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Abstract: Train running safety is considered one of the key criteria for advanced highway trains and
bogies. While a number of existing research studies have focused on its measurement and monitoring,
this study proposes a new and effective train running a safety prediction framework. The wheel
derail coefficient, wheel rate of load reduction, and wheel lateral pressure are considered the decision
variables for the safety framework. Data for actual measured rail conditions and vibration-based
signals are used as the input data. However, advanced trains and bogies are influenced more by
their inertial structures and mechanisms than by railway conditions and external environments. In
order to reflect their inertial influences, past data of output variables are used as recurrent data. The
proposed framework shares advantages of a general deep neural network and a recurrent neural
network. To prove the effectiveness of the proposed hybrid deep-learning framework, numerical
analyses using an actual measured train-railway model and transit simulation are conducted and
compared with the existing deep learning architectures.

Keywords: train running safety; hybrid deep learning; railway vehicle; vibration analysis

1. Introduction

The running safety of railway trains and bogies has been considered an important
criterion for rail transportation. As advanced high-speed trains have witnessed rapid
advancements and widespread adoption, their running safety has received considerable
attention. Running safety influences the transportation of passengers as well as the safe
delivery of cargo. Several railway related organizations [1–4] have their own definitions,
measuring rules, standards, and devices for determining running safety. For instance,
KRTS-VE-Part21-2015(R1) [5] defines the measurement of the running safety of a railway
with forces between train wheels and rail. The detail mechanism is provided in Section 2.
European standard EN 14363:2016 [6] introduced a multiple regress technique and removes
the two-rail inclination testing method. UIC 518 OR [7] explained a simplified method
using running vibrations as well as a normal method considering interactions between
wheel and rail.

There have been a number of studies on the running safety of a train. However,
most existing research studies have focused on measurements and monitoring of trains’
running safety. In addition, existing research studies have considered limited measuring
environments (e.g., bridge passing of a train, movements in a tunnel, or driving of a curved
railway) for comparatively simple monitoring. Moreover, the prediction framework for
running safety has been comparatively less examined. This study focuses on an effective
prediction framework for train running safety in a real-time manner.

Another challenge in running safety is the existence of various conditions and envi-
ronments in which the train is running. Train running safety is influenced by the number
of environments surrounding a train vehicle. For instance, a train’s mechanical structure,
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railway structures, and conditions must be considered simultaneously to ensure safety in
real time.

This research study is motivated by the following questions: (1) relationships among
train structure, railway environments, and running safety; (2) existence of a running safety
prediction framework; (3) possibility of real-time running safety measurement; and (4)
effectiveness of machine learning frameworks for running safety prediction. Considering
that there is an effective machine learning framework for real-time running safety in a train,
it is possible to control trains to achieve better running safety. An investigation of a real-time
running safety prediction framework can facilitate active control for better train driving
by maximizing passenger comport and ensuring safe delivery of cargo. Although several
advanced rail technologies have been proposed, the proposed framework is expected
to play a fundamental role in the active control of trains. Moreover, the technology can
contribute to the prevention of train derailment and the loss of lives of boarding passengers.

Therefore, this study applies and tests several machine learning techniques using
real-time train driving data. Moreover, the relationship between running safety and
surrounding factors is discussed. Based on the acquired results, real-time train running
safety control and prediction are performed.

To propose an effective prediction framework for train running safety, the following
section provides the relevant background and a review of the existing research studies.
Section 3 explains the training and test data for the prediction of train learning safety.
Section 4 summarizes the real-time data-driven prediction framework. In Section 5, the
effectiveness of the proposed framework is proven through case studies and comparisons
with existing methods.

2. Background and Literature Review

As mentioned in the previous section, each railway institution has its own running
safety definition and rules. In general, train running safety is related to the measurement
of forces in a running train. These forces are detected as vibrations in the train structures.
Numerous studies have calculated the derailment coefficient (DC) to determine the running
safety of trains. Figure 1 shows the simplified forces between running train wheels and
rails as KRTS-VE-Part51-2017(R1) [8].
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Figure 1. Forces between train wheels and rail.

Nomenclature for Figure 1 is provided in Table 1.
(1) and (2) denote the relationships between L and V,

L = N · sinα− TY · cosα (1)

where, TY ≤ µ ·N
V = N · cosα+ TYsinα (2)
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Table 1. Nomenclature for a train running safety.

Symbol Terms Unit

L Lateral force kN

V Vertical force kN

N Normal force kN

α
Contact angle

(Flange contact angle)
◦

TY Tangential force kN

Y Lateral force per a wheel axis kN

P Axle load kN

µ Friction coefficient µ ∈ R (R is real number)

∆V Gap between consecutive vertical forces kN

DC is calculated with L/V as shown in (3).

DC =
tanα∓ µ

1± µ tanα
(3)

Similarly, the dynamic vertical power (DV) is calculated using ∆V
V . In general, these

are key criteria for determining the dynamic running safety of trains. Figure 2a,b show the
allowable running safety per DC and DV as per the Korean railway standard (KRTS-VE-
Part21-2014(R1)) [4], respectively.
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Figure 2. Allowance of dynamic running safety: (a) Allowance per derailment coefficient (DC); (b) allowance of running
safety per dynamic vertical power (DV).

As shown in Figure 2, the Y-axis represents the probability of maximum DC (max L
V )

and a probability of minimum axle load (minP), respectively. Each probability is compared
with DC or DV measured in real time, and the running safety of a train is determined.
Besides the dynamical criteria, each railway operation institute has different static criteria
for running safety. Table 2 lists the static criteria for running safety in South Korea.
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Table 2. Static criteria for running safety in South Korea.

Classification Measurements Unit Criteria

Train running safety

Rate of wheel load reduction
(DV)

R ∈ [0, 1],
R is a real number DV ≤ 0.13

Derailment coefficient
(DC) R DC ≤ 0.8

Lateral displacement of rail head
(LD) mm LD ≤ 4

As mentioned in the previous section, the measurements and determination of running
safety vary with the applied standards, the train’s specifications, and running environments.
However, these approaches are oversimplified analyses of the system of forces between the
wheel and rail and fails to explain the essence of the train running safety.

In addition, it is difficult to dynamically measure the running safety considering the
overall train structure and surrounding environments. Therefore, several existing studies
have considered limited measuring environments. Table 3 summarizes the characteristics
of existing safety-related research studies.

Table 3. Running safety-related existing research studies and applications.

Existing Research Studies Characteristics Used Methods Issues

Arvidsson et al. [9]

- Running safety simulation under
non-ballasted bridge environments

- Simulation analysis of running safety and
passenger comport

- Simulation using 2D
train-track-bridge model

- Predefined model-based
simulation studies

Ding, et al. [10] - Early warning framework with vibrations
of an express train

- Nonlinear equation-based
regress model

- Monitoring-based early
warning framework

Choi, et al. [11] - Light rail (LRT)-based vibration
measurement on real running environment - Real measurement - Limited in small

distance-measurement

Jang and Yang [12]
- Numerical simulation—Consideration on
transition between floating slab track and

concrete track
- DIASTARS-based CAE simulation - Limited experimental condition

Kim, et al. [13] - CAE-based simulation studies - Input of “real railway models
and conditions” - CAE-based analysis

Oh and Kwon [14]
- Measure on real train

- Exemplary proof of DV’s importance on
running safety

- Vibration measurement on trains
with different weights

- Single factor
(weight)-based experiment

Seo, et al. [15] - Simulation study- Relationship between
train wheels and floating railway bridges

- Modeling of floating
railway bridges

- Nonlinear equation-based wheel
motion model

- Nonlinear equation-based
simulation model

Zhang, et al. [16] - 3D simulation model of train-induced
vibration of a floating slab

- Train/environment
model-based simulation - Model-based simulation study

As summarized in Table 3, most relevant studies have focused on the monitoring
of vibrations for determining running safety under limited environments. Moreover, the
analysis frameworks depend mostly on comparatively simple nonlinear regression models.

Several studies have overcome this limitation by introducing machine learning tech-
niques. In contrast to regression models, data from either measuring devices, simulation
models, or in combination, have been used as input for machine learning methods. Alawad
et al. [17] applied a convolutional neural network (CNN) to detect railway risks. Similarly,
Yang et al. [18] applied the ResNet model [19] to determine rail defects. Lee et al. [20]
applied a generative adversarial network (GAN) approach to estimate the remaining life of
train components to detect faults in trains. However, these studies have applied deep learn-
ing methodologies to image-based risk detection or train data analyses. There have been
few research studies and applications for train running safety using deep learning methods.

Therefore, this study proposes a deep learning-based framework to determine the
running safety of a train in real time. Moreover, the proposed framework predicts future
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running safety by considering a train structure and railway conditions. The following
section provides the detailed measurement conditions and framework.

3. Results Train Running Safety Data and Measurement Framework

The key objective of this study is to predict the running safety factors considering the
train mechanism and railway conditions in real time. As a target train model, we consid-
ered a developing high speed train model—high speed electric multiple unit 430 km/h
experiment (HEMU-430X). HEMU-430X was developed by the Korean Rail Research In-
stitute (KRRI), a state-run railway research institute by the Korean government, with a
maximum speed of 430 km/h. In South Korea, most running express trains have been
built based on the HEMU-430X. Figure 3 shows an HEMU-430X and its electromechanical
structure, which this study considers as a train model.
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Figure 3. HEMU-430X as a train model for running safety measurements. Figure 3. HEMU-430X as a train model for running safety measurements.

This study uses its electromechanical structure to simulate running under real railway
conditions. Accelerometers were installed to measure vibrations on an HEMU-430X bogie
model. Figure 4 shows the detection points for vibrations, their displacements, and the
axes for vibration.
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A 3 km real railway is modeled. The modeled railway was based on actual measured
data (measuring unit: 25 cm) from Busan to Daegu, South Korea. Figure 5a shows the real
railway and its model.
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(a) 

Figure 5. The target railway and its rail model: (a) The target real railway; (b) track distance plot of
the modelled railway.

The rail model is parameterized with distance (unit: mm), cross level irregularity
(unit: mm), curvature irregularity (unit: 1/km), lateral irregularity (unit: mm), vertical
irregularity (unit: mm), and gauge variation (unit: mm), which are obtained from the
actual measured railway data. Among these parameters, cross level irregularity is called a
“cant”. The cant is related to the rail’s curvature and the running speed of a train. The rail
model was programmed using a rail vehicle track interaction simulation software, Vampire
Pro software [21]. Figure 5b shows a part of the track distance plot that represents the
modeled rail.

Then, transient analyses were conducted using the modeled HEMU-430X and the
rail model. As the output of the analyses, vibrations on the displacements are shown in
Figure 4, among other results. Figure 6a shows the vibration signals obtained from the
transient analysis. The analysis was conducted using the Vampire Pro software.
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Figure 6. Vibrations from the transient analysis using the modeled railway and HEMU-430X: (a) Vibration plot; (b) model
data and output data using the transient analysis.

As shown in Figure 6b, the model and output data were extracted from the integrated
data. These data were used for the diagnosis of a train running safety. The data consisted
of 23 attributes, as listed in Table 4.

To check the dependency between each attribute, a statistical correlation test was
conducted. As shown in Figure 7a, the red circle indicates a positive relationship between
the two attributes, while the blue circle indicates a negative relationship. The circle radius
indicates the strength of the relationship.

For instance, Figure 7b shows that there is little correlation (r < 0.01) between the
distance (from the starting point to the destination as shown in Figure 5a) and the right
wheel derail coefficient (DC). This implies that train running safety is influenced more by a
train’s structure and electro-mechanism than by rail conditions.

Table 5 summarizes correlation-relationship of railway model parameters with the
other factors.
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Table 4. Train safety simulation data and attributes.

Classification Attribute Unit
Data Source

Modeling Input Form
Real Measurement

Generation Using
Transient Analysis

Railway model data

Railway point (distance) mm O -

Cross level irregularity (cant) mm O -

Curvature irregularity 1/km O -

Lateral irregularity mm O -

Vertical irregularity mm O -

Gauge variation mm O -

Train structure/
simulation data

Bogie upper frame lateral vibration m/s2 - O

Bogie upper frame vertical vibration m/s2 - O

Bogie upper body lateral vibration m/s2 - O

Bogie upper body vertical vibration m/s2 - O

Left wheel lateral weight kg - O

Right wheel lateral weight kg - O

Left wheel vertical weight kg - O

Right wheel vertical weight kg - O

Left wheel derail coefficient (DC) Real number - O

Right wheel derail coefficient (DC) Real number - O

Left wheel rate of load reduction (DV) Real number - O

Right wheel rate of load reduction (DV) Real number - O

Body frame lateral pressure
(body frame lateral forces) kN - O

Left axle box lateral vibration m/s2 - O

Right axle box lateral vibration m/s2 - O

Left axle box vertical vibration m/s2 - O

Right axle box vertical vibration m/s2 - O

Wheel lateral pressure
wheel lateral forces) kN - O

Table 5. Correlation-relationship of several attributes with the other factors.

Attribute
(Railway Model Parameters) Relationships with Train Structure and Mechanism

Railway point (distance) - Little relationship (r* < 0.01)

Cant - Weak relationship: Left axle box vertical vibration
- little relationship with the other factors

Curvature irregularity - Little relationship (r* < 0.01)

Lateral irregularity

- Strong relationship: Bogie upper frame lateral vibration
- Weak relationship: Right wheel lateral weight,

Right wheel DV, wheel lateral pressure
- little relationship with the other factors

Vertical irregularity

- Strong relationship: Bogie upper frame vertical vibration
- Weak relationship: Left/right wheel vertical weight,

Left/right wheel DC,
Left/right axle box vertical vibration

- little relationship with the other factors

Gauge variation - Weak relationship: Wheel lateral pressure
- little relationship with the other factors

r*: Correlation Coefficient.
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As summarized in Table 5, there is a very weak relationship between vibrations and
railway conditions. However, several factors must be considered in the dynamic analysis
of train running safety.

This study applies a deep learning method to analyze and predict train running safety.
The following section elaborates on this topic in detail.

4. Real-Time Deep-Learning-Based Train Running Safety Prediction Framework

As mentioned in the previous section, it is inferred that train running safety is in-
fluenced more by train mechanisms than by rail conditions. As the development of
train-relevant technologies has made it possible to minimize railway impacts on running
safety, railway-conditions-based analyses have contributed less to investigations of train
running safety.

To overcome this issue, this study applied deep learning techniques for the prediction
of real-time running safety. As output variables for understanding train running safety,
most variables related to the running safety are selected among the 23 attributes: two
derail coefficients (left wheel DC and right wheel DC), two-wheel rate of load reduction
(left wheel DV and right wheel DV) and wheel lateral pressure. A number of research
studies [22–24] have pointed out five factors to explain train running safety. For instance,
several research studies [24–26] considered “Wheel lateral pressure” as one of the key
attributes in a train running safety. Figure 8a shows a data plot of the “Wheel lateral
pressure” in this transit analysis.
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As shown in Figure 8a, several points lie over WP + 3σ, where WP is the average and σ
is the standard deviation of wheel lateral pressure. Similarly, Figure 8b shows that some of its
deviation is beyond σ + 3σ, where σ is the average deviation. Even though the HEMU-480X
model has an advanced architecture, its wheel lateral pressure varies with railway conditions
and its mechanism. This indicates that the prediction of wheel lateral pressure can improve
its running safety and contribute to the prevention of derailment risks.

This study considers five factors as the output of the applied deep learning framework.
Figure 9a shows a general deep neural network architecture with three hidden layers for
train running safety.
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Equation (4) denotes a general deep learning formula for Figure 9a.

(
Ŷ1, Ŷ2, Ŷ3, Ŷ4, Ŷ5

)
= φ1

(
w1 · φ2

(
w2 · φ3

(
. . . · φinputlayer

(
18

∑
i=1

wi · Xi

))))
(4)

where wi is a weight vector in the ith layer, and φi is the activation function in the ith layer.
As denoted in (1), Ŷi,i∈{1,2,3,4,5} indicates the train running safety-related output (esti-

mator): Left/right wheel derail coefficients (DCs), left/right wheel rate of load reductions
(DVs), and wheel lateral pressure. As input data, Xi,i∈{1,2,3,4,5,6} is the data for railway
models, and the other input data are for measured vibrations using transit simulations.
While the architecture shown in Figure 9 is a general deep learning architecture, it lacks
the reflection of stationary characteristics in train running safety. Figure 9b shows the
ARIMA [27] test result of “Right Wheel DC”. Based on the ARIMA (2,1,3) model, a run-
ning safety output factor—right wheel DC is proven exemplary as data with stationary
characteristics. It is inferred that a well-designed electromechanical transport—a train or
a bogie—has inertia. Zhang et al. [28] and Bae et al. [29] considered the inertial forces
on train collisions and derailments. This indicates that the estimation of train running
safety must consider recurrent data as input. Thus, this study proposes an integrated
hybrid framework between a general deep neural network architecture and a recurrent
deep learning structure. A hybrid deep learning architecture is an integrated framework
with a deep learning framework and other inference/prediction models. This can be
another deep learning framework or analytical model. Rahmadani and Lee [30] proposed
a hybrid deep learning model with a long short-term memory (LSTM) model and ordinary
differential equations (ODE). In this study, a deep neural network (DNN) and a recurrent
neural network (RNN) are integrated. Figure 10 shows the proposed hybrid deep learning
network for the prediction of train safety. As shown in Figure 10, Xi.i∈N[1,6](t) is the data at
time t, and Xi,i∈N[7,18](t− ∆t) is the data at time t− ∆t. Although Yi,i∈N[1,5](t) is calculated
directly from Xi,i∈N[7,18](t), the usage of Xi,i∈N[7,18](t) is prohibited from its prediction. For
this reason, Xi,i∈N[7,18](t− ∆t) is used to estimate Yi,i∈N[1,5](t).
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Equation (4) is converted into (5) using the proposed hybrid deep learning architecture.

Ŷi(t)i∈N[1,5] = f
(

Xi(t)i∈N[1,18], Ŷi(t− ∆t)i∈N[1,5] · · · , Ŷi(t− k · ∆t)i∈N[1,5]

)
(5)

where N is the set of natural numbers, and k = predefined constant
As denoted in (5), a nonlinear function, f , is a general deep learning architecture, and

the relationship between Ŷi(t)i∈N[1,5] and , Ŷi(t− ∆t)i∈N[1,5] is derived using a recurrent
deep learning architecture. The proposed hybrid deep learning architecture has two
different types of weights: instant weight (Wi,j,t) and transitional weight (Wt,t−∆t). Wi,j,t
is the instant weight in the DNN architecture at time t, from the ith layer to the jth layer.
A transitional weight, Wt,t−∆t is the weight of Ŷi(t− ∆t)i∈N[1,5] at time t− ∆t. To update
both the weights, the energy function (E) is defined in (6).

E =
1
2

5

∑
i=1

(
Yi − Ŷi

)2 (6)

where Yi is the ith transit analysis result.
A new instant weight (W ′i,j,t) is updated using (7).

W ′
i,j,t = Wi,j,t + η1 ·

∂E
∂Wi,j,t

(7)

where η1 is a learning rate for an instant weight.
As denoted in (8), ∂E

∂Wi,j,t
is calculated using a backpropagation method.

∂E
∂Wi,j,t

=
∂E

∂vk,t
· φ′
(
vj,t
)
· wj,k,t · Ii,t (8)

vk,t is the sum of the weight and input at the jth layer at time t, and Ii,t is the input
vector at the ith layer. Transitional weight is updated using (9).

W ′
t,t−∆t = Wt,t−∆ + η2 ·

∂E
∂Wm,n,t−∆t

· φ′(vm,t−∆t) · wm,t−∆t · In,t−∆t (9)

where, wm,t−∆t is the weight in the output layer at time t− ∆t.
The proposed architecture considers the modeling input of the railway model and the

measured vibrations. Moreover, the inertial characteristics of a train structure were embed-
ded in a hybrid deep learning network. The following section shows the effectiveness of the
proposed hybrid deep-learning network using transit simulations and numerical analyses.

5. Verification and Analysis of Hybrid Deep-Learning Prediction Framework for Train
Running Safety

This section shows the performance of the proposed hybrid deep learning prediction
framework for the indices of train running safety. To prove the effectiveness of the proposed
framework, a comparison with general deep learning without recurrent data is provided.
Table 6 summarizes both learning architectures for predicting a train’s running safety.
The layer architecture and learning parameters are chosen with experimental analyses
and tests.
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Table 6. Learning architectures for train running safety prediction.

Classification A DNN
without Recurrent Data The Proposed Hybrid Network

Input
Xi,i∈N[1,6](t),
Xi,i∈N[7,18](t)

Xi,i∈N[1,18](t),
Xi,i∈N[7,18](t)

Ŷj (t− k · ∆t)j∈N[1,5], k ∈ N[1, 5]

Output Ŷj (t)j∈N[1,5]

Layer architecture

4 hidden layers
Number of hidden nodes in

each hidden layer
= {40,30,15,5}

4 hidden layers
Number of hidden nodes in each

hidden layer = {50,30,15,5}

Activation functions
Sigmoid/ReLU
Sigmoid: 1

1+e−x

RelU: max(0,x)

Learning parameters
Epoch = 5000/optimization method = ADAM ()

Learning rate (η) = 0.001
Dropout rate = 0.2

∆t: one unit time (distance between t and ∆t = 25 cm).

The overall dataset is divided into two types: a training set and a test set with an 8:2
ratio. As this is a prediction framework, the comparisons are analyzed with both criteria:
the root mean squared error (RMSE) and loss.

RMSE(Yi) =

√
∑n

j=1
(
Yi,j − Ŷi,j

)2

n
(10)

where n = size of test set.
Loss is calculated using (6). Figure 11a,b show the RMSE and loss of the general deep

learning, respectively.
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As shown in Figure 11a,b, the DNN architecture that only considers Xi,i∈N[1,6](t) and
Xi,i∈N[7,18](t− ∆t) has improved less as the learning progresses. This indicates that the
prediction of the train running safety requires the use of recurrent data. Figure 11c,d shows
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that the proposed hybrid deep learning network has a better learning performance. While
the deep learning framework has an RMSE of 2.0772, the proposed hybrid deep learning
has an RMSE of 0.42165.

Figure 12a shows the prediction result between the “actual wheel lateral pressure”
and “estimated values using the DNN” using a selected test set.
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Figure 12b shows the prediction results between the actual pressure (Y5) and pre-
dicted estimation (Ŷ5) using the hybrid deep learning framework. As shown in Figure 11,
the proposed framework has more accurate prediction than a DNN without the use of
recurrent data.

To investigate the performance of the proposed framework, a number of existing
frameworks were tested with the proposed framework. Table 7 lists the architectures of the
existing architectures and the proposed framework.

The proposed framework was tested using different recurrent periods (k = 1, 3, 5)
with other existing methods. Figure 12 shows the comparisons of the testing results of
“Left wheel derail coefficient (DC,Y1)”, “right wheel rate of load reduction (DV,Y4)”, and
“Wheel lateral framework (Y5)”.
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Table 7. Testing architectures of several prediction frameworks.

Classification LSTM DNN Using The Proposed Framework

Input Ŷj (t− k · ∆t)j∈N[1,5],k ∈ N[1, 5]

Refer Table 5 Refer Table 5Output Ŷj (t)j∈N[1,5]

Parameters

Number of hidden dimensions = 20
State activation function = sigmoid

Gate activation function = tanh
Learning rate (η) = 0.001

As shown in Figure 13, the proposed framework shows the best performance com-
pared to a DNN without recurrent data and a recurrent neural network (LSTM). Moreover,
it has been proven that the recurrent data period (k) is an important factor for the prediction
of train running safety.
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This section describes the effectiveness of the proposed hybrid deep learning frame-
work for train running safety. These analyses explain that recurrent data are related to the
inertial mechanism of a train and these have to be considered for its prediction.

6. Conclusions and Further Study

Train running safety is one of the key criteria for evaluating advanced high-speed
trains and bogies. While several existing relevant research studies and applications have
focused on its measurement and monitoring, its prediction has received comparatively
lesser attention. This study proposes a new and effective train running safety prediction
framework using a deep learning technique.

As several deep learning architectures have been proposed, a hybrid deep learning
architecture using recurrent data is proposed in this study. As output factors to determine
train safety, five decision variables are considered: Left/right wheel derail coefficients,
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left/right wheel rate of load reduction, and wheel lateral pressure. These five factors
are deeply related to a train’s running safety. To predict its running safety, six railway
conditions and twelve measured vibration-based signals are considered. However, these
input variables lack a well-defined mechanism for advanced train running safety. It is
inferred from the examinations that advanced trains and bogies are influenced by their
inertial structures as well as by rail conditions and outer environments.

Therefore, the proposed framework considers the recurrent data of output factors
as additional inputs. Then, past data of the output decision variables are added to the
input vectors for the proposed hybrid deep learning network. As the proposed architecture
shares the characteristics of a general DNN and a RNN, it is classified as a hybrid deep
learning framework to predict real-time train running safety. To prove the effectiveness of
the proposed framework, we conducted numerical analyses using the transit simulation
and the actual train-railway model. These analyses prove that the proposed hybrid deep
learning framework has better prediction performance than LSTM and DNN architectures.

In future studies, the proposed framework can be applied to advanced train control to
decrease the trains’ derailing risks. As train derailments may cause tremendous hazards
to passengers and cargo, the advanced risk prediction of trains and bogies can prevent
possible traffic accidents. For this purpose, the proposed framework can be integrated with
real-time train control. In addition, another recurrent deep learning mechanism can be
considered for a better prediction ability. This study proposes a new and effective hybrid
deep learning framework to predict train running safety. The consideration of railway
conditions, vibration signals, and usages of recurrent data helps in better prediction of
train running safety.

Author Contributions: H.L. (Hyunsoo Lee) and S.-Y.H. conceptualized the framework and devel-
oped the methodologies; H.L. (Hyunsoo Lee) implemented the framework; K.P., H.L. (Hoyoung Lee)
and T.K. supported the data and validated the framework and the implementation; H.L. (Hyunsoo
Lee) supervised the overall research processes and wrote the manuscript; S.-Y.H. reviewed and edited
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by The Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, S. Korea (grant number:
NRF-2021R1A2C1008647) and by a research grant from the R&D Program of the Korea Railroad
Research Institute (KRRI), Republic of Korea.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. UIC. Testing and Approval of Railway Vehicles from the Point of View of Their Dynamic Behaviour-Safety-Track Fatigue-Ride Quality,

4th ed.; International Union of Railways: Paris, France, 2009.
2. BSI. BS EN 14067-1, Railway Applications- Aerodynamics-Part1: Symbols and Units, 3rd ed.; British Standard Institution: London,

UK, 2011.
3. BSI. BS EN 14067-6:2018-TC Railway Applications-Aerodynamics: Requirements and Test Procedures for Cross Wind Assessment, 1st ed.;

British Standard Institution: London, UK, 2020.
4. KRRI. KRTS-VE-Part31-2014(R1) Technical Specifications for High Speed Railway Vehicles, 1st ed.; Korea Railroad Research Institute:

Uiwang, Korea, 2014.
5. KRRI. KRTS-VE-Part21-2015(R1) Technical Specifications for High Speed Railway Vehicles, 1st ed.; Korea Railroad Research Institute:

Uiwang, Korea, 2015.
6. BSI. EN 14363:2016 Railway Applications—Testing and Simulation for the Acceptance of Running Characteristics of Railway Vehicles-

Running Behavior and Stationary Tests, 1st ed.; British Standard Institution: London, UK, 2016.
7. UIC. UIC Code 518 OR Testing and Approval of Railway Vehicles from the Point of View of Their Dynamic Behavior-Safety-Track

Fatigue-Ride Quality, 1st ed.; Worldwide Railway Organisation: Paris, France, 2003.



Machines 2021, 9, 130 18 of 18

8. KRRI. KRTS-VE-Part51-2017(R1) Technical Specifications for High Speed Railway Vehicles, 1st ed.; Korea Railroad Research Institute:
Uiwang, Korea, 2017.

9. Arvidsson, T.; Andersson, C.; Karoumi, R. Train running safety on non-ballasted bridges. Int. J. Rail Transp. 2018, 7, 1–22.
[CrossRef]

10. Diang, Y.; Sun, P.; Wang, G.; Song, Y.; Wu, L.; Yue, Q.; Li, A. Early-warning method of train running safety of a high-speed railway
bridge based on transverse vibration monitoring. Shock Vib. 2015, 2015, 1–9. [CrossRef]

11. Choi, J.; Kim, J.; Chung, J.; Lee, S. Evaluation of Training running safety for direct fixation concrete track on light rapid transit.
J. Korean Soc. Saf. 2017, 32, 41–46.

12. Jang, S.; Yang, S. Assessment of train running safety, ride comfort and track serviceability at transition between floating slab track
and conventional concrete track. J. Korean Soc. Railw. 2012, 15, 48–61. [CrossRef]

13. Kim, M.K.; Eom, B.G.; Lee, H.S. Running Safety Analysis of Railway Vehicle Passing through Curve Depending on Rail Inclination
Change. Korean Soc. Noise Vib. Eng. 2013, 23, 199–208. [CrossRef]

14. Oh, J.T.; Kwon, T.S. A Study on the Assessment of Derailment Factor for the Enhancement of Train Running Safety. In Proceedings
of the Spring Conference & Annual Meeting of the Korean Society for Railway, Changwon, Korea, 6 October 2000; Volume 2000,
pp. 210–217.

15. Seo, S.; Park, J.H.; Min, S.H. Studies on Safety Criteria for Trains Running on Floating Railway Bridges. Advances in Structural
Engineering. Available online: https://journals.sagepub.com/doi/abs/10.1177/1369433220980524 (accessed on 30 March 2021).

16. Zhang, X.; Zhou, S.; Di, H.; He, C. A semi-analytical model of the train-floating slab track-tunnel-soil system considering the
non-nonlinear wheel/rail contact. J. Rail Rapid Transit 2018, 232, 2063–2078. [CrossRef]

17. Alawad, H.; Kaewunruen, S.; An, M. A deep learning approach towards railway safety risk assessment. IEEE Access 2020,
8, 102811–102832. [CrossRef]

18. Yang, C.; Sun, Y.; Ladubec, C.; Liu, Y. Developing machine learning-based models for railway inspection. Appl. Sci. 2021, 11, 1–15.
19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1063–6919.
20. Lee, H.; Han, S.; Park, K. Generative adversarial network-based missing data handling and remaining useful life estimation for

smart train control and monitoring systems. J. Adv. Transp. 2020, 2020, 1–15.
21. Vampire Pro. Available online: https://www.ensco.com/rail/vampire (accessed on 10 January 2021).
22. Cherchas, D.B. Determination of railway wheel climb probability based on the derailment coefficient. J. Frankl. Inst. 1981,

312, 31–40. [CrossRef]
23. Wang, P.; Wang, J.; Ma, X.; Ma, D.; Xu, J.; Q, Y. Theoretical 3D model for Quasistatic critical derailment coefficient of railway

vehicles and a simplified formula. Math. Probl. Eng. 2017, 2018, 1–14. [CrossRef]
24. Wang, K.; Huang, C.; Zhai, W.; Liu, P.; Wang, S. Progress on wheel-rail dynamic performance of railway curve negotiation.

J. Traffic Transp. Eng. 2014, 1, 209–220. [CrossRef]
25. Vollebregt, E. Detailed wheel/rail geometry processing with the conformal contact approach. Multibody Syst. Dyn. 2020, 2020, 1–33.

[CrossRef]
26. Zhou, L.; Brunskill, H.; Pletz, M.; Daves, W.; Scheriau, S.; Lewis, R. Real-time measurement of dynamic wheel-rail contacts using

ultrasonic reflectometry. J. Tribol. 2019, 141, 1–9. [CrossRef]
27. Jo, Y.; Lee, H. Electricity demand forecasting framework using modified attention-based LSTM. J. Korean Inst. Intell. Syst. 2020, 30,

242–250. [CrossRef]
28. Zhang, Q.; Zhuang, Y.; Wei, Y.; Jiang, H.; Yang, H. Railway safety risk assessment and control optimization method based on

FTA-FPN: A case study of Chinese high-speed railway station. J. Adv. Transp. 2020, 2020, 1–11. [CrossRef]
29. Bae, H.; Yun, K.; Moon, J.; Lim, N. Impact force evaluation of the derailment containment wall for high-speed train through a

collision simulation. Adv. Civ. Eng. 2018, 2018, 1–14. [CrossRef]
30. Rahmadani, F.; Lee, H. Hybrid deep learning-based epidemic prediction framework of COVID-19: South Korea case. Appl. Sci.

2020, 10, 8539. [CrossRef]

http://doi.org/10.1080/23248378.2018.1503975
http://doi.org/10.1155/2015/518689
http://doi.org/10.7782/JKSR.2012.15.1.048
http://doi.org/10.5050/KSNVE.2013.23.3.199
https://journals.sagepub.com/doi/abs/10.1177/1369433220980524
http://doi.org/10.1177/0954409718759879
http://doi.org/10.1109/ACCESS.2020.2997946
https://www.ensco.com/rail/vampire
http://doi.org/10.1016/0016-0032(81)90070-3
http://doi.org/10.1155/2018/7910753
http://doi.org/10.1016/S2095-7564(15)30104-5
http://doi.org/10.1007/s11044-020-09762-w
http://doi.org/10.1115/1.4044862
http://doi.org/10.5391/JKIIS.2020.30.3.242
http://doi.org/10.1155/2020/3158468
http://doi.org/10.1155/2018/2626905
http://doi.org/10.3390/app10238539

	Introduction 
	Background and Literature Review 
	Results Train Running Safety Data and Measurement Framework 
	Real-Time Deep-Learning-Based Train Running Safety Prediction Framework 
	Verification and Analysis of Hybrid Deep-Learning Prediction Framework for Train Running Safety 
	Conclusions and Further Study 
	References

