KP[qd − q(θ)] + KD

[ .
qd −

.
q(θ)

]
(15)

3.2.2. Control Law of the Dragging Teaching Stage with Variable Load

When LLR-II is loaded, the influence of patients on dynamic characteristics results in
that ug deduced from (14) cannot fully compensate for the actual influence of variable load
from different patients. Thus, the adaptive control strategy is added to solve this problem
based on the control law of the dragging teaching stage with no load [32].

Due to the linear separability of dynamic parameters, the estimation model can be
designed by using the dynamic parameters with no load as a reference. Then the gravity
compensation term ûg of the estimated model can be obtained. The generalized error ett in
the dragging teaching stage with variable load can be expressed. The gravity term of the
actual model can be obtained through torque sensors and three-dimensional force sensors.
The adaptive control law of dragging teaching stage with variable load is constructed as:

ûg = Yg[q(θ)]P̂g
ett = τ − Y [q(θ)]P̂g.
P̂g = γttY [q(θ)]ett

(16)

where, γtt is the adaptive gain coefficient, P̂g is the value of dynamic parameters of the
estimation model, and Yg(q) is the angle matrix associated with the gravity term.

The indicator Ctt of the adaptive convergence in dragging teaching stage with variable
load is set in (17), where Cdt is the starting threshold for the completion of adaptive
convergence. The value Cdt can be artificially defined to achieve the best compliance.

Ctt =

{
1, ett

>ett ≤ Cdt
0, ett

>ett > Cdt
(17)

The control law uadp_tt of the dragging teaching stage with variable load is

uadp_tt = ĝ[q(θ)] + KP[qd − ql(θ)] + KD

[ .
qd −

.
ql(θ)

]
(18)

Then, the control system of the dragging teaching stage with variable load is shown
in Figure 9.
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Figure 9. The control system of the dragging teaching stage with variable load.

3.2.3. Simulation of the Control Law of Dragging Teaching Stage

In the simulation of the control law in the dragging teaching stage, the relevant parame-
ters are set, including the stiffness of each joint K = 100 (Nm/rad), Bθ =

[
500 550 550

]>,
KP = 100, Kd = 10, JJθ = 3. Subject 1 is set to be the criterion group and its weight of thigh,
calf, and foot are 10(Kg), 10(Kg), and 5(Kg), respectively. Subject 2 is set to be the compared
group and its weight of thigh, calf, and foot are 9.8(Kg), 9.7(Kg) and 4.5(Kg), respectively.
Conforming to the human–machine interaction torque, the position contrast curves of three
links in the dragging teaching stage are shown in Figure 10.
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Figure 10. (a) The position contrast curves of link 1 in the dragging teaching stage; (b) The position contrast curves of link 2
in the dragging teaching stage; (c) The position contrast curves of link 3 in the dragging teaching stage.

Figure 10 shows that when the adaptive error is in a certain range, the dragging
trajectories of the same link are smooth and basically the same. Besides, with the same τext,
the smaller the Bθ is, the faster the dragging speed is. And with the same Bθ , the larger the
τext is, the faster the dragging speed is.
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The simulation results have verified the correctness of the control law in the dragging
teaching stage. This enables physiotherapists to carry out teaching trajectories by smoothly
dragging the robotic arm. For subjects with same weight, the speed of the links can be
changed according to the human–machine interaction torque. For subjects with different
weights, the speed of links is variable by setting the target impedance characteristic Bθ . It
has proved that the teaching trajectory and the desired trajectory are the same when the
adaptive error is in a certain range.

3.3. Control Law of the Replay Stage

In the replay stage, the LLR-II drives patients to train according to the motion infor-
mation in dragging teaching stage. Thus, the design purpose in the control law of the
replay stage is to establish the relationship between the teaching trajectory and the motion
of motors. There is no human–machine interaction torque applying on the robot system,
which means τext = 0. The dynamics equation of LLR-II which uses the intermediate input
variables u to suppress the influence of joint flexibility is expressed as:

τ = M(q)
..
q + C(q,

.
q)

.
q + g(q)

u = Jθ

..
θ+ τ

τc = (J − Jθ)
..
θ+ u

τ = K(θ− q)

(19)

3.3.1. Control Law of the Replay Stage with No Load

In the dragging teaching stage, the system cannot obtain an accurate dynamic equation
due to the difference bewteen patients, which affects its control effect. Therefore, the control
law of the replay stage with no load is designed first.

The PD control at the motor end with an appropriate feedforward compensation term
can carry out the specified trajectory [32]. The nonlinear part of the system dynamics
equation is selected as the feedforward compensation term. Thus, the control law in the
replay stage with no load utr is composed of two parts. One compensates the nonlinear
feedforward item utr_ffI of nonlinear part, and the other controls the position tracking item
utr_pos of each link to track the teaching trajectory.

By combining the dynamic equations at the motor end and the link end, it can be
concluded that there is a relationship between the nonlinear terms and intermediate
variables u. And the nonlinear feedforward compensation term utr_ffI with no load can be
obtained. Then, the relationship between the expected position of motor end θd and the
link end qd is obtained. The trajectory tracking control of the link end position q in replay
stage can be transformed into the trajectory tracking control of the actual position θ of the
motor end. Therefore, the position tracking item utr_pos in the replay stage can be obtained.
They are expressed as:

u = Jθ

..
θ+ M(q)

..
q + C(q,

.
q)

.
q + g(q)

utr_ f f I = Jθ

..
θd + M(qd)

..
qd + C(qd,

.
qd)

.
qd + g(qd)

θd = qd + K−1[M(qd)
..
qd + C(qd,

.
qd)

.
qd + g(qd)

]
utr_pos = KP(θd − θ) + KD(

.
θd −

.
θ)

(20)

Finally, the control law of the replay stage with no load utr can be written as:

utr = utr_pos + utr_ f f I = Jθ

..
θd + M(qd)

..
qd + C(qd,

.
qd)

.
qd + g(qd) + KP(θd − θ) + KD(

.
θd −

.
θ) (21)

3.3.2. Control Law of the Replay Stage with Variable Load

The nonlinear compensation term utr_ffI cannot fully compensate the nonlinear part of
system dynamics due to the influence of different patients. Therefore, the adaptive control
strategy is used to solve this problem, which is similar to the dragging teaching stage.
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Due to the linear separability of dynamic parameters, the estimation model is designed
taking dynamic parameters with no load as reference and the estimation model of the
nonlinear compensation term ûtr_ f f I can be obtained. Y(q,

.
q,

..
q) represents the angle matrix

related to dynamic parameters, and P̂c represents the value of dynamic parameters of the
estimated model.

Then, the generalized error etr of the replay stage with variable load can be obtained.
The nonlinear compensation of the actual model can be fed back by sensors. The adaptive
control law of the dragging teaching stage with variable load is constructed, where γtr
represents the adaptive gain factor. They are written as:

ûtr_ f f I = Y(q,
.
q,

..
q)P̂c + Jθ

..
θd

etr = τ − Y(q,
.
q,

..
q)P̂c.

P̂c = γtrY(q)etr

(22)

The adaptive convergence indicator Ctr of the dragging teaching stage is determined
when the load is set. Cdr represents the trigger threshold for the completion of adaptive
convergence in the dragging teaching stage with variable load. It is the same as the drag
instruction and can be set manually. Ctr is expressed as:

Ctr =

{
1, etr

>etr ≤ Cdr
0, etr

>etr > Cdr
(23)

Finally, the control law of the dragging teaching stage with variable load uadp_tr can be
expressed as:

uadp_tr = Y(q,
.
q,

..
q)P̂c + KP(θd − θ) + KD(

.
θd −

.
θ) (24)

and the control system of the replay stage with variable load is shown in Figure 11.
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Figure 11. The control system of the replay stage with variable load.

3.3.3. Simulation of the Control Law in the Replay Stage

In the simulation of the control law, the relevant parameters are the same as they are
in the dragging teaching stage. Besides, KP = 100, Kd = 10, JJθ = 3. In addition, two subjects
are also the same as they are in the dragging teaching stage.
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The comparison diagrams of the dragging teaching trajectory and the replay trajectory
of subject 1′s different parts driven by the link are shown in Figure 12a–c. The comparison
diagrams of dragging teaching trajectory and replay trajectory of subject 2′s different parts
driven by the link are shown in Figure 12d–f.

Figure 12 shows that the dragging teaching trajectory and the replay trajectory are
highly coincident. In addition, the replay trajectories are smooth. The simulation results
have verified the correctness of the control law of the replay stage. It enables LLR-II to
track the teaching trajectory accurately. It has proved that the teaching trajectory and the
desired trajectory are the same when the adaptive error is in a certain range.
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Figure 12. The comparison diagrams of the dragging teaching trajectory and the replay trajectory: (a) Subject 1 driven by
link 1; (b) Subject 1 driven by link 2; (c) Subject 1 driven by link 3; (d) Subject 2 driven by link 1; (e) Subject 2 driven by
link 2; (f) Subject 2 driven by link 3.

4. Experiment

The experimental platform is shown in Figure 13 and the length of each link are set as
l1 = 0.44 m, l2 = 0.34 m, and l3 = 0.17 m. According to the obtained dynamic parameters
of LLR-II, the adaptive direct teaching function with variable load was experimentalized.
The length of each link is the same as it was in the dynamic identification experiment. Two
subjects with basically the same height and different weights were selected to drag their
right legs for a comparative experiment. The weight of subject 1 was 75 Kg and the weight
of subject 2 was 90 Kg.
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Figure 13. The experimental platform of LLR-II.

4.1. Experiment of Dragging Teaching Stage

In the experiment of the dragging teaching stage, the experiment duration was set to
be 25 s. During this period, the instructor dragged link 2 to drive two subjects to train. We
set the parameters in the control law of the dragging teaching stage with load as: JJθ = 5,
Bθ = 1900, KP = 150, Kd = 150, γtt = 10. The human–machine interaction force was received
through the thin film pressure sensors and the position of link 2 was received through the
angle sensor, and the sampling frequency fs = 100 Hz was set. The actual human–machine
interaction force curve is shown in Figure 14a, and the actual position curve is shown
in Figure 14b.
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Figure 14. (a) The actual human-machine interaction force in dragging teaching stage; (b) The position of link 2 in dragging
teaching stage.

It can be seen from Figure 14 that the instructor began to exert the human–machine
interaction force in 1 s, and it reached a constant force state in about 2 s. Link 2 basically
drives the subjects to move at the same time when the human–machine interaction force is
received, and the speed of the subject is changed. The experiment proves that the control
law of the dragging teaching stage with variable load can eliminate the differences between
subjects and the LLR-II is able to drive patients of different weights to carry out compliant
teaching trajectories according to the human–machine interaction force.

4.2. Experiment of the Replay Stage

In the experiment of the dragging teaching stage, the positions received from link 2′s
angle sensors were filtered offline. Regarding it as teaching trajectory, LLR-II led two
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subjects to track the corresponding teaching trajectory respectively. We set each parameter
in the control law of the dragging teaching stage with load as JJθ = 5, Bθ = 1900, KP = 150,
Kd = 150, γtt = 10. Figure 15a,b are the comparison curves of the teaching trajectory and the
replay trajectory of subject 1 and subject 2, respectively.
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Figure 15. (a) The comparison curves of the teaching trajectory and the replay trajectory of subject 1; (b) The comparison
curves of the teaching trajectory and the replay trajectory of subject 2.

It can be seen from Figure 15 that the teaching trajectories of two subjects are basically
the same as the replay trajectories, and the maximum error between the teaching trajectory
and the replay trajectory is less than 0.1 rad. The experimental results have proved the
correctness and rationality of the adaptive direct teaching function of LLR-II.

5. Conclusions and Future Work

This paper proposes an adaptive direct teaching function with variable load on LLR-II
for rehabilitative physiotherapists to plan trajectories directly. The control law of the
dragging teaching stage and the replay stage were designed, with which the physiotherapist
can plan personalized trajectories for different patients by dragging the robotic arm directly
and LLR-II trains the patient by tracking the trajectory. Different from a robot with rigid
joints, the joint flexibility caused by harmonic reducers and torque sensors was considered
while establishing the dynamic model. The dynamic equations were derived and analyzed,
which are the basis of the adaptive direct teaching function with variable load. Then, the
joint flexibility of the LLR-II was decreased by introducing intermediate input variables,
and the control law of the dragging teaching stage and the replay stage were designed.
Moreover, an adaptive control strategy was added for compensating for the impact of
different patients. Based on this, the control law was simulated and its correctness was
verified. Finally, the experiments of adaptive direct teaching control with variable load
were completed and the preliminary experimental trials verify the effectiveness of the
proposed adaptive direct teaching function, including the dragging teaching stage and the
replay stage. It proves that the physiotherapist can plan personalized trajectories based on
the proposed adaptive direct teaching function with variable load on LLR-II.

In the future, further improvements are to be made on LLR-II based on the adaptive
direct teaching function with variable load. For example, the dragging teaching trajectory
can be optimized by combining rehabilitation knowledge to better adapt to patients. It is
also noted that the proposed function of LLR-II needs to be tested on real patients instead
of volunteers, which may expose more problems for the mechanical design and control
strategy, i.e., clinical tests should be made in the future work.
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