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Abstract: This paper is concerned with control-based damping of friction-induced self-excited
oscillations that appear in electromechanical systems with an elastic shaft. This approach does not
demand additional oscillations measurements or an observer design. The control system provides the
angular velocity and damping control via the combination of a parallel feed-forward compensator
(PFC) and adaptive λ-tracking feedback control. The PFC is designed to stabilize the zero dynamics
of an augmented system and renders it almost strict positive real (ASPR). The proposed control
approach is tested in simulations.

Keywords: parallel feed-forward compensator; λ-tracking control; friction-induced oscillations;
velocity control

1. Introduction

A number of friction effects appear in different machines and mechanisms driven
by automated electric drive systems. It is well known that friction may deteriorate per-
formance of feedback control loops. This may also result in oscillatory dynamics and
large steady-state errors during closed-loop operation and typically leads to increased
mechanical wear [1–4]. Friction characteristics with dropping regions are particularly
negative, i.e., negative slope regions of friction torque-velocity characteristics. Here, by
operation in these regions, friction-induced stick-slip or self-excited oscillations may ap-
pear. This problem is common for various areas: cranes, rolling mills, industrial robots,
railways, vehicles, aircraft engines, rolling element bearings, drilling systems, etc. [5–12].
To solve the problem of these nonlinear oscillations, a number of control-based approaches
have been presented in the literature, e.g., PD control [13,14], linear robust control [15],
indirect adaptive control [16], feedback linearization [17], sliding-mode control [18], and
backstepping control [19]. In the majority of the works, it is considered that oscillations in
a working element of the mechanism or machine can be measured or estimated.

In this paper, a new approach for damping the friction-induced self-excited oscilla-
tions is proposed. This approach does not require an additional measurement system on
the working element side and can be easily integrated in classical motion control systems
without their full redesign. This makes this method valuable from a practical point of view.
The proposed control system is based on a combination of a parallel feed-forward com-
pensator (PFC) and λ-tracking controller. Its effectiveness is verified using the simulation
model. The problem of friction-induced self-excited vibrations is studied on the example
of a two-mass electromechanical system with an elastic shaft. The system is considered to
be driven by an electric drive. It will be shown that, during operation in the negative slope
region, not only the system dynamics becomes unstable, but its zero dynamics becomes
unstable too, i.e., the nonminimum phase. From a theoretical point of view, application
of feedback control to this class of systems is a challenging task, as they are known to
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be unstable under high controller gains. In order to provide stability of the closed-loop
system, at first, parallel feed-forward interconnection of a plant and compensator [20–24]
is applied, which results in an augmented system with a redefined output and stable zero
dynamics. After this, the augmented system dynamics is stabilized applying adaptive
λ-tracking control [25]. It should be mentioned that the proposed PFC design also renders
the augmented plant almost strict positive real (ASPR) [23,24], hence the basis for other
control approaches as well.

Section 2 presents the distributed parameter mathematical model of the two-mass
electromechanical system with an elastic shaft and its discretization. In Section 3, the
problem of occurrence of friction-induced self-excited vibrations is shown. Section 4
introduces the design of a PFC and control law. In Section 5, the proposed control system
is evaluated in a simulation study. Section 6 summarizes the results presented in this paper
and gives an outlook for future work.

2. Modeling
2.1. Mathematical Model

In this contribution, a prototypic rotatory two-mass electromechanical system with an
elastic shaft, as illustrated in Figure 1, is considered [12,26]. Here, the drive torque τm(t)
actuates the first mass and the load friction torque τf r is subjected to the second mass. The
electromechanical system can be described by the following hyperbolic partial differential
equation (PDE)

ϕ̈(z, t) =
G
ρ

ϕ′′(z, t)− γ

ρI
ϕ̇(z, t) (1)

with two boundary conditions

GI ϕ′(0, t) = J1 ϕ̈(0, t) + β ϕ̇(0, t)− τm(t), (2)

GI ϕ′(L, t) = −J2 ϕ̈(L, t)− τf r
(

ϕ̇(L, t)
)
. (3)

Here, ϕ(z, t) is the rotational angle of the shaft, which depends on the spatial coor-
dinate z ∈ (0, L) and time t, ϕ(0, t) = ϕ0 is the rotational angle of the first mass, i.e., the
motor, ϕ(L, t) = ϕL is the rotational angle of the second mass, J1 and J2 are the first and
second masses’ moments of inertia, β is the coefficient of viscous friction subjected to the
first mass, G and I are the shear modulus and the moment of inertia of the shaft, and ρ and
γ are the density and structural damping of the shaft. The prime ′ and dot ˙ symbols denote
the spatial and time derivatives, respectively.

Figure 1. Electromechanical system.
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In this contribution, friction load curves possessing a negative slope region are of
particular interest as they may cause instability and the occurrence of limit cycles. Therefore,
the following friction model is utilized [1]

τf r = τco tanh(k f r ϕ̇L) + τvi ϕ̇L + (τst − τco) e−|ϕ̇L/bsb | tanh(k f r ϕ̇L), (4)

where τco is the Coulomb friction torque, τvi is the viscous dissipation torque, τst is the
static friction torque, bsb is the empirical parameter characterizing the Stribeck effect, k f r is
the adjustable parameter of the slope in the region of zero velocity.

It is assumed that the electric drive operates in the current (torque) control mode. Its
fast closed-loop dynamics can be typically neglected, and, thus, the motor torque can be
considered as a control input u(t) = τm(t).

2.2. Model Discretization

For simulation and control design, the presented infinite-dimensional electromechani-
cal model is discretized. Here, the method of lines has been applied [27]. Therefore, the
spatial coordinate of the PDE (1) is discretized by applying a finite difference approximation
with n = 100 grid points

ϕ′(z, t)
∣∣∣
z=zi

≈ −ϕi−1 + ϕi+1

2h
, (5)

ϕ′′(z, t)
∣∣∣
z=zi

≈ ϕi−1 − 2ϕi + ϕi+1

h2 , (6)

where h = zi+1 − zi is the distance between two grid points and ϕi is the value of ϕ at grid
node i.

Substituting the approximations (5) and (6) into (1)–(3) and solving the equations with
respect to their highest time derivatives, the following matrix equation results

ϕ̈ = Sϕ + Rϕ̇ + Buu + B f rτf r
(

ϕ̇L
)

. (7)

Here, the stiffness S ∈ R(n+1)×(n+1), damping R ∈ R(n+1)×(n+1), control input
Bu ∈ R(n+1)×1, and friction torque B f r ∈ R(n+1)×1 matrices are calculated as follows:

S =
G

ρh2



−2b1 2b1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 2b2 −2b2


, Bu =

2
ρhI



b1
0
0
...
0
0
0


,

R = − γ

ρI



d1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 d2


, B f r = −

2
ρhI



0
0
...
0
0
b2


,

where

b1 =
ρhI

ρhI + 2J1
, b2 =

ρhI
ρhI + 2J2

, d1 = b1

[2ρβh
γG

+ 1
]

, d2 = b2 .



Machines 2021, 9, 134 4 of 16

By defining the additional angular velocity vector ω = ϕ̇ = [ω0, . . . , ωL]
T ∈ R(n+1)

and the state vector x = [ϕ0, . . . , ϕL, ω0, . . . , ωL]
T ∈ R2(n+1), the electromechanical system

can be represented in state-space as follows:

ẋ = Ax + B1u + B2τf r
(

ϕ̇L
)

,

=

[
0 I
S R

]
x +

[
0

Bu

]
u +

[
0

B f r

]
τf r
(

ϕ̇L
)

,
(8)

where A ∈ R2(n+1)×2(n+1), B1 ∈ R2(n+1)×1, B2 ∈ R2(n+1)×1 are the associated system
matrices, and I ∈ R(n+1)×(n+1) is the identity matrix.

Considering the angular velocity of the first mass as the measured output signal
y = ϕ̇0, the output equation yields

y = Cx ,
=

[
0 · · · 0 1 · · · 0

][
ϕ0 · · · ϕL ω0 · · · ωL

]T ,
(9)

where C ∈ R1×2(n+1) is the corresponding output matrix.
In order to perform linear analysis and control design, the high-order nonlinear model

(8) and (9) can be linearized for a fixed slope of the friction curve k f r as follows:

ẋ = Adx + B1u , (10)

y = Cx . (11)

Here, the system matrix Ad ∈ R2(n+1)×2(n+1) comprises a new damping matrix
Rd ∈ R(n+1)×(n+1), which replaces R. This matrix is calculated in the same way as R
with a new boundary damping coefficient

d2 = b2

[2k f r

γh
+ 1
]

.

The model parameters used for simulations are summarized in Table 1. The pre-
sented dynamic models are implemented in Matlab and calculated using the variable-step
ode15s solver.

Table 1. Model parameters.

Name Symbol Value Unit

Density of the motor shaft $ 8000 [kg/m3]
Shear modulus of the motor shaft G 79.3 ×109 [N/m2]
Structural damping of the motor shaft γ 5× 10−4 [Nms]
Length of the motor shaft L 1500 [m]
Moment of inertia of the motor shaft I 1× 10−5 [m4]
Moments of inertia of the first mass J1 150 [kg m2]
Moments of inertia of the second mass J2 1500 [kg m2]
Viscous friction on the first mass β 2000 [Nms]
Coulomb friction torque τco 165 [Nm]
Viscous dissipation torque τvi 20 [Nms]
Static friction torque τst 515 [Nm]
Stribeck parameter bsb 0.5 [−]
Slope in the region of zero velocity k f r −75 [−]
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3. Friction-Induced Self-Excited Oscillations
3.1. Stability and Zero Dynamics

The relative degree and zero dynamics of a system are important properties for control
design. For the single-input single-output linear time-invariant system

ẋ = Ax + Bu, (12)

y = Cx, (13)

the relative degree can be obtained as the difference between the denominator and numer-
ator polynomials orders ν = d−m of the transfer function

P(s) = C(sI − A)−1B =
amsm + am−1sm−1 + · · ·+ a0

sd + bd−1sd−1 + · · ·+ b0
(14)

or as the smallest positive number which satisfies

CAν−1B 6= 0. (15)

The concept of zero dynamics for a linear system is equivalent to the zeros of the
associated transfer function P(s) [28]. The location of the zeros in the complex plane
determines the stability of the zero dynamics. The system is known to be (strictly) minimum
phase if the zeros zi of P(s) are in the left-half plane (LHP) Re [zi] ≤ 0 (Re [zi] < 0).

From a theoretical point of view, the source of instability and nonminimum phase
in the model (10) and (11) is the appearance of a negative slope coefficient k f r for certain
regions of the friction loading curve. In Figure 2 (left), the friction curve with Stribeck
effect (4) is illustrated. Here, the negative slope region can be seen for small angular
velocities up to 5 rad/s.

To analyze the stability of the open-loop linear plant and its zero dynamics (10)
and (11), the pole-zero maps for varying slope coefficients −100 < k f r < 20 are obtained
and represented in Figure 2 (right). Here, it can be seen that the slope variation has a strong
impact on the location of one real pole and one low-frequency complex conjugated pair of
poles and zeros, while the dynamics of the higher-frequency modes is not affected. The low-
frequency complex zero pair moves into the right-half plane (RHP), i.e., the system becomes
nonminimum phase, for small slopes coefficients k f r < −5. It can be also seen that the real
pole moves into the RHP for k f r < −15 resulting in unstable system dynamics. As depicted
in Figure 2 (left, red), the region of unstable operating points is ϕ̇L ≈ 0.1 . . . 4 rad/s.

Figure 2. Friction curve (left): region of unstable operating points (red). Low-frequency part of
pole-zero map of linearized systems (right).
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3.2. Conventional Velocity Control

Currently, most modern mechanisms and machines are equipped with automated
electric drive systems. Manufacturers of those systems typically offer a complex product
with an individual software solution, e.g., a power converter with a fully parameterizable
motion control system. Velocity control is one of the typical tasks for industrial systems.
Due to simplicity in design and high robustness, the cascade control scheme with P/PI-
controllers, depicted in Figure 3, have found wide practical application. Direct velocity
measurements on the effector of the mechanism are often complicated and involve ad-
ditional costs. Alternatively, they can be provided on the motor shaft via incremental or
optical sensors. Therefore, for the presented system it means that only the first mass angular
velocity ϕ̇0 is measured. From a theoretical point of view, this choice of system output for
systems with more than one masses and distributed states induces zero dynamics [28]. As
has been illustrated in Figure 2 (right), for systems operating in the negative slope region
of a friction curve problems of unstable zero dynamics may occur.

Figure 3. Conventional velocity control system.

To show the significance of the zero dynamics problem, the stability properties of the
linearized system (10) and (11) with conventional velocity PI-controller

GPI(s) = kP ·
(TI s + 1

TI s

)
(16)

has been studied. Here, the electromechanical system is assumed to be operated at a
operating velocity ϕ̇ = 2 rad/s with a slope coefficient k f r = −75. The open-loop system
in this configuration has a relative degree ν = 1. In Figure 4, the low-frequency part of
the root locus for fixed integral time constant TI = 0.8 s and varying gain kp is illustrated.
Here, from Figure 4 (right), it can be seen that the angular velocity output and internal
system dynamics can be asymptotically stabilized for a range of gains kP = 90 . . . 1500.
However, this gain tuning yields poor closed-loop dynamics, as shown via simulations
of the nonlinear system (Figure 5) for kp = 405 (Figure 4, green poles). For higher gains,
e.g., kP = 2× 105, the system poles are further attracted to the system zeros (Figure 4, red
poles) resulting in unstable system dynamics. This instability is a local property for the
linearized system, resulting more globally in a limit cycle, i.e., nonlinear oscillations. These
friction-induced self-excited oscillations can be seen in Figure 6. Here, application of a high
gain kP = 2× 105 leads to an approximate poles-zero pairs cancellation, which results in a
stabilized angular velocity for the first mass ϕ̇0. However, due to presence of the unstable
zero dynamics, the oscillations of the second mass velocity ϕ̇L occur.
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Figure 4. Low-frequency part of root locus of closed-loop system (left) and its zoomed-in view for
the 4 low-frequency modes (right). Poles of the open-loop system (blue), poles of the closed-loop
system with kP = 405 (green), poles of the closed loop system with kP = 2× 105 (red).

Figure 5. Step responses of the closed-loop nonlinear system applying velocity PI-controller with
gain kP = 405: first mass ϕ0 (solid blue) and second mass ϕL (dotted green).

Figure 6. Step responses of the closed-loop nonlinear system applying velocity PI-controller with
gain kP = 2× 105: first mass ϕ0 (solid blue) and second mass ϕL (dotted green).

4. PFC-Based Control
4.1. Motivation

As has been discussed above, friction loads in electromechanical systems may cause
significant problems for conventional motion control systems, which can result in instabili-
ties and the occurrence of undesired nonlinear oscillations. This is due to their nonmini-
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mum phase behavior or the unstable zero dynamics, which are invariant to feedback and
introduce limitations to the achievable closed-loop behavior.

Classical solution approaches to overcome this problem are the redesigning of the
control scheme, to find another input–output configuration or to apply observer-based state
feedback. In this contribution, a different solution based on a PFC is proposed. This ap-
proach is based on an output redefinition and it does not require additional measurements
nor an observer design.

The idea of PFC-based control is to extend the plant of interest P with a PFC F,
which achieves desired properties for the augmented plant P + F, e.g., full relative degree,
passivity, ASPR. This combination yields a new output ỹ = y + yF (Figure 7), which is
considered for further output feedback control design.

In this work, the PFC is designed to achieve ASPR properties [23,24] for the augmented
system. Here, for the extended system transfer function P̃(s), the following conditions
should hold:

1. P̃(s) is strictly the minimum phase, i.e., zeros zi of P̃(s) are in the LHP Re [zi] < 0;
2. the relative degree of the system is 0 or 1.

It should be emphasized that the extended plant transfer function P̃(s) can be unstable.
However, due to the ASPR properties, it is always stabilizable by proportional output
feedback with a sufficiently high gain. This concept is particularly useful for non-identifier-
based adaptive control methods, e.g., λ-tracking control, where the stable zero dynamics
plays a key role.

Figure 7. Parallel feed-forward interconnection: plant P(s), PFC F(s) and extended plant P̃(s).

4.2. PFC Design

Consider the following single-input single-output linear time-invariant plant, which
is a nonminimum phase and unstable

P(s) =
y(s)
u(s)

=
M(s)
D(s)

, (17)

where D(s) is a polynomial of degree d and M(s) is a polynomial of degree m ≤ d.
To place the system zeros for the augmented system with the output ỹ, an appropriate

PFC F(s), as illustrated in Figure 7, has to be designed. In addition, the PFC F(s) should
not introduce a static contribution in this output.

Consider the following PFC transfer function

F(s) =
yF(s)
u(s)

=
sA(s)
B(s)

, (18)

where B(s) is a polynomial of degree d and sA(s) is a polynomial of degree d− 1, which
contains the derivative to achieve a vanishing static contribution.

A parallel feed-forward interconnection of the plant and PFC results in

P̃(s) = P(s) + F(s) =
sD(s)A(s) + M(s)B(s)

D(s)B(s)
. (19)
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Here, stability of the system zeros for the extended system P̃(s) is obtained if and only
if the numerator polynomial sD(s)A(s) + M(s)B(s) has roots only in LHP. This problem
can be directly solved by equating the numerator polynomial to a desired polynomial Ld(s)
of a suitable degree

sD(s)A(s) + M(s)B(s) = Ld(s) , (20)

and finding the corresponding coefficients of A(s) and B(s). The linear Diophantine
Equation (20) can be solved, e.g., by applying Sylvester’s matrix approach [29].

The specific choice of Ld(s) is a degree of freedom in this design. Generally, it should
contain only LHP roots with a desired location in the complex plane. The degree of Ld(s)
should be selected based on the relative degree of the transfer function P(s), i.e.,

deg
(

Ld(s)
)
=

{
2d− 1 if m < d ,
2d if m = d .

(21)

It can be seen that this design achieves for the augmented plant P̃ the following
relative degree

ν =

{
1 if m < d ,
0 if m = d .

(22)

4.3. Stability of the Augmented Plant

Applying the proposed design procedure yields a PFC F(s) of the same order as the
plant. The order of the linearized system (10) and (11) depends directly on the number of
discretization points n and is typically high. This makes computation and further practical
implementation difficult. To overcome this problem, the order of the system or PFC has
to be reduced. In this work, the modal truncation procedure has been applied to the
high-order plant model [30]. The reduction order selection always depends on the specific
application case and can be motivated using the frequency domain. In Figure 8, the Bode
diagram of the linearized system is presented (blue). Here, it can be seen that mainly one
unstable real pole and two low-frequency eigen-modes have a dominant impact on the
system dynamics. Assuming that the higher-frequency modes are not excited by the drive
system or external disturbances, a fifth-order model approximation nr = 5 is chosen (green).

Figure 8. The Bode diagram of the linearized system. High-order model (solid blue); reduced order
model (dashed green).
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To design an appropriate PFC, according to (21), a desired polynomial Ld(s) of degree
9 should be assigned. The numerator polynomial sD(s)A(s) + M(s)B(s) contains the
plant polynomials D(s) and M(s). Thus, the choice of the desired roots can be motivated
physically. Here, the frequencies of D(s) and M(s) have been left unchanged. However,
additional damping for the complex conjugated roots has been added. Additionally, a new
location for the real root in LHP has been assigned.

Ld(s) = (s + 0.8)(s2 + 0.8s + 0.3)(s2 + 2.5s + 3.2)(s2 + 4.7s + 44.3)(s2 + 5s + 51). (23)

Then, according to (20), the following PFC is obtained

F(s) =
−0.02s(s + 17.12)(s2 − 2.5s + 3.4)

(s + 31.4)(s− 15.2)(s + 0.2)(s2 + 0.84s + 3.8)
. (24)

To analyze the linear system properties of P̃(s) and stability of the closed-loop system,
the root locus for varying gain kP is calculated and depicted in Figure 9. It can be seen that
applying high gains kP > 3.2× 103 results in stable closed-loop dynamics. It should be
emphasized that the leading coefficient of the resulting augmented plant P̃(s) is negative,
and for the root locus and further adaptive control an additional negative sign as multiplier
for kP and k(t) is used, respectively.

Figure 9. Root locus of the P̃.

4.4. PFC-Based Adaptive Feedback Control

To provide stability of the augmented system, an adaptive λ-tracking control law
is used in this work. This approach is not based on a model and requires only minimal
information about the system, in particular its DC gain. However, it is only applicable for
certain classes of systems, including ASPR systems [20,25].

In Figure 10, the overall control scheme is presented. Here, the tracking error consid-
ering the augmented output ỹ is

e(t) = yr(t)− ỹ . (25)

To control the augmented system, the following adaptive control law is applied to the
augmented plant

u(t) = k(t)e(t) , (26)

where the time-varying gain k(t) is given by the parameter adaptation law

k̇(t) = ξ max (|e(t)| − λ, 0)2 , (27)

k(0) = k0 .
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Here, λ defines the adaptation dead-zone, i.e., the control gain k(t) is adapted only if
|e(t)| ≥ λ, ξ is the adaptation rate parameter and k0 is the initial value of k(t).

Figure 10. Overall control scheme: plant P, PFC F, precompensator Wp and adaptive λ-tracking
controller k(t).

To reduce overshoots in the angular velocities ϕ̇, an additional first order precompen-
sator Wp is utilized

Wp(s) =
1

Tps + 1
, (28)

where Tp is a time constant.

5. Results

In this section, the presented PFC-based adaptive λ-tracking control is evaluated in a
simulation study. To verify in particular its robustness with respect to measurement noise
and parameter uncertainties, the following simulation scenarios are considered

• Scenario 1: adaptation, angular velocity reference tracking and disturbance rejection
of the closed-loop system;

• Scenario 2: adaptation and angular velocity reference tracking of the closed-loop
system in the presence of measurement noise;

• Scenario 3: adaptation and angular velocity reference tracking of the closed-loop
system in the presence of parameters variation.

The PFC (24) and the following parameters of the feedback control law ((26)), (27)
have been utilized and applied to the discretized high-order nonlinear model ((8), (9))

• λ = 0.1 is chosen as 5% from the reference value r = 2 rad/s;
• ξ = 1× 108 is chosen to provide a reasonable adaptation rate;
• k0 = 1;
• Tp = 4 s for the reference tracking (Tp = 1 s for the adaptation).

To perform the adaptation and reference tracking, the reference signal r depicted
in Figure 11 (dotted gray) has been utilized for all scenarios. Initially, two pulse signals
with an amplitude of 2 rad/s and width 5 s are applied to allow for an adaptation of the
control gain k(t) (Tp = 1 s). After that, at time 30 s, a step signal is applied to evaluate the
reference tracking of the closed-loop system (Tp = 4 s).

The following performance measures are considered to evaluate transients during
the reference tracking: rise time trise to 98% of the reference value, settling time tsettle with
accuracy 2% and relative overshoot. These measures are applied to the angular velocities
of the first ϕ̇0 and second ϕ̇L masses.
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Figure 11. Transient responses of the closed-loop system. Adaptation and angular velocity reference
tracking: ϕ̇0 (solid blue), ϕ̇L (dashed green), ỹ (dash-dot red) and r (dotted gray).

5.1. Scenario 1

The obtained simulation results are illustrated in Figures 11–13. From Figure 11, it
can be seen that the absolute value of the control error |e(t)| converges to the prescribed
λ = 0.1 after about 8.5 s resulting in an adapted control gain k(t)|t>8.5s = 2.25× 104. The
augmented output ỹ reaches the reference angular velocity value 14.2 s after the step r(s)
and settles without overshoot. The performance measures of the reference tracking are
summarized in Tables 2 and 3 (Case 1). From Figure 12 it can be seen that not only the
angular velocities on the boundaries ϕ̇0 and ϕ̇L are stabilized, but also the distributed state
ϕ̇(z, t) itself.

Figure 12. Transient responses of the closed-loop system. Angular velocity reference tracking:
distributed ϕ̇(z, t).

Table 2. Performance measures for ϕ̇0.

Cases 1 2 3 4 5 6 7 8 9

trise [s] 9.27 8.22 10.46 9 12.25 9.92 9.80 8.68 11.15
tset [s] 16.62 21.15 20.64 16.11 13.94 20.15 17.12 28.07 21.25
σ [%] 8.97 4.32 15.08 5.53 2.04 12.01 12.96 9.48 18.52
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Table 3. Performance measures for ϕ̇L.

Cases 1 2 3 4 5 6 7 8 9

trise [s] 7.44 6.40 8.62 7.26 10.46 8.12 7.91 6.71 9.28
tset [s] 15 19.26 23.03 14.90 14.18 18.51 15.22 26.26 34.05
σ [%] 12.74 5.38 22.79 7.44 1.92 18 19.03 11.57 28.19

Figure 13. Transient responses of the closed-loop system. Disturbance rejection: ϕ̇0 (solid blue), ϕ̇L

(dashed green) and ỹ (dash-dot red). Impulse torques are applied to the second mass at time t1 = 0 s
(dashed green) and to the first mass t1 = 30 s (dash-dot red).

In Figure 13, the disturbance rejection of the closed-loop system are shown. Here,
two impulse disturbance torques are applied to the first and the second masses (Figure 13,
right). In both cases the disturbances are suppressed notably within about 15 s.

5.2. Scenario 2

In this scenario, the control law adaptation and reference tracking in the presence of
measurement noise are shown. To introduce the measurement noise, a Gaussian distributed
random signal with variance of σ2 = 2.5× 10−5 is utilized. The noise is applied to the
measured angular velocity on the first mass y = ϕ0. The obtained results are illustrated
in Figure 14. Here, it can be seen that application of the noise does not deteriorate the
adaptation of the control gain k(t). In general, the measurement noise is evaluated from
the transient response of |e| and the corresponding parameter λ is chosen. It should be
also emphasized that the high control gains boost the measurement noise considerable.
This typically results in faster wear of the actuator and reduced performance [31]. To
overcome this problem, an additional low-pass filter for noise signals with a larger variances
is needed.

Figure 14. Transient responses of the closed-loop system. Adaptation and angular velocity reference
tracking in presence of the measurement noise: ϕ̇0 (solid blue), ϕ̇L (dashed green), ỹ (dash-dot red)
and r (dotted gray).
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5.3. Scenario 3

In this scenario, evaluation of the robustness with respect to parameter uncertainties
is shown. To introduce the parameter uncertainties, the following parameters variation are
considered:

• The static friction torque τst from (4) is varied in a range of ±50% from its nomi-
nal value resulting in a different slope of the friction curve in the operating point
of interest;

• The moment of inertia of the second mass J2 is varied in a range of ±50% from its
nominal value.

The domain of uncertain parameters is illustrated in Figure 15. Here, the nominal and
worst cases of parameter variations are denoted with numbers. The nominal case 1 and
following worst cases 2–9 have been used for the simulation study.

Assuming the model parameters are varying according to cases 2–9 and the control
system parameters designed for the nominal case 1 remain constant, the following results
are obtained and depicted Figure 16. Here, it can be seen that although in certain cases the
performance of the transients has slightly deteriorated, the closed-loop system is always
stable. From a theoretical point of view, this means that the designed PFC provides stability
of the zero dynamics even for these worst case variations and, hence, the overall control
system is robust to these parameter variations. The performance measures of the reference
tracking for all cases are summarized in Tables 2 and 3.

Figure 15. Domain of parameters variation and simulation cases.

Figure 16. Transient responses of the closed-loop system. Adaptation and angular velocity reference
tracking in presence of parameter uncertainties: nominal parameter model (solid blue) and uncertain
parameter model (dashed green).
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6. Conclusions

In this contribution, the PFC-based adaptive λ-tracking control is proposed for velocity
control of an electromechanical system with friction load. The mathematical model of a two-
mass electromechanical system with an elastic shaft and a friction load with the Stribeck
effect has been studied. It has been shown that under certain conditions the system becomes
a nonminimum phase and unstable. Practically, applying a conventional control system
may result in the occurrence of friction-induced self-excited oscillations. To overcome this
problem without additional measurements nor observers, an alternative approach based on
a PFC has been introduced. The proposed PFC design renders the augmented plant ASPR,
i.e., stable zero dynamics and a relative degree of one. Further application of the adaptive
λ-tracking controller results in stable closed-loop system dynamics. The performance of
the proposed control system has been successfully evaluated in a simulation study.

In this work, the robustness of the proposed approach is analyzed in the simulation
study. For further applications, a robust PFC design that takes into account model uncer-
tainties will be proposed. In addition, the future work will be concerned with a practical
verification of the proposed approach.
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