
machines

Article

VIAM-USV2000: An Unmanned Surface Vessel with Novel
Autonomous Capabilities in Confined Riverine Environments

Ngoc-Huy Tran 1,2,*, Quang-Ha Pham 1,2, Ji-Hyeong Lee 3,4 and Hyeung-Sik Choi 3

����������
�������

Citation: Tran, N.-H.; Pham, Q.-H.;

Lee, J.-H.; Choi, H.-S.

VIAM-USV2000: An Unmanned

Surface Vessel with Novel

Autonomous Capabilities in Confined

Riverine Environments. Machines

2021, 9, 133.

https://doi.org/10.3390/machines9070133

Academic Editor: Raffaele Di

Gregorio

Received: 29 May 2021

Accepted: 8 July 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Control & Automation, Faculty of Electrical & Electronics Engineering, Ho Chi Minh City
University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10,
Ho Chi Minh City 754000, Vietnam; pqha.sdh20@hcmut.edu.vn

2 Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District,
Ho Chi Minh City 754000, Vietnam

3 Department of Mechanical Engineering, Korea Maritime and Ocean University, Busan 49112, Korea;
jhlee@kmou.ac.kr

4 Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University,
Busan 49112, Korea

* Correspondence: tnhuy@hcmut.edu.vn

Abstract: Unmanned Surface Vessels (USVs) have witnessed an increasing growth in demand for
development due to their compactness, mobility and maneuverability, which make them well-suited
for environmental monitoring on narrow water in Vietnam in particular and in general at several
similar tropical regions. However, current surface vessels are limited to operation on open water
only. In this paper, we design a USV, namely, VIAM-USV2000, equipped with advanced autonomous
capabilities to satisfactorily carry out missions in confined riverine environments. More specifically,
our prototype is designed to follow a smooth B-Spline path that is self-planned to meet the limiting
curvature and avoid static obstacles. Moreover, the vessel is capable of avoiding dynamic obstacles
by an advanced Set-based Guidance mechanism. Simulated and experimental results at a local
lake prove the effectiveness of the proposed capabilities, thereby paving the way for the extensive
deployment of USVs in many real-world applications.

Keywords: USV; path planning; B-Spline; genetic algorithm; line-of-sight; set-based guidance

1. Introduction

The growing demand for water-based environmental monitoring, resource exploiting
and hydrology surveying leads to an increasing interest in the development of innovative
unmanned surface vessels [1–3]. In particular, USV shows enormous potential in leveraging
the task of monitoring water quality at canals and narrow rivers due to its high compactness,
mobility and maneuverability, thereby reducing the operating cost to a minimum.

In recent decades, several USV prototypes have been introduced [4,5], all of which
are developed for open-sea operation, thus not satisfying the autonomous requirements
in confined, complicated and dynamic environments. This fact is particularly held in the
case of Vietnam and many tropical regions, making water sampling and monitoring tasks
in those areas extremely difficult. Recently, some new prototypes such as Roboat [6] and
Roboat II [7] succeed in maneuvering through narrow and crowded urban waterways for
transportation of goods and passengers. This helps encourage USV to be more extensively
deployed in other restricted regions such as riverine ones.

This paper focuses on designing an unmanned surface vessel, namely, VIAM-USV2000,
that inherits and enhances the mechanical and electrical design of VIAM-USV1000 [8].
USV2000 differs from its predecessor in its advanced autonomous capabilities: generate
and follow a smooth parameterized curve, avoid dynamic obstacles. For path planning,
on the grounds of our former results [9], the B-Spline path [10] is used, and its shape
is optimized by a genetic algorithm [11] to meet the limiting curvature. We make an

Machines 2021, 9, 133. https://doi.org/10.3390/machines9070133 https://www.mdpi.com/journal/machines

https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-4060-8163
https://doi.org/10.3390/machines9070133
https://doi.org/10.3390/machines9070133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines9070133
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines9070133?type=check_update&version=1

Machines 2021, 9, 133 2 of 20

improvement to this path planner so that it can avoid static obstacles. In comparison with
other path-generating schemes such as rapidly exploring random trees [12] and Dubins
paths [13], B-Spline curves possess several notable advantages, some of which are multi-
degree smoothness and local deformation when altering waypoints, thus being suitable
for planning collision-free paths through restricted areas. To diminish overshoot when
changing waypoints in straight Line-of-Sight (LOS) path following [14], a continuous
LOS law for tracking curves is proposed, which features an iterative approach to find the
projection of the vessel’s center of navigation onto the curve by Newton–Raphson method.

During navigation of USV, sudden encounters with dynamic obstacles are unavoidable.
To avoid these, while Dynamic Window Approach [15] and Vector Field Histogram [16]
depend on the vehicle’s dynamics, Velocity Obstacle (VO) [17] presents a study on the
accuracy of estimated distance and relative velocity to each obstacle to determine an
efficient, local, collision-free path. As a result, by utilizing VO, USV is not only able to
easily avoid multiple obstacles from different directions, but it can also return to the global
path quickly. Another benefit of VO comes from integration with COLOREGS law [18] and
straight LOS law to achieve an obstacle avoidance mechanism, namely, Set-based Guidance
(SBG) [19]. In this paper, an advanced SBG law that generates a collision-free trapezium-
like local path is proposed for the vessel to maintain a safe distance with each obstacle
more easily. We further complement our simulated results in [20] with experimental ones,
using USV2000 as the main surface vessel in different avoiding scenarios.

Our main contributions in this paper can be summarized as follows:

• Design hardware-related and software-related components for an unmanned surface
vessel, namely, USV2000, to realize advanced autonomous capabilities in confined
riverine environments.

• Enhance the B-Spline path planner so that it can automatically optimize the curve’s
shape to meet the limiting curvature and avoid static obstacles.

• Develop a continuous LOS path follower for USV to smoothly follow any arbitrary
parameterized curve.

• Develop an advanced SBG law that generates a trapezium-like path for the vessel to
avoid dynamic obstacles.

• Provide extensive simulated and experimental results to verify the effectiveness of the
proposed algorithms in USV2000.

This paper is structured as follows: Section 2 gives a brief overview of hardware
specifications and software components, Section 3 gives a detailed description of the
path planner, Section 4 explains the path follower in detail, Section 5 illustrates how the
obstacle avoider works, Section 6 presents simulated and experimental results and Section 7
concludes the paper.

2. System Development
2.1. Hardware Construction

USV2000 features a catamaran design (Figure 1). As shown in Figure 2, the vessel’s
actuators are composed of two rear thrusters for moving forward and two side ones for
turning. A microcontroller is used to control these thrusters by exporting PWM signals and
receive commands from a remote RC controller. An embedded computer plays a central
role in realizing navigation, guidance and control strategies: each software component is
modularized and exchanges messages in Robot Operating System (ROS) ecosystem. GNSS
receiver, AHRS and LiDAR communicate with an embedded computer through UART
interface. Data interchange of the embedded computer with a microcontroller is realized
by CAN bus, with laptop by Wi-Fi protocol. Detail about each hardware component is
mentioned in Table 1.

Machines 2021, 9, 133 3 of 20

Machines 2021, 9, x FOR PEER REVIEW 3 of 20

realized by CAN bus, with laptop by Wi-Fi protocol. Detail about each hardware compo-
nent is mentioned in Table 1.

(a) (b)

Figure 1. Catamaran design of USV2000 in (a); USV2000 during operation in (b).

Table 1. Hardware specifications of USV2000.

Component Specification
Embedded computer 1× nVIDIA Jetson Nano
Microcontroller 1× STM32F407
Rear thruster 2× Endura C2 30
Side thruster 2× BlueRobotics T200
RC controller 1× RadioLink AT9S
LiDAR 1× Hokuyo UTM-30LX
AHRS 1× Patech RTxQ
GNSS receiver 1× Here+ RTK GNSS
Wireless router 1× TP-Link TL-WR940N

Figure 2. Diagram describing connections between different components of USV2000.

2.2. Software Composition
As in Figure 3, the vessel’s autopilot software suite in embedded computer, namely,

VIAM-USV-VC, for USV2000 is composed of components that are modularized on the
ground of the ROS platform. Each software is organized into a task-specific C++ ROS node

Figure 1. Catamaran design of USV2000 in (a); USV2000 during operation in (b).

Table 1. Hardware specifications of USV2000.

Component Specification

Embedded computer 1× nVIDIA Jetson Nano
Microcontroller 1× STM32F407
Rear thruster 2× Endura C2 30
Side thruster 2× BlueRobotics T200
RC controller 1× RadioLink AT9S
LiDAR 1× Hokuyo UTM-30LX
AHRS 1× Patech RTxQ
GNSS receiver 1× Here+ RTK GNSS
Wireless router 1× TP-Link TL-WR940N

Machines 2021, 9, x FOR PEER REVIEW 3 of 20

realized by CAN bus, with laptop by Wi-Fi protocol. Detail about each hardware compo-
nent is mentioned in Table 1.

(a) (b)

Figure 1. Catamaran design of USV2000 in (a); USV2000 during operation in (b).

Table 1. Hardware specifications of USV2000.

Component Specification
Embedded computer 1× nVIDIA Jetson Nano
Microcontroller 1× STM32F407
Rear thruster 2× Endura C2 30
Side thruster 2× BlueRobotics T200
RC controller 1× RadioLink AT9S
LiDAR 1× Hokuyo UTM-30LX
AHRS 1× Patech RTxQ
GNSS receiver 1× Here+ RTK GNSS
Wireless router 1× TP-Link TL-WR940N

Figure 2. Diagram describing connections between different components of USV2000.

2.2. Software Composition
As in Figure 3, the vessel’s autopilot software suite in embedded computer, namely,

VIAM-USV-VC, for USV2000 is composed of components that are modularized on the
ground of the ROS platform. Each software is organized into a task-specific C++ ROS node

Figure 2. Diagram describing connections between different components of USV2000.

2.2. Software Composition

As in Figure 3, the vessel’s autopilot software suite in embedded computer, namely,
VIAM-USV-VC, for USV2000 is composed of components that are modularized on the
ground of the ROS platform. Each software is organized into a task-specific C++ ROS node
that communicates with one another via TCPROS protocol. While Navigator publishes the

Machines 2021, 9, 133 4 of 20

vessel’s pose from GNSS receiver’s and AHRS’s data, Guider realizes a variety of guidance
modes (straight-line path following, curve path following, SBG obstacle avoidance) and
Controller exports PWM signal for each side thruster based on the current heading error. In
addition, LiDAR Transceiver, STM Transceiver and GCS Transceiver are in charge of converting
from packets of ROS-exterior protocols (UART, CAN, MAVLink) to that of ROS-interior
ones (TCPROS). To maximize resource usage efficiency, we utilize two types of TCPROS
connection: message (periodic update by a publish–subscribe mechanism) and service
(temporarily available on demand by a request–respond mechanism).

Machines 2021, 9, x FOR PEER REVIEW 4 of 20

that communicates with one another via TCPROS protocol. While Navigator publishes the
vessel’s pose from GNSS receiver’s and AHRS’s data, Guider realizes a variety of guidance
modes (straight-line path following, curve path following, SBG obstacle avoidance) and
Controller exports PWM signal for each side thruster based on the current heading error.
In addition, LiDAR Transceiver, STM Transceiver and GCS Transceiver are in charge of con-
verting from packets of ROS-exterior protocols (UART, CAN, MAVLink) to that of ROS-
interior ones (TCPROS). To maximize resource usage efficiency, we utilize two types of
TCPROS connection: message (periodic update by a publish–subscribe mechanism) and
service (temporarily available on demand by a request–respond mechanism).

Figure 3. Diagram illustrating connections among different software in VIAM-USV-VC.

The vessel’s ground control station (GCS) (Figure 4), namely, VIAM-USV-GC, is a
highly customized version of QGroundControl that features two programming layers: QML
and C++. QML deals with the front-end part of GCS, offering user-friendly interaction via
images, sound, notifications, data visualization, data plotting, etc. On the other hand, C++
makes up the back-end part of GCS, handling computer-intensive tasks such as database
management, memory management, device drivers and threading. MAVLink is used to fa-
cilitate an efficient, reliable and remote data interchange between ROS-based autopilot and
GCS for several advantages: tiny packet’s length (max. 279 bytes); support for detecting
packet drops, corruption and packet authentication; cross-platform compatibility.

Figure 3. Diagram illustrating connections among different software in VIAM-USV-VC.

The vessel’s ground control station (GCS) (Figure 4), namely, VIAM-USV-GC, is a
highly customized version of QGroundControl that features two programming layers: QML
and C++. QML deals with the front-end part of GCS, offering user-friendly interaction via
images, sound, notifications, data visualization, data plotting, etc. On the other hand, C++
makes up the back-end part of GCS, handling computer-intensive tasks such as database
management, memory management, device drivers and threading. MAVLink is used to
facilitate an efficient, reliable and remote data interchange between ROS-based autopilot
and GCS for several advantages: tiny packet’s length (max. 279 bytes); support for detecting
packet drops, corruption and packet authentication; cross-platform compatibility.

Machines 2021, 9, 133 5 of 20Machines 2021, 9, x FOR PEER REVIEW 5 of 20

(a) (b)

(c) (d)

Figure 4. Functionalities of VIAM-USV-GC: itinerary monitoring (a), mission planning (b), parameter tuning (c) and real-
time data plotting (d).

3. Path Planning
3.1. B-Spline Path Generation

B-Spline [10] is a combination of polynomial curves with a 𝑝 degree that goes
through a set of 𝑛 + 1 pre-defined waypoints ሼ𝐝௜ ∈ ℝଶሽ. It is parameterized by a variable 𝑢 ∈ ሾ0; 1ሿ as follows:

𝐜ሺ𝑢ሻ = ෍ 𝑁௜,௣ሺ𝑢ሻ𝐩௜௡
௜ୀ଴ (1)

where 𝐜ሺ𝑢ሻ ∈ ℝଶ is the position vector at every curve’s point, 𝐩௜ ∈ ℝଶ is the control vec-
tor and 𝑁௜,௣ሺ𝑢ሻ is the normalized basis polynomial of a 𝑝 degree. Value of 𝑁௜,௣ሺ𝑢ሻ at
every 𝑢 is recursively calculated by the following formula [10]: 𝑁௜,଴ሺ𝑢ሻ = ൜1, 𝑢௜ ൑ 𝑢 ൑ 𝑢௜ାଵ0, otherwise (2)

𝑁௜,௣ሺ𝑢ሻ = 𝑢 − 𝑢௜𝑢௜ା௣ − 𝑢௜ 𝑁௜,௣ିଵሺ𝑢ሻ + 𝑢௜ା௣ାଵ − 𝑢𝑢௜ା௣ାଵ − 𝑢௜ାଵ 𝑁௜ାଵ,௣ିଵሺ𝑢ሻ (3)

Control vectors are derived from the solution of the following equation:

⎣⎢⎢
⎡𝐝଴୘𝐝ଵ୘⋮𝐝௡୘⎦⎥⎥

⎤ = ⎣⎢⎢
⎡𝑁଴,௣ሺ𝑡଴ሻ 𝑁ଵ,௣ሺ𝑡଴ሻ ⋯ 𝑁௡,௣ሺ𝑡଴ሻ𝑁଴,௣ሺ𝑡ଵሻ 𝑁ଵ,௣ሺ𝑡ଵሻ ⋯ 𝑁௡,௣ሺ𝑡ଵሻ⋮ ⋮ ⋱ ⋮𝑁଴,௣ሺ𝑡௡ሻ 𝑁ଵ,௣ሺ𝑡௡ሻ ⋯ 𝑁௡,௣ሺ𝑡௡ሻ⎦⎥⎥

⎤
⎣⎢⎢
⎡𝐩଴୘𝐩ଵ୘⋮𝐩௡୘⎦⎥⎥

⎤
 (4)

Figure 4. Functionalities of VIAM-USV-GC: itinerary monitoring (a), mission planning (b), parameter tuning (c) and
real-time data plotting (d).

3. Path Planning
3.1. B-Spline Path Generation

B-Spline [10] is a combination of polynomial curves with a p degree that goes through
a set of n + 1 pre-defined waypoints

{
di ∈ R2}. It is parameterized by a variable u ∈ [0; 1]

as follows:

c(u) =
n

∑
i=0

Ni,p(u)pi (1)

where c(u) ∈ R2 is the position vector at every curve’s point, pi ∈ R2 is the control vector
and Ni,p(u) is the normalized basis polynomial of a p degree. Value of Ni,p(u) at every u is
recursively calculated by the following formula [10]:

Ni,0(u) =
{

1, ui ≤ u ≤ ui+1
0, otherwise

(2)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (3)

Control vectors are derived from the solution of the following equation:
dT

0
dT

1
...

dT
n

 =


N0,p(t0) N1,p(t0) · · · Nn,p(t0)
N0,p(t1) N1,p(t1) · · · Nn,p(t1)

...
...

. . .
...

N0,p(tn) N1,p(tn) · · · Nn,p(tn)




pT
0

pT
1
...

pT
n

 (4)

Machines 2021, 9, 133 6 of 20

where an intermediate variable t for every waypoint is selected by the centripetal method [21].
From our observation, if the initial heading of the vessel is not taken into account, the

generated B-Spline path may contain sharp turns that make it difficult for the vessel to
track. Therefore, as in [22], we constrain the path to the desired initial and final velocity
vectors of the vessel, denoted vinit and vend, respectively, and extend (4) by two more
equations as follows:

− p0 + p1 =
up+1

p
vinit, −pn+1 + pn+2 =

1− un+2

p
vend (5)

3.2. Genetic Algorithm for Optimal B-Spline Shaping

To adjust the curvature and avoid obstacles, we generate an additional waypoint
between initially assigned ones and optimize their positions for minimum path length
using a genetic algorithm (GA). Our method takes advantage of the B-Spline’s locality:
the shape of a B-Spline curve is only locally affected when adding, removing or altering
waypoints. This property also helps boost the convergence rate when a heuristic search is
performed to optimize the curve’s shape.

GA [11] is a popular search-based technique for finding optimal or near-optimal
solutions to multi-objective problems. Inspired by biological mechanisms such as mutation,
crossover and selection, GA is particularly suited for path planning because of its efficiency
when the search space is large and a large number of parameters is involved. In GA,
each possible solution is termed an individual, and each search space at every iteration is
called a population. By selectively performing crossover across members of the parental
population, the descent one is expected to produce a higher number of fitter individuals, or
in other words, solutions that are nearer to the optimum. In addition, mutation is employed
to maintain genetic diversity from one generation to the next.

Similar to [9], every individual ai in a population is encoded as follows:

ai =
[

dT
1 dT

2 . . . dT
n vT

init vT
end

]T
(6)

where di ∈ R2 is the added waypoint to reshape the curve and vinit and vend are the initial
and final velocity vectors.

To create the initial population, every added waypoint is randomly selected in a square
region formed by two nearby original waypoints. Panmictic generalized intermediate
recombination [23] is used for crossover. Inspired by [24], the cost function to evaluate
each individual’s fitness is as follows:

J(ai) =

{
L(ai), g(ai) ≥ 0

Lmax + g(ai), g(ai) < 0
(7)

where L(ai) represents the path’s length associated with each individual ai, Lmax is the
maximum path’s length in the current population and g(ai) is the total penalty function
as follows:

g(ai) = gcurv(ai) + ∑
i

gobsi (ai) (8)

If all individuals satisfy constraints, (7) only depends on the path’s length. Otherwise,
(7) depends on both the path’s length and penalty function. The philosophy behind
this cost function’s design is to favor satisfying all constraints, which includes curvature
limiting and obstacle avoidance to search for the shortest path.

After finding the vessel’s radius of turning Rturn through maneuvering test, the
limiting curvature κlim is defined as:

κlim =
1

Rturn
(9)

Machines 2021, 9, 133 7 of 20

The penalty component of curvature gcurv(·) is calculated using κlim and the maximum
curvature κmax of the curve associated with each individual ai:

gcurv(ai) =

{
κlim − κmax, κlim < κmax

0, κlim ≥ κmax
(10)

where κmax of a parameterized curve C = {x(θ), y(θ)} is calculated as follows:

κmax = max
θ

.
x(θ)

..
y(θ)− .

y(θ)
..
x(θ)(.

x2
(θ) +

.
y2
(θ)
) 3

2
(11)

To plan a collision-free path through static obstacles, we complement our former path
planner [9] with an additional penalty term gobsi (·) in (8) that punishes the act of obstacle
collision. Consider an obstacle i with center O in Figure 5:

Machines 2021, 9, x FOR PEER REVIEW 7 of 20

The penalty component of curvature 𝑔ୡ୳୰୴ሺ∙ሻ is calculated using 𝜅୪୧୫ and the max-
imum curvature 𝜅୫ୟ୶ of the curve associated with each individual 𝐚௜: 𝑔ୡ୳୰୴ሺ𝐚௜ሻ = ൜𝜅୪୧୫ − 𝜅୫ୟ୶, 𝜅୪୧୫ < 𝜅୫ୟ୶0, 𝜅୪୧୫ ≥ 𝜅୫ୟ୶ (10)

where 𝜅୫ୟ୶ of a parameterized curve 𝐶 = ሼ𝑥ሺ𝜃ሻ, 𝑦ሺ𝜃ሻሽ is calculated as follows: 𝜅୫ୟ୶ = maxఏ 𝑥ሶ ሺ𝜃ሻ𝑦ሷ ሺ𝜃ሻ − 𝑦ሶሺ𝜃ሻ𝑥ሷ ሺ𝜃ሻ൫𝑥ሶ ଶሺ𝜃ሻ + 𝑦ሶ ଶሺ𝜃ሻ൯ଷଶ (11)

To plan a collision-free path through static obstacles, we complement our former
path planner [9] with an additional penalty term 𝑔୭ୠୱ೔ሺ∙ሻ in ሺ8ሻ that punishes the act of
obstacle collision. Consider an obstacle i with center 𝑂 in Figure 5:

Figure 5. Path planning to avoid static obstacles.

The radius of avoidance 𝑅ୟ୴୭୧ୢ is the summation of the obstacle’s radius 𝑅୭ୠୱ and
radius of safety 𝑅ୱୟ୤ୣ: 𝑅ୟ୴୭୧ୢ = 𝑅୭ୠୱ + 𝑅ୱୟ୤ୣ (12)

For efficiency, instead of a brute-force search at every point on the curve for 𝐴, we
limit the searching region between two nearest original waypoints from 𝑂. Then 𝐴, which
is the projection of 𝑂 onto the curve, can be found by an iterative procedure based on
Newton–Raphson method in Section 4. After 𝐴 is found, we obtain 𝑙ை஺ and compare
with 𝑅ୟ୴୭୧ୢ to arrive at the penalty component relating to obstacle 𝑖: 𝑔୭ୠୱ೔ሺ𝐚௜ሻ = ൜𝑙ை஺ − 𝑅ୟ୴୭୧ୢ, 𝑙ை஺ ൑ 𝑅ୟ୴୭୧ୢ0, 𝑙ை஺ ൐ 𝑅ୟ୴୭୧ୢ (13)

4. Path Following
Given a smooth parameterized curve 𝐶 as follows: 𝐶 = ሼ𝑥ሺ𝜃ሻ, 𝑦ሺ𝜃ሻ | 𝜃 ∈ ሾ0; 1ሿሽ (14)

Our task is to design a law that makes the vessel follow this curve as close as possible.
As in Figure 6, instead of discretizing the curve and applying straight LOS law among

Figure 5. Path planning to avoid static obstacles.

The radius of avoidance Ravoid is the summation of the obstacle’s radius Robs and
radius of safety Rsafe:

Ravoid = Robs + Rsafe (12)

For efficiency, instead of a brute-force search at every point on the curve for A, we
limit the searching region between two nearest original waypoints from O. Then A, which
is the projection of O onto the curve, can be found by an iterative procedure based on
Newton–Raphson method in Section 4. After A is found, we obtain lOA and compare with
Ravoid to arrive at the penalty component relating to obstacle i:

gobsi (ai) =

{
lOA − Ravoid, lOA ≤ Ravoid

0, lOA > Ravoid
(13)

4. Path Following

Given a smooth parameterized curve C as follows:

C = {x(θ), y(θ) | θ ∈ [0; 1]} (14)

Machines 2021, 9, 133 8 of 20

Our task is to design a law that makes the vessel follow this curve as close as possible.
As in Figure 6, instead of discretizing the curve and applying straight LOS law among
infinitesimal displacements, we devise a new method to track the curve by first finding the
projection O′ of the vessel’s center of navigation O.

Machines 2021, 9, x FOR PEER REVIEW 8 of 20

infinitesimal displacements, we devise a new method to track the curve by first finding
the projection 𝑂′ of the vessel’s center of navigation 𝑂.

Figure 6. Continuous LOS path following.

Then cross-track error (CTE) 𝜖 is calculated based on coordinates of the projection 〈𝑥ை′ , 𝑦ை′〉, coordinates of the vessel 〈𝑥ை, 𝑦ை〉 and the tangent angle 𝛾: 𝜖 = −൫𝑥ை − 𝑥ை′൯ sinሺ𝛾ሻ + ൫𝑦ை − 𝑦ை′൯ cosሺ𝛾ሻ (15)

where 𝛾 is continuously computed by trigonometric relation between partial derivatives: 𝛾 = atan2൫𝑦ሶ ሺ𝜃ሻ, 𝑥ሶ ሺ𝜃ሻ൯ (16)

Finally, the desired heading sent to the controller is as follows: 𝜓ௗ = 𝛾 + atan2ሺ−𝜖, ∆ሻ (17)

where ∆ determines how quickly the vessel returns to the path. If ∆ is set too high, the
vessel returns quickly but can oscillate.

To find 𝑂′, we apply the Newton–Raphson iterative method. Our new scheme to
find the projection 〈𝑥ைᇲ, 𝑦ைᇲ〉 is as follows in Table 2:

Table 2. Algorithm to find the projection of the vessel’s center of navigation onto the curve.

Input
Vessel’s current center of navigation 〈𝑥ை, 𝑦ை〉.
Parameterized curve 𝐶 = ሼ𝑥ሺ𝜃ሻ, 𝑦ሺ𝜃ሻሽ.

Output
Projection 〈𝑥ை′ , 𝑦ை′〉 onto the curve.

Process
1. Initialize 𝜃 with the most recently found projection.
2. Iterate to update 𝜃 until the stopping criteria are met: 𝜃 ← 𝜃 − 𝑦ሶሺ𝜃ሻሾ𝑦ை − 𝑦ሺ𝜃ሻሿ + 𝑥ሶሺ𝜃ሻሾ𝑥ை − 𝑥ሺ𝜃ሻሿ𝑦ሷ ሺ𝜃ሻሾ𝑦ை − 𝑦ሺ𝜃ሻሿ + 𝑥ሷሺ𝜃ሻሾ𝑥ை − 𝑥ሺ𝜃ሻሿ − 𝑦ሶ ଶሺ𝜃ሻ − 𝑥ሶ ଶሺ𝜃ሻ

3. End with coordinates of the projection: 〈𝑥ை′ , 𝑦ை′〉 = 〈𝑥ሺ𝜃ሻ, 𝑦ሺ𝜃ሻ〉

Figure 6. Continuous LOS path following.

Then cross-track error (CTE) ε is calculated based on coordinates of the projection
〈xO′ , yO′〉, coordinates of the vessel 〈xO, yO〉 and the tangent angle γ:

ε = −(xO − xO′) sin(γ) + (yO − yO′) cos(γ) (15)

where γ is continuously computed by trigonometric relation between partial derivatives:

γ = atan2
(.
y(θ),

.
x(θ)

)
(16)

Finally, the desired heading sent to the controller is as follows:

ψd = γ + atan2(−ε, ∆) (17)

where ∆ determines how quickly the vessel returns to the path. If ∆ is set too high, the
vessel returns quickly but can oscillate.

To find O′, we apply the Newton–Raphson iterative method. Our new scheme to find
the projection 〈xO′ , yO′〉 is as follows in Table 2:

Table 2. Algorithm to find the projection of the vessel’s center of navigation onto the curve.

Input
Vessel’s current center of navigation 〈xO, yO〉.
Parameterized curve C = {x(θ), y(θ)}.
Output
Projection 〈xO′ , yO′ 〉 onto the curve.
Process

1. Initialize θ with the most recently found projection.
2. Iterate to update θ until the stopping criteria are met:

θ ← θ −
.
y(θ)[yO−y(θ)]+

.
x(θ)[xO−x(θ)]

..
y(θ)[yO−y(θ)]+

..
x(θ)[xO−x(θ)]− .

y2
(θ)− .

x2
(θ)

3. End with coordinates of the projection:

〈xO′ , yO′ 〉 = x(θ), y(θ)

Machines 2021, 9, 133 9 of 20

5. Obstacle Avoidance

According to Velocity Obstacle (VO) algorithm (Figure 7), in the obstacle’s frame of
reference, the obstacle can be considered static and the vessel moves with a relative velocity
vuo = vu − vo, so we can simplify a dynamic obstacle avoidance problem into a static one.

Machines 2021, 9, x FOR PEER REVIEW 9 of 20

5. Obstacle Avoidance
According to Velocity Obstacle (VO) algorithm (Figure 7), in the obstacle’s frame of

reference, the obstacle can be considered static and the vessel moves with a relative veloc-
ity 𝐯௨௢ = 𝐯௨ − 𝐯௢, so we can simplify a dynamic obstacle avoidance problem into a static
one.

Figure 7. Dynamic obstacle avoidance by VO: our vessel (purple) needs to avoid another one (red).

An obstacle is modeled by a single point with a radius of danger 𝑅௦ . The region
bounded by the polygon UTିOTା is denoted ConeSpaceሺTିUTାሻ. When 𝐯௨௢, anchored
in the vessel, lies within ConeSpaceሺTିUTାሻ, it may collide. So to prevent collision, 𝐯௨௢
must satisfy: argሺ𝐯௨௢ሻ ∉ ConeSpaceሺTିUTାሻ = ൤argሺ𝐫௨௢ሻ − asin ൬𝑅௦𝜎 ൰ ; argሺ𝐫௨௢ሻ + asin ൬𝑅௦𝜎 ൰൨ (18)

where 𝐫௨௢ = 𝐫௨ − 𝐫௢ is the relative displacement between the vessel and obstacle. Upon
obstacle detection, the vessel must change direction so that the new relative velocity sat-
isfies ሺ18ሻ. This is realized by making 𝐯௨௢ collide with UTା or UTି according to COL-
OREGS law in Table 3, where 𝜓௢ is the current heading of the obstacle.

Table 3. How to choose direction of collision avoidance according to COLOREGS law. 𝐚𝐫𝐠ሺ𝐫𝒖𝒐ሻ − 𝝍𝒐 Case 𝐔𝐓ି/ 𝐔𝐓ା ሾ0°; 55°ሻ Overtaking UTି ሿ55°; 165°ሻ Crossing (from left) UTି ሾ165°; 180°ሻ Head-on UTି ሾ180°; 195°ሻ Head-on UTା ሾ195°; 305°ሻ Crossing (from right) UTା ሾ305°; 360°ሻ Overtaking UTା

The final desired heading 𝜓௨ௗ that the vessel must drive towards is as follows: 𝜓௨ௗ = asin ൬𝑣௢𝑣௨ sinሺ𝜓௢ − argሺ𝐯௨௢ௗሻሻ൰ + argሺ𝐯௨௢ௗሻ (19)

where 𝐯௨௢ௗ = 𝐯௨ௗ − 𝐯௢ and 𝐯௨ௗ is the desired velocity of the vessel.
Advanced SBG (Figure 8) enhances the performance of SBG with four distinct modes:

tracking (mode 1), avoiding (mode 2), distance keeping (mode 3) and homing (mode 4).
Within modes 2–4, the vessel is commanded to track every trapezoid’s side with desired
headings auto-selected from VO to efficiently and safely avoid obstacles.

Figure 7. Dynamic obstacle avoidance by VO: our vessel (purple) needs to avoid another one (red).

An obstacle is modeled by a single point with a radius of danger Rs. The region
bounded by the polygon UT−OT+ is denoted ConeSpace

(
T−UT+

)
. When vuo, anchored

in the vessel, lies within ConeSpace
(
T−UT+

)
, it may collide. So to prevent collision,

vuo must satisfy:

arg(vuo) /∈ ConeSpace
(
T−UT+

)
=

[
arg(ruo)− asin

(
Rs

σ

)
; arg(ruo) + asin

(
Rs

σ

)]
(18)

where ruo = ru − ro is the relative displacement between the vessel and obstacle. Upon
obstacle detection, the vessel must change direction so that the new relative velocity satisfies
(18). This is realized by making vuo collide with UT+ or UT− according to COLOREGS
law in Table 3, where ψo is the current heading of the obstacle.

Table 3. How to choose direction of collision avoidance according to COLOREGS law.

arg(ruo)−ψo Case UT−/ UT+

[0◦; 55◦) Overtaking UT−

[55◦; 165◦) Crossing (from left) UT−

[165◦; 180◦) Head-on UT−

[180◦; 195◦) Head-on UT+

[195◦; 305◦) Crossing (from right) UT+

[305◦; 360◦) Overtaking UT+

The final desired heading ψud that the vessel must drive towards is as follows:

ψud = asin
(

vo

vu
sin(ψo − arg(vuod))

)
+ arg(vuod) (19)

where vuod = vud − vo and vud is the desired velocity of the vessel.
Advanced SBG (Figure 8) enhances the performance of SBG with four distinct modes:

tracking (mode 1), avoiding (mode 2), distance keeping (mode 3) and homing (mode 4).
Within modes 2–4, the vessel is commanded to track every trapezoid’s side with desired
headings auto-selected from VO to efficiently and safely avoid obstacles.

Machines 2021, 9, 133 10 of 20
Machines 2021, 9, x FOR PEER REVIEW 10 of 20

Figure 8. Advanced SBG.

To realize the advanced SBG, we need to find 𝛾ଵ, 𝛾ଶ and 𝛾ଷ as follows:

ቐ 𝛾ଵ = 𝜓௨ௗሺ𝑡ଵሻ𝛾ଶ = 𝛼௞𝛾ଷ = 𝛼௞ − signሺ𝛾ଵ − 𝛼௞ሻ 𝜇 (20)

where 𝛼௞ is the slope of the global path, 𝜇 = గସ in case of head-on and 𝜇 = గ଺ in case of
overtaking and crossing, 𝑡ଵ is the moment to enter mode 2 when the distance between
our vessel and the obstacle 𝜎 drops below a threshold. The moment to enter mode 3 and
mode 4 is when 𝐯௨௢ meets ሺ18ሻ but with the assumption that 𝜓௨ equals 𝛾ଶ and 𝛾ଷ, re-
spectively.

6. Simulated and Experimental Results
To verify the effectiveness of the proposed algorithms, we carry out computer simu-

lations in MATLAB and experiments in a local lake. The B-Spline path planner is firstly
implemented in MATLAB for ease of design and evaluation, then realized by C++ code in
VIAM-USV-GC to facilitate user-friendly interaction. The continuous LOS path follower
is validated by simulated MATLAB results before C++ realization in VIAM-USV-VC for
experiments. We only provide experimental results of our advanced SBG scheme since
simulated ones are extensively discussed in [20].

6.1. Simulated Result of B-Spline Path Planner and Continuous LOS Path Follower
As in Figure 9, we build a MATLAB/Simulink system to simulate the behavior of B-

Spline path planner and continuous LOS path follower before real-world deployment. A
PD heading controller is implemented to generate heading torque for a reduced 3-DOF
USV model.

Figure 9. Simulink model of the overall system with B-Spline path planner and continuous LOS path follower.

Figure 8. Advanced SBG.

To realize the advanced SBG, we need to find γ1, γ2 and γ3 as follows:
γ1 = ψud(t1)

γ2 = αk
γ3 = αk − sign(γ1 − αk)µ

(20)

where αk is the slope of the global path, µ = π
4 in case of head-on and µ = π

6 in case of
overtaking and crossing, t1 is the moment to enter mode 2 when the distance between our
vessel and the obstacle σ drops below a threshold. The moment to enter mode 3 and mode
4 is when vuo meets (18) but with the assumption that ψu equals γ2 and γ3, respectively.

6. Simulated and Experimental Results

To verify the effectiveness of the proposed algorithms, we carry out computer simu-
lations in MATLAB and experiments in a local lake. The B-Spline path planner is firstly
implemented in MATLAB for ease of design and evaluation, then realized by C++ code in
VIAM-USV-GC to facilitate user-friendly interaction. The continuous LOS path follower
is validated by simulated MATLAB results before C++ realization in VIAM-USV-VC for
experiments. We only provide experimental results of our advanced SBG scheme since
simulated ones are extensively discussed in [20].

6.1. Simulated Result of B-Spline Path Planner and Continuous LOS Path Follower

As in Figure 9, we build a MATLAB/Simulink system to simulate the behavior of
B-Spline path planner and continuous LOS path follower before real-world deployment. A
PD heading controller is implemented to generate heading torque for a reduced 3-DOF
USV model.

Machines 2021, 9, x FOR PEER REVIEW 10 of 20

Figure 8. Advanced SBG.

To realize the advanced SBG, we need to find 𝛾ଵ, 𝛾ଶ and 𝛾ଷ as follows:

ቐ 𝛾ଵ = 𝜓௨ௗሺ𝑡ଵሻ𝛾ଶ = 𝛼௞𝛾ଷ = 𝛼௞ − signሺ𝛾ଵ − 𝛼௞ሻ 𝜇 (20)

where 𝛼௞ is the slope of the global path, 𝜇 = గସ in case of head-on and 𝜇 = గ଺ in case of
overtaking and crossing, 𝑡ଵ is the moment to enter mode 2 when the distance between
our vessel and the obstacle 𝜎 drops below a threshold. The moment to enter mode 3 and
mode 4 is when 𝐯௨௢ meets ሺ18ሻ but with the assumption that 𝜓௨ equals 𝛾ଶ and 𝛾ଷ, re-
spectively.

6. Simulated and Experimental Results
To verify the effectiveness of the proposed algorithms, we carry out computer simu-

lations in MATLAB and experiments in a local lake. The B-Spline path planner is firstly
implemented in MATLAB for ease of design and evaluation, then realized by C++ code in
VIAM-USV-GC to facilitate user-friendly interaction. The continuous LOS path follower
is validated by simulated MATLAB results before C++ realization in VIAM-USV-VC for
experiments. We only provide experimental results of our advanced SBG scheme since
simulated ones are extensively discussed in [20].

6.1. Simulated Result of B-Spline Path Planner and Continuous LOS Path Follower
As in Figure 9, we build a MATLAB/Simulink system to simulate the behavior of B-

Spline path planner and continuous LOS path follower before real-world deployment. A
PD heading controller is implemented to generate heading torque for a reduced 3-DOF
USV model.

Figure 9. Simulink model of the overall system with B-Spline path planner and continuous LOS path follower. Figure 9. Simulink model of the overall system with B-Spline path planner and continuous LOS path follower.

Machines 2021, 9, 133 11 of 20

It is essential that the vessel go past every waypoint. To accomplish this mission,
we examine how the vessel’s physical turning capability affects the tracking performance
by planning two paths, one satisfying (case 1) the limiting curvature and the other not
(case 2) (Figure 10).

Machines 2021, 9, x FOR PEER REVIEW 11 of 20

It is essential that the vessel go past every waypoint. To accomplish this mission, we
examine how the vessel’s physical turning capability affects the tracking performance by
planning two paths, one satisfying (case 1) the limiting curvature and the other not (case
2) (Figure 10).

(a) (b)

Figure 10. Simulated result of path planner: path that meets (blue) and does not (red) meet the limiting curvature are
shown in (a); their corresponding curvature plots in (b).

Figure 11 and Table 4 imply that although the length of the planned path in case 2 is
shorter than that of case 1; the traveled distance is longer since the vessel cannot physically
follow this path. In terms of heading tracking, according to Figure 12 and Table 4, the
heading error in case 1 is smaller than that of case 2, resulting in the control signal in case
1 fluctuating less. This makes CTE in case 1 significantly smaller compared to that of case
2. Finally, the original objective to go past waypoints in case 1 is accomplished to a greater
extent. A conclusion worth drawing from this simulated result is that designing a path
that meets the limiting curvature plays an essential role in excelling the path following’s
performance in general.

(a) (c)

Figure 10. Simulated result of path planner: path that meets (blue) and does not (red) meet the limiting curvature are shown
in (a); their corresponding curvature plots in (b).

Figure 11 and Table 4 imply that although the length of the planned path in case 2 is
shorter than that of case 1; the traveled distance is longer since the vessel cannot physically
follow this path. In terms of heading tracking, according to Figure 12 and Table 4, the
heading error in case 1 is smaller than that of case 2, resulting in the control signal in case 1
fluctuating less. This makes CTE in case 1 significantly smaller compared to that of case 2.
Finally, the original objective to go past waypoints in case 1 is accomplished to a greater
extent. A conclusion worth drawing from this simulated result is that designing a path
that meets the limiting curvature plays an essential role in excelling the path following’s
performance in general.

Machines 2021, 9, x FOR PEER REVIEW 11 of 20

It is essential that the vessel go past every waypoint. To accomplish this mission, we
examine how the vessel’s physical turning capability affects the tracking performance by
planning two paths, one satisfying (case 1) the limiting curvature and the other not (case
2) (Figure 10).

(a) (b)

Figure 10. Simulated result of path planner: path that meets (blue) and does not (red) meet the limiting curvature are
shown in (a); their corresponding curvature plots in (b).

Figure 11 and Table 4 imply that although the length of the planned path in case 2 is
shorter than that of case 1; the traveled distance is longer since the vessel cannot physically
follow this path. In terms of heading tracking, according to Figure 12 and Table 4, the
heading error in case 1 is smaller than that of case 2, resulting in the control signal in case
1 fluctuating less. This makes CTE in case 1 significantly smaller compared to that of case
2. Finally, the original objective to go past waypoints in case 1 is accomplished to a greater
extent. A conclusion worth drawing from this simulated result is that designing a path
that meets the limiting curvature plays an essential role in excelling the path following’s
performance in general.

(a) (c)

Figure 11. Cont.

Machines 2021, 9, 133 12 of 20Machines 2021, 9, x FOR PEER REVIEW 12 of 20

(b) (d)

Figure 11. Simulated result of path follower: the traveled path and the corresponding curvature plot in case 1 (a,b) and
case 2 (c,d).

(a) (c)

(b) (d)

Figure 11. Simulated result of path follower: the traveled path and the corresponding curvature plot in case 1 (a,b) and
case 2 (c,d).

Table 4. Quantitative evalution in control and guidance performance for two cases.

Criteria Case 1 Case 2

Length of planned path (m) 113.8323 112.7625
Travelled distance (m) 111.3862 111.7344

Root-mean-square CTE (m) 0.1754 0.4500
Root-mean-square heading

error (deg) 6.0976 13.4719

Distance deviation from WP2
(m) 0.0085 0.1498

Distance deviation from WP3
(m) 0.0040 0.0158

Distance deviation from WP4
(m) 0.0017 0.0003

Distance deviation from WP5
(m) 0.0001 0.0001

6.2. Maneuvering Test

The purpose of this test is to determine the USV2000′s radius of turning, whose
inversion is the limiting curvature of the vessel. The procedure is as follows: we export
a fixed PWM signal (40%) to two rear thrusters but a maximum (100%) PWM signal to
two side ones. Given that the obtained GPS position is very noisy, approximate B-Spline
interpolation [22] is chosen to interpolate a smooth parameterized curve from noisy GPS
data in order to calculate the curvature at every point on the traveled trajectory. As in
Figure 13, it is apparent that the estimated trajectory is very smooth and fits quite well with
the original GPS one.

Machines 2021, 9, 133 13 of 20

Machines 2021, 9, x FOR PEER REVIEW 12 of 20

(b) (d)

Figure 11. Simulated result of path follower: the traveled path and the corresponding curvature plot in case 1 (a,b) and
case 2 (c,d).

(a) (c)

(b) (d)

Machines 2021, 9, x FOR PEER REVIEW 13 of 20

(e) (f)

Figure 12. Comparisons of control and guidance performance for two cases in terms of heading error (a,c); control signal
(b,d) and CTE (e,f).

Table 4. Quantitative evalution in control and guidance performance for two cases.

Criteria Case 1 Case 2
Length of planned path (m) 113.8323 112.7625

Travelled distance (m) 111.3862 111.7344
Root-mean-square CTE (m) 0.1754 0.4500

Root-mean-square heading error (deg) 6.0976 13.4719
Distance deviation from WP2 (m) 0.0085 0.1498
Distance deviation from WP3 (m) 0.0040 0.0158
Distance deviation from WP4 (m) 0.0017 0.0003
Distance deviation from WP5 (m) 0.0001 0.0001

6.2. Maneuvering Test
The purpose of this test is to determine the USV2000′s radius of turning, whose in-

version is the limiting curvature of the vessel. The procedure is as follows: we export a
fixed PWM signal (40%) to two rear thrusters but a maximum (100%) PWM signal to two
side ones. Given that the obtained GPS position is very noisy, approximate B-Spline inter-
polation [22] is chosen to interpolate a smooth parameterized curve from noisy GPS data
in order to calculate the curvature at every point on the traveled trajectory. As in Figure
13, it is apparent that the estimated trajectory is very smooth and fits quite well with the
original GPS one.

From this estimated B-Spline path, we can easily plot the curvature at every point
(Figure 13) and pick the suitable curvature (Table 5) as a candidate for the calculation of
the radius of turning. From now on, USV2000′s radius of turning is chosen as 4 m, result-
ing in the limiting curvature being 0.25 m−1.

Table 5. Radius of turning of USV2000.

Direction Radius of Turning (m)
Counterclockwise 3.92–4.30

Clockwise 3.82–4.25

Figure 12. Comparisons of control and guidance performance for two cases in terms of heading error (a,c); control signal
(b,d) and CTE (e,f).

From this estimated B-Spline path, we can easily plot the curvature at every point
(Figure 13) and pick the suitable curvature (Table 5) as a candidate for the calculation of the
radius of turning. From now on, USV2000′s radius of turning is chosen as 4 m, resulting in
the limiting curvature being 0.25 m−1.

Machines 2021, 9, 133 14 of 20

Table 5. Radius of turning of USV2000.

Direction Radius of Turning (m)

Counterclockwise 3.92–4.30
Clockwise 3.82–4.25Machines 2021, 9, x FOR PEER REVIEW 14 of 20

(a) (b)

Figure 13. Approximately interpolate B-Spline curve from GPS data in (a); curvature analysis of USV2000 in (b).

6.3. Experimental Result of B-Spline Path Planner and Continuous LOS Path Follower
In this experiment, we design a mission as follows: first, USV2000 departs from a har-

bor with a minus-90-degree heading, then follows the planned path as close as possible and
finally returns home with a 90-degree heading. The environment that our vessel must op-
erate is a local lake, which is confined in space and small in size. This poses a huge challenge
to vessels, since they can accidentally collide with the bank when making a sharp turn. This
type of collision is uncontrollable and mainly stems from the fact that our vessel cannot
physically follow those paths whose maximum curvature exceeds the vessel’s limiting one.
To solve the problem, our proposed path planner comes into play. Parameters of B-Spline
path planner with GA optimization are listed in Table 6. As can be seen in Figure 14, the
planned B-Spline path not only goes through all waypoints and avoids static obstacles but
also meets the limiting curvature of USV2000 (Figure 15).

Table 6. Paramters of B-Spline path planner with GA optimization.

Parameter Value
Degree of B-Spline 4

Number of generations 200
Number of individuals per population 100

Number of selected individuals 50
Mutation rate 10%

After path planning, the vessel needs to follow the pre-defined path as close as pos-
sible. A PD heading controller is implemented, and a constant PWM signal (40%) is ex-
ported to two rear thrusters. As in Figure 14, the fitness between the traveled and planned
paths is acceptable in relation to the overall traveled distance. From Table 7 and Figure
16, it is noticeable that the heading error is quite small, resulting in the control signal ex-
hibiting a slight fluctuation in amplitude. Our vessel tracks well through all waypoints
with a maximum deviation of 0.47 m and does not violate prohibited regions.

Figure 13. Approximately interpolate B-Spline curve from GPS data in (a); curvature analysis of USV2000 in (b).

6.3. Experimental Result of B-Spline Path Planner and Continuous LOS Path Follower

In this experiment, we design a mission as follows: first, USV2000 departs from a
harbor with a minus-90-degree heading, then follows the planned path as close as possible
and finally returns home with a 90-degree heading. The environment that our vessel must
operate is a local lake, which is confined in space and small in size. This poses a huge
challenge to vessels, since they can accidentally collide with the bank when making a
sharp turn. This type of collision is uncontrollable and mainly stems from the fact that
our vessel cannot physically follow those paths whose maximum curvature exceeds the
vessel’s limiting one. To solve the problem, our proposed path planner comes into play.
Parameters of B-Spline path planner with GA optimization are listed in Table 6. As can
be seen in Figure 14, the planned B-Spline path not only goes through all waypoints and
avoids static obstacles but also meets the limiting curvature of USV2000 (Figure 15).

Table 6. Paramters of B-Spline path planner with GA optimization.

Parameter Value

Degree of B-Spline 4
Number of generations 200

Number of individuals per population 100
Number of selected individuals 50

Mutation rate 10%

After path planning, the vessel needs to follow the pre-defined path as close as possible.
A PD heading controller is implemented, and a constant PWM signal (40%) is exported
to two rear thrusters. As in Figure 14, the fitness between the traveled and planned paths
is acceptable in relation to the overall traveled distance. From Table 7 and Figure 16, it is
noticeable that the heading error is quite small, resulting in the control signal exhibiting
a slight fluctuation in amplitude. Our vessel tracks well through all waypoints with a
maximum deviation of 0.47 m and does not violate prohibited regions.

Machines 2021, 9, 133 15 of 20Machines 2021, 9, x FOR PEER REVIEW 15 of 20

(a) (b)

Figure 14. Planned B-Spline path by path planner in GCS in (a); traveled path in (b).

Figure 15. Curvature analysis of the planned and traveled paths.

(a) (b)

(c)

Figure 16. Results of heading error (a), PWM signal (b) and CTE (c) throughout the mission.

Figure 14. Planned B-Spline path by path planner in GCS in (a); traveled path in (b).

Machines 2021, 9, x FOR PEER REVIEW 15 of 20

(a) (b)

Figure 14. Planned B-Spline path by path planner in GCS in (a); traveled path in (b).

Figure 15. Curvature analysis of the planned and traveled paths.

(a) (b)

(c)

Figure 16. Results of heading error (a), PWM signal (b) and CTE (c) throughout the mission.

Figure 15. Curvature analysis of the planned and traveled paths.

Machines 2021, 9, x FOR PEER REVIEW 15 of 20

(a) (b)

Figure 14. Planned B-Spline path by path planner in GCS in (a); traveled path in (b).

Figure 15. Curvature analysis of the planned and traveled paths.

(a) (b)

(c)

Figure 16. Results of heading error (a), PWM signal (b) and CTE (c) throughout the mission.

Figure 16. Results of heading error (a), PWM signal (b) and CTE (c) throughout the mission.

Machines 2021, 9, 133 16 of 20

Table 7. Quantitative evalution in control and guidance performance of USV2000.

Criteria Value

Average speed (m/s) 0.55
Travelled distance (m) 118.5311

Root-mean-square CTE (m) 0.2868
Root-mean-square heading error (deg) 5.7701

Distance deviation from WP2 (m) 0.4762
Distance deviation from WP3 (m) 0.4509
Distance deviation from WP4 (m) 0.4306
Distance deviation from WP5 (m) 0.4466

6.4. Experimental Result of Advanced SBG for Obstacle Avoidance

In this experiment, USV2000 is planned to follow a straight line. During operation,
the vessel must avoid any dynamic obstacle upon detection, then return along the original
global path as fast as possible. The type of obstacle deployed is another moving vessel
(Figure 17), which is frequently encountered in practice. All vessels must obey COLOREGS
law. Three typical situations are taken into consideration: head-on, overtaking and crossing.
While in a head-on case, USV2000 encounters an obstacle moving straight towards; the
overtaking situation requires that USV2000 bypass an obstacle moving away from it. In
crossing cases, USV2000 is required to avoid an obstacle coming from the right. While
USV2000 performs collision avoidance, according to COLOREGS law, the targeted obstacle
must maintain its speed and heading. To measure the distance to the obstacle, LiDAR is
used. Throughout the experiments, the obstacle’s heading is given in advance. Parameters
of the advanced SBG are listed in Table 8.

Table 8. Parameters of the advanced SBG.

Parameter Value

Safety distance (m) 2.5
Distance to avoid (m) 5

Velocity of vessel (m/s) 1
Velocity of obstacle (m/s) 0.7

Maximum measurable distance (m) 30
Minimum measurable distance (m) 0.1

Machines 2021, 9, x FOR PEER REVIEW 16 of 20

Table 7. Quantitative evalution in control and guidance performance of USV2000.

Criteria Value
Average speed (m/s) 0.55

Travelled distance (m) 118.5311
Root-mean-square CTE (m) 0.2868

Root-mean-square heading error (deg) 5.7701
Distance deviation from WP2 (m) 0.4762
Distance deviation from WP3 (m) 0.4509
Distance deviation from WP4 (m) 0.4306
Distance deviation from WP5 (m) 0.4466

6.4. Experimental Result of Advanced SBG for Obstacle Avoidance
In this experiment, USV2000 is planned to follow a straight line. During operation,

the vessel must avoid any dynamic obstacle upon detection, then return along the original
global path as fast as possible. The type of obstacle deployed is another moving vessel
(Figure 17), which is frequently encountered in practice. All vessels must obey COL-
OREGS law. Three typical situations are taken into consideration: head-on, overtaking
and crossing. While in a head-on case, USV2000 encounters an obstacle moving straight
towards; the overtaking situation requires that USV2000 bypass an obstacle moving away
from it. In crossing cases, USV2000 is required to avoid an obstacle coming from the right.
While USV2000 performs collision avoidance, according to COLOREGS law, the targeted
obstacle must maintain its speed and heading. To measure the distance to the obstacle,
LiDAR is used. Throughout the experiments, the obstacle’s heading is given in advance.
Parameters of the advanced SBG are listed in Table 8.

Table 8. Parameters of the advanced SBG.

Parameter Value
Safety distance (m) 2.5

Distance to avoid (m) 5
Velocity of vessel (m/s) 1

Velocity of obstacle (m/s) 0.7
Maximum measurable distance (m) 30
Minimum measurable distance (m) 0.1

(a) (b)

Figure 17. Targeted vessel being an obstacle in (a); obstacle avoidance process in (b).

Experimental results in all three situations (Figures 18–20) show that the vessel man-
ages to avoid obstacles and maintain a safe distance during operation. After successful
obstacle avoidance, the vessel immediately returns to the original global path, implying

Figure 17. Targeted vessel being an obstacle in (a); obstacle avoidance process in (b).

Experimental results in all three situations (Figures 18–20) show that the vessel man-
ages to avoid obstacles and maintain a safe distance during operation. After successful
obstacle avoidance, the vessel immediately returns to the original global path, implying

Machines 2021, 9, 133 17 of 20

that the algorithm does not affect the path following’s performance. It is noticeable that
the path’s length in the overtaking case is longer than that of other cases because the
relative velocity between vessel and obstacle is smaller. There are abrupt changes in the
desired heading’s plot, but USV2000 is flexible enough to perform heading tracking at an
acceptable degree, thereby elegantly accomplishing those missions.

Machines 2021, 9, x FOR PEER REVIEW 17 of 20

that the algorithm does not affect the path following’s performance. It is noticeable that
the path’s length in the overtaking case is longer than that of other cases because the rela-
tive velocity between vessel and obstacle is smaller. There are abrupt changes in the de-
sired heading’s plot, but USV2000 is flexible enough to perform heading tracking at an
acceptable degree, thereby elegantly accomplishing those missions.

(a) (b)

(c) (d) (e)

Figure 18. Dynamic obstacle avoidance in case of head-on: USV2000′s path (red) and obstacle’s path (yellow) are shown in
(a); heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

(a) (b)

Figure 18. Dynamic obstacle avoidance in case of head-on: USV2000′s path (red) and obstacle’s path (yellow) are shown
in (a); heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

Machines 2021, 9, x FOR PEER REVIEW 17 of 20

that the algorithm does not affect the path following’s performance. It is noticeable that
the path’s length in the overtaking case is longer than that of other cases because the rela-
tive velocity between vessel and obstacle is smaller. There are abrupt changes in the de-
sired heading’s plot, but USV2000 is flexible enough to perform heading tracking at an
acceptable degree, thereby elegantly accomplishing those missions.

(a) (b)

(c) (d) (e)

Figure 18. Dynamic obstacle avoidance in case of head-on: USV2000′s path (red) and obstacle’s path (yellow) are shown in
(a); heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

(a) (b)

Figure 19. Cont.

Machines 2021, 9, 133 18 of 20Machines 2021, 9, x FOR PEER REVIEW 18 of 20

(c) (d) (e)

Figure 19. Dynamic obstacle avoidance in case of overtaking: USV2000′s path (red) and obstacle’s path (yellow) are shown in (a);
heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

(a) (b)

(c) (d) (e)

Figure 20. Dynamic obstacle avoidance in case of crossing: USV2000′s path (red) and obstacle’s path (yellow) are shown in (a);
heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

7. Conclusions
In this paper, we embed into our newly built USV prototype, namely, VIAM-USV2000,

various advanced autonomous capabilities to satisfactorily carry out missions in confined
riverine environments in Vietnam and other similar tropical regions. First, a B-Spline path
planner is enhanced in that it not only meets the limiting curvature but also exhibits enough
flexibility to avoid static obstacles. To smoothly track any arbitrary parameterized curve, we
propose a continuous LOS path follower based on a Newton–Raphson iterative procedure
that features a continuous projection of the vessel’s center of navigation onto the curve. An
advanced SBG law is also proposed to plan a trapezium-like local path for avoiding dy-
namic obstacles on the fly. Simulated and experimental results show that the proposed B-

Figure 19. Dynamic obstacle avoidance in case of overtaking: USV2000′s path (red) and obstacle’s path (yellow) are shown
in (a); heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

Machines 2021, 9, x FOR PEER REVIEW 18 of 20

(c) (d) (e)

Figure 19. Dynamic obstacle avoidance in case of overtaking: USV2000′s path (red) and obstacle’s path (yellow) are shown in (a);
heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

(a) (b)

(c) (d) (e)

Figure 20. Dynamic obstacle avoidance in case of crossing: USV2000′s path (red) and obstacle’s path (yellow) are shown in (a);
heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

7. Conclusions
In this paper, we embed into our newly built USV prototype, namely, VIAM-USV2000,

various advanced autonomous capabilities to satisfactorily carry out missions in confined
riverine environments in Vietnam and other similar tropical regions. First, a B-Spline path
planner is enhanced in that it not only meets the limiting curvature but also exhibits enough
flexibility to avoid static obstacles. To smoothly track any arbitrary parameterized curve, we
propose a continuous LOS path follower based on a Newton–Raphson iterative procedure
that features a continuous projection of the vessel’s center of navigation onto the curve. An
advanced SBG law is also proposed to plan a trapezium-like local path for avoiding dy-
namic obstacles on the fly. Simulated and experimental results show that the proposed B-

Figure 20. Dynamic obstacle avoidance in case of crossing: USV2000′s path (red) and obstacle’s path (yellow) are shown in
(a); heading-tracking analysis in (b); obstacle avoidance process with evolving pair of avoiding directions (black) in (c–e).

7. Conclusions

In this paper, we embed into our newly built USV prototype, namely, VIAM-USV2000,
various advanced autonomous capabilities to satisfactorily carry out missions in confined
riverine environments in Vietnam and other similar tropical regions. First, a B-Spline
path planner is enhanced in that it not only meets the limiting curvature but also exhibits
enough flexibility to avoid static obstacles. To smoothly track any arbitrary parameterized
curve, we propose a continuous LOS path follower based on a Newton–Raphson iterative
procedure that features a continuous projection of the vessel’s center of navigation onto

Machines 2021, 9, 133 19 of 20

the curve. An advanced SBG law is also proposed to plan a trapezium-like local path
for avoiding dynamic obstacles on the fly. Simulated and experimental results show that
the proposed B-Spline path planner and continuous LOS path follower enable the vessel
to smoothly maneuver with moderate CTE through consecutive, sharp bends. During
operation, the safety issue is guaranteed when the vessel always succeeds in avoiding and
maintaining a minimum distance from any dynamic obstacle in various circumstances. It
is also important to restate that all algorithms are realized by an efficient implementation
of hardware–software infrastructure, thereby maintaining modularity, specialty and par-
allelity to maximize resource usage and facilitate simple maintenance, replacement and
upgrade. To our belief, this USV model can open up many real-world applications such as
environmental monitoring in a variety of remote areas all around the world.

Author Contributions: Conceptualization, N.-H.T. and H.-S.C.; methodology, N.-H.T.; software,
Q.-H.P. and J.-H.L.; validation, N.-H.T. and H.-S.C.; formal analysis, N.-H.T.; investigation, Q.-H.P.
and J.-H.L.; resources, N.-H.T. and Q.-H.P.; data curation, N.-H.T. and Q.-H.P.; writing—original
draft preparation, N.-H.T. and Q.-H.P. and J.-H.L.; writing—review and editing, N.-H.T. and H.-S.C.
and Q.-H.P.; supervision, N.-H.T. and H.-S.C.; project administration, N.-H.T.; funding acquisition,
N.-H.T. and H.-S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Unmanned Vehicles Core Technology Research and
Development Program through the National Research Foundation of Korea (NRF) and the Unmanned
Vehicle Advanced Research Center (UVARC), funded by the Ministry of Science and ICT, the Republic
of Korea (NRF-2020M3C1C1A02086321).

Acknowledgments: We acknowledge the support of time and facilities from Laboratory of Advance
Design and Manufacturing Processes (ADMP) and Innovation Fablab, Ho Chi Minh City University
of Technology (HCMUT), VNU-HCM for this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Curcio, J.; Leonard, J.; Patrikalakis, A. SCOUT—A low cost autonomous surface platform for research in cooperative autonomy.

In Proceedings of the OCEANS 2005 MTS/IEEE, Washington, DC, USA, 17–23 September 2006.
2. Hitz, G.; Gotovos, A.; Pomerleau, F.; Garneau, M.-É.; Pradalier, C.; Krause, A.; Siegwart, R.Y. Fully autonomous focused

exploration for robotic environmental monitoring. In Proceedings of the 2014 IEEE International Conference on Robotics and
Automation (ICRA), Hong Kong, China, 31 May–7 June 2014.

3. Yang, T.; Hsiung, S.; Kuo, C.; Tsai, Y.; Peng, K.; Hsieh, Y.; Shen, Z.; Feng, J.; Kuo, C. Development of unmanned surface vehicle
for water quality monitoring and measurement. In Proceedings of the 2018 IEEE International Conference on Applied System
Invention (ICASI), Chiba, Japan, 13–17 April 2018.

4. Manley, J.E. Unmanned surface vehicles, 15 years of development. In Proceedings of the OCEANS 2008, Quebec City, QC,
Canada, 15–18 September 2008.

5. Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control
2016, 41, 71–93. [CrossRef]

6. Wang, W.; Gheneti, B.; Mateos, L.A.; Duarte, F.; Ratti, C.; Rus, D. Roboat: An Autonomous Surface Vehicle for Urban Waterways.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019.

7. Wang, W.; Shan, T.; Leoni, P.; Fernandez-Gutierrez, D.; Meyers, D.; Ratti, C.; Rus, D. Roboat II: A Novel Autonomous Surface
Vessel for Urban Environments. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Las Vegas, NV, USA, 25–29 October 2020.

8. Tran, N.-H.; Nguyen, T.-C.; Tran, V.-T.; Nguyen, V.-C.; Nguyen, T.-N. The Design of an VIAM-USVI000 Unmanned Surface Vehicle
for Environmental Monitoring Applications. In Proceedings of the 2018 4th International Conference on Green Technology and
Sustainable Development (GTSD), Ho Chi Minh City, Vietnam, 23–24 November 2018.

9. Tran, N.-H.; Nguyen, A.-D.; Nguyen, T.-N. A Genetic Algorithm Application in Planning Path Using B-Spline Model for
Autonomous Underwater Vehicle (AUV). Appl. Mech. Mater. 2020, 902, 54–64. [CrossRef]

10. De Boor, C. On calculating with B-splines. J. Approx. Theory 1972, 6, 50–62. [CrossRef]
11. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80,

8091–8126. [CrossRef] [PubMed]
12. LaValle, S.M.; James, J.; Kuffner, J. Randomized Kinodynamic Planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]

http://doi.org/10.1016/j.arcontrol.2016.04.018
http://doi.org/10.4028/www.scientific.net/AMM.902.54
http://doi.org/10.1016/0021-9045(72)90080-9
http://doi.org/10.1007/s11042-020-10139-6
http://www.ncbi.nlm.nih.gov/pubmed/33162782
http://doi.org/10.1177/02783640122067453

Machines 2021, 9, 133 20 of 20

13. Dubins, L. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal
Positions and Tangents. Am. J. Math. 1957, 79, 497–516. [CrossRef]

14. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 254–266.
15. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33.

[CrossRef]
16. Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991, 7,

278–288. [CrossRef]
17. Fiorini, P.; Shiller, Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Robot. Res. 1998, 17, 760–772.

[CrossRef]
18. Kuwata, Y.; Wolf, M.T.; Zarzhitsky, D.; Huntsberger, T.L. Safe Maritime Autonomous Navigation with COLREGS, Using Velocity

Obstacles. IEEE J. Ocean. Eng. 2014, 39, 110–119. [CrossRef]
19. Moe, S.; Pettersen, K.Y. Set-based Line-of-Sight (LOS) path following with collision avoidance for underactuated unmanned

surface vessel. In Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece,
21–24 June 2016.

20. Tran, N.-H.; Vu, M.-H.; Nguyen, T.-C.; Phan, M.-T.; Pham, Q.-H. Implementation and Enhancement of Set-Based Guidance by
Velocity Obstacle along with LiDAR for Unmanned Surface Vehicles. In Proceedings of the 2020 5th International Conference on
Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam, 27–28 November 2020.

21. Hoschek, J.; Lasser, D. Fundamentals of Computer Aided Geometric Design; AK Peters, Ltd.: Natick, MA, USA, 1996.
22. Tiller, W.; Piegl, L. The NURBS Book; Springer: Berlin, Germany, 1997.
23. Bäck, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford

University Press: New York, NY, USA, 1996.
24. Farin, G.; Hoschek, J.; Kim, M.-S. A History of Curves and Surfaces in CAGD. In Handbook of Computer Aided Geometric Design;

Elsevier: Amsterdam, The Netherlands, 2002; pp. 1–21.

http://doi.org/10.2307/2372560
http://doi.org/10.1109/100.580977
http://doi.org/10.1109/70.88137
http://doi.org/10.1177/027836499801700706
http://doi.org/10.1109/JOE.2013.2254214

	Introduction
	System Development
	Hardware Construction
	Software Composition

	Path Planning
	B-Spline Path Generation
	Genetic Algorithm for Optimal B-Spline Shaping

	Path Following
	Obstacle Avoidance
	Simulated and Experimental Results
	Simulated Result of B-Spline Path Planner and Continuous LOS Path Follower
	Maneuvering Test
	Experimental Result of B-Spline Path Planner and Continuous LOS Path Follower
	Experimental Result of Advanced SBG for Obstacle Avoidance

	Conclusions
	References

