
machines

Article

A Nonlinear Magnetic Stabilization Control Design for an
Externally Manipulated DC Motor: An Academic Low-Cost
Experimental Platform

Leonardo Acho

����������
�������

Citation: Acho, L. A Nonlinear

Magnetic Stabilization Control

Design for an Externally Manipulated

DC Motor: An Academic Low-Cost

Experimental Platform. Machines

2021, 9, 101. https://doi.org/

10.3390/machines9050101

Academic Editors: Davide Astolfi and

Alejandro Gómez Yepes

Received: 1 April 2021

Accepted: 13 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, Universitat Politècnica de Catalunya (UPC), 08222 Terrassa, Spain;
leonardo.acho@upc.edu

Abstract: The main objective of this paper is to present a position control design to a DC-motor,
where the set-point is externally supplied. The controller is conceived by using vibrational con-
trol theory and implemented by just processing the time derivative of a Hall-effect sensor signal.
Vibrational control is robust against model uncertainties. Hence, for control design, a simple math-
ematical model of a DC-Motor is invoked. Then, this controller is realized by utilizing analog
electronics via operational amplifiers. In the experimental set-up, one extreme of a flexible beam
attached to the motor shaft, and with a permanent magnet fixed on the other end, is constructed.
Therefore, the control action consists of externally manipulating the flexible beam rotational posi-
tion by driving a moveable Hall-effect sensor that is located facing the magnet. The experimental
platform results in a low-priced device and is useful for teaching control and electronic topics.
Experimental results are evidenced to support the main paper contribution.

Keywords: control; electronics; DC-motors; magnetic manipulation

1. Introduction

Direct-Current (DC) motors have been utilized in many control engineering
applications [1–3]. These devices can provide a high starting torque and can be con-
trolled over a wide range of (angular) speeds. Hence, DC-Motors are significative in
modern automatic industrial processes. A DC-Motor is manufactured such that by varying
its terminals voltage, its speed can be regulated [4,5]. On the other hand, position control of
DC-Motors is mandatory in some industrial tasks [3,5,6]. From the theoretical point of view,
for both position and speed control to DC-Motors, there have been some recent research
reports [7–10]. For instance, a PID control with friction compensation by programming a
digital controller is presented in [3]. A replacing artificial neural network controller with
a PID scheme is developed in [5], where the training data for this intelligent approach
is carryout in advanced mathematical software. Moreover, and in the state-of-the-art
on designing experimental platforms via a pulse-width-modulation control format, is
detailed in [11].

However, in this paper, a recent perspective on position control of a DC-Motor is
developed, where the reference command is externally marked by using a moveable
Hall-effect magnetic sensor. The control approach is based on commuting the motor
speed around a given constant value. Therefore, the controller just requires the speed
information of the motor shaft. This information is calculated from a Hall-effect sensor
signal. The control design and stability issues are carried out by conceiving a simple
mathematical model of the DC-Motor. After that, the obtained control scheme is realized
by using operational amplifiers. These electronic components are inexpensive and easy to
manipulate in comparison to micro-controllers, which are also low-priced, but needing a
programmer, a compiler, and a computer [12]. On the other hand, and due to the switching
nature of the controller action, it induces a vibrational behavior on the motor dynamic.
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To activate the Hall-effect sensor, a magnet is employed. This magnet is attached to one
end of a flexible beam, whereas the other end is fixed to the motor shaft. See Figure 1.
Therefore, the control objective consists of manipulating the flexible beam on the motor
to track the set-point marked by the moveable Hall-effect sensor, where this sensor is
facing the magnet. In literature, there are many controllers including the classical PID
method [3,13]. Even so, the main purpose of our controller is to invoke vibrational control
theory and to employ just speed information of the motor shaft to control its position in a
contactless trend. More precisely, the paper contributions can be stated as follow:

• A contactless vibrational position control design to a DC-Motor.
• A controller realization by just using speed estimation of the DC-Motor.
• A controller based on analog electronics.
• An experimental platform with a moveable magnetic sensor.

From the experimental point of view, a kind of vibrational control design has been
applied to DC-Motors, including the case of a hard non-linearity backlash on the control
actuator [14]. Therefore, vibrational control is suitable to DC-Motors even when a chattering
behavior is presented in the control signal. Obviously, and because of the low-pass filter
conduct of the motor, this effect is attenuated. Hence, chattering is not ideally realized on
the mechanical part of the DC-Motor.

The use of a Hall-effect sensor in a feedback system for position control of DC-Motors
is a cheap technological option [15]. In complement, a low-priced undergraduate control
device by using a microcontroller unit for control experimentation is shown in [16]. The cost
of this platform is stated as 80 dollars. On the other hand, in [3], a PID control design has
been developed by employing the well-known microcontroller Arduino-Uno board, an
optical encoder for angular position measurement of the DC-Motor, and an L298 motor
driver. And an experimental platform for teaching automatic control can be seen in [17].
Moreover, using high-level software as a human interface to an experimental platform is
also possible [17]. Even so, our low-cost experimental platform is a recent approach.

Vibrational control can be viewed as a switching system [18–20]. These systems
may respond in finite-time [19]. Therefore, for control design, these switching models
are robustly simplifying the control realization [21,22]. This justifies the use of a simple
model of the plant just for the control design stage. Therefore, if the plant model is simple,
then the control scheme will be too. This due to the control method is based on the plant
mathematical modeling. We use this fact to conceive a simple controller as was previously
stated. Experimental results support our contribution.

The rest of the paper is outlined as follows. Section 2 shows the control design and its
electronic realization by using operational amplifiers. Furthermore, some numerical results
are evidenced to appreciate the controller robustness. Section 3 shows the experimental
results along with a link to an edited video to support our control approach. Finally, in
Section 4 comments are stated.
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Figure 1. A schematic representation of a DC-Motor under control. The magnet, represented in the black drawing, follows
the moveable Hall-effect sensor.

2. Control Algorithm Design

For control design, let us consider a simple mathematical model of a DC-Motor, an
ideal one. Taking into account that the motor speed is proportional to the applied voltage
at its terminal connections, it can be captured by:

v̇(t) = −u(t), (1)

where v(t) is the angular speed of the motor. Hence, v̇(t) = dv(t)/dt represents the angular
acceleration of the shaft of the motor. And u(t) is the control input. The negative sign in
Equation (1) is introduced to indicate the voltage polarity applied to the motor concerning
the shaft rotation direction. For instance, if u(t) is positive, then the motor rotates in the
counterclockwise direction. And vice-versa. Therefore, by setting the control algorithm as:

u(t) = kgsgn(v(t) + β), (2)

where sgn(·) is the signum function, kg ∈ R>0 is the control gain, and β ∈ R is a given
constant value; the closed-loop system (1) and (2) yields:

v̇(t) = −kgsgn(v(t) + β). (3)

To study the stability of the closed-loop system (3), let us use the next quadratic
Lyapunov function:

V(t) =
1
2
(v(t) + β)2. (4)

Then, its time derivative along the system trajectories (3) produces:

V̇(t) = −kg|(v(t) + β)|. (5)
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The above expression relates to a negative definite function of the time derivative
of the corresponding Lyapunov function. This implies that the closed-loop system (3) is
asymptotically stable. The DC-Motor model in (1) is an ideal one, and mathematically
speaking, asymptotic stability is assured. But, in the real control realization, and due to
other realistic factors, such that friction, backlash, and inductive effects of the motor coil,
then it is prognosticated that the closed-loop system is stable. That is, there exist positive
constants β0, and t0 such that:

|v(t)| ≤ β0, ∀t ≥ t0. (6)

Therefore, and due to the chattering nature of the control law, the angular speed of
the motor is commuting around the value of −β. This implies that the angular direction of
the motor shaft in commuting too.

Remark 1. The Lyapunov function (4) is a quadratic one. However, non-quadratic Lyapunov
functions can be invoked to improve the control performance. This fact was evidenced in [23,24].

To illustrate the controller performance from the simulation point of view, let us
consider the system (1) and (2) with kg = 1. Simulation results are shown in Figures 2 and 3.
Here, we set v(0) = 1 m/s and β = 0.1. From these outcomes, it is observed that the
performance of the controller is as expected. However, we have used a simple model of the
DC-Motor. Hence, and to be more realistically, let now us the following DC-Motor with
Coulomb friction:

v̇(t) = −u(t)− fcsgn(v(t)). (7)

Figure 2. System output response.
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Figure 3. Resultant control command.

In the above expression, fc is the Coulomb friction parameter. Simulation results are
now shown in Figures 4 and 5 by using the same initial condition and control gain than the
previous example, but with fc = 0.2. Finally, let us consider again the friction scenario but
noisy in the feedback loop, that is:

v̇(t) = −u(t)− fcsgn(v(t)),

and
u(t) = kgsgn(v(t) + β + N(t)),

with fc = 0.2, β = 0.1, and N(t). N(t) is a normal (Gaussian) noise with standard deviation
of 1.0 and mean equal to 0. Figures 6–8 show the corresponding numerical results. We can
appreciate that the performance of the controller is as expected and stated in (6).

The previous numerical experiments were realized by using Python, and by invoking
the first Euler approximation technique for the time-derivative. We set 0.01 second for the
integration step in the numerical algorithm.
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Figure 4. System output signal: perturbed case.

Figure 5. Resultant control signal: perturbed case.
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Figure 6. Resultant system output signal: sensor noisy case.

Figure 7. Resultant control signal: sensor noisy case.
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Figure 8. Resultant control signal: sensor noisy case, a zoom-in version of the previous picture.

3. Control Realization: Materials and Methods

This section presents the electronic realization of the control law stated in (2) and
then connected to the DC-Motor. This is shown in Figure 9 by utilizing operational
amplifiers (Opamp). Figure 10 displays a photo of the experimental platform of the cited
closed-loop system.

Figure 9. Electronic realization of the control scheme by employing opamps. Here, all electronic elements are in standard
units. For instance, the resistor element 1 M represents a resistance of 1 MΩ, and the capacitor 47 µ a capacitance of 47µF,
and so on.
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Figure 10. A low-cost experimental platform.

The electronic circuit statement can be obtained as follows. Due to our control al-
gorithm (2) employs information of the rotational speed of the motor shaft, and under
the chattering dynamic around a constant value, its measurement is realized by using
time-derivation of the information supplied by the Hall-effect sensor. See the experimental
video link https://www.youtube.com/watch?v=SMHZpda2W9w (accessed on 2 April
2021). Hence, the mission of the capacitor at the output of the magnetic sensor is precisely
to carry on this differentiation task. And the potentiometer of Rx = 4.7 KΩ supplies the
constant value β. Then, and by utilizing basic circuit analysis, we obtain that the voltage
va, see the related testing probe in Figure 9, yields:

va(t) = (1− α)[5 + 0.221αv(t)], (8)

where α corresponds to the potentiometer manually adjusted which is moved from one
extreme (α = 0) to the other (α = 1). Hence, α ∈ [0, 1]. In consequence, the voltage at the
testing probe vb, see the related testing probe in Figure 9, results:

vb(t) = −Vsatsgn[5 + 0.221αv(t)], (9)

being Vsat the saturation voltage of the operational amplifiers. Finally, the resultant voltage
at the terminals of the motor approximately is equal to:

u(t) = kgsgn[5 + 0.221αv(t)] = kgsgn(v(t) + 22.6/α). (10)

The control gain kg ≤ 1 is adjusted by moving the potentiometer Rg. See Figure 9.
Figures 11 and 12 show the obtained experimental results. In both Figures, we can observe
a chattering behavior on the related signal from the control action. And for a perspective
point of view, Figure 13 shows both pictures into one. Figure 14 is a zoom-in version of
Figure 13.

https://www.youtube.com/watch?v=SMHZpda2W9w
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Figure 11. Experimental results.

Figure 12. Experimental results.
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Figure 13. Experimental results for both signals, va and vb.

Figure 14. Experimental results for both signals, va and vb: a zoom-in version of the previous picture.
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According to the video located at https://www.youtube.com/watch?v=SMHZpda2
W9w (accessed on 2 April 2021), we can observe that the DC-Motor follows the moveable
Hall-effect sensor. Even more, we can also note the vibrational reaction of the motor shaft
whereas trying to follow the reference set-point marked by the cited sensor. Figure 15
shows a photo of the overall experimental platform on display.

Figure 15. The experimental platform on the action.

4. Discussion

Our control approach is based on the vibrational control philosophy [25,26]. That is,
vibrational control is applied by oscillating the control signal at a low amplitude and
high-frequency [25,26]. Even more, this technique can stabilize unstable open-loop sys-
tems without feedback [25]. Vibrational controllers are in the range of the sliding-mode
systems [18]. Therefore, our experimental platform may be considered as an experimental
realization of a kind of sliding mode control method. Moreover, our vibrational control
statement does not use position feedback but its derivative. This option was taken into
account due to the desire to manipulate the DC-Motor externally. Besides, we consider that
this experimental board can be used to test other control methods. Therefore, this platform
can complete a set of well-known experimental devices, such as the inverted pendulum
and the ball and beam experiments are [27–29].

To conclude finite-time convergence, let us analyze the closed-loop system stated in (3),
and below replied but by using the signum function definition:

v̇(t) = −kgsgn(v(t) + β) =

{
−kg, if v(t) ≥ −β

kg, otherwise
. (11)

Then, by integrating the previous mathematical equation, we produce:

v(t) =

{
−kgt + v0, if v(t) ≥ −β

kgt + v0, otherwise
, (12)

where v0 is the initial condition. Figure 16 shows a graphical representation of the last
equation versus time. From this picture, it is clear that the closed-loop system trajectories
converge, in finite-time, to v(t) = −β. A sliding-mode motion of the system trajectory
takes place when it arrives at the sliding surface given by v(t) = −β. This motion can be

https://www.youtube.com/watch?v=SMHZpda2W9w
https://www.youtube.com/watch?v=SMHZpda2W9w
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defined in the Filippov sense [18,30,31]. But, from Figure 16, if kg is strictly positive, then a
solution exists at the sliding-surface, which, in real applications, it is translated as a zig-zag
motion around the sliding-surface producing chattering [18]. See Figure 17. This precisely
is the source of a vibrational control signal. Even more, and due to the simplicity of our
system, and because we also know a solution to the closed-loop system dynamic trajectory
stated in (12), we can estimate the reaching-time, tr, to the sliding-surface as:

tr =
v0 + β

kg
. (13)

Therefore, the reaching-time will depend on the system initial condition, kg, and
β. Hence, if the control gain is increased, then the reaching-time is reduced. This is the
same conclusion in some switching controllers [18,32]. So far, a question arises: why
does the parameter β is integrated into the control algorithm? Well, the key point is
observed in the output configuration of the power stage in the electronic realization of the
controller (see Figure 9). The push-pull power amplifier produces the so-called crossover-
distortion [33], and it is nothing else than the dead-zone nonlinearity to the control signal.
See Figures 18 and 19. And as an option to mitigate its effect on the plant, we introduced
this parameter. Experimentally, if this parameter is set to zero, or no motion is induced
on the motor, or the system starts violently losing stability. Moreover, and related to the
mathematical model of the DC-Motor stated in (1). This model is conceived by just using
the DC-Motor manufacturing point of view, and this is not enough accurate due to other
factors involved in a real DC-Motor, such as friction, motor coil inductive effects, and
backlash. And the main intention of vibrational control is to mitigate these non-linearities
and to a possible exogenous perturbation too. Table 1 shows the estimated items cost and
the total one for our experimental platform.

Figure 16. Phase trajectories of the closed-loop system (3).
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Figure 17. In a yellow line: A realistic trajectory of the closed-loop system (3) presenting chattering.

Figure 18. Illustration of the cross-over distortion which actually is the dead-zone nonlinearity.
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Figure 19. Actuator dead-zone nonlinearity.

Table 1. Electronic components list and estimation cost in Euros.

Element Specification Price

3 Operational amplifiers LM741 3
2 Power transistors MJE305T, MJE2955T 4
2 Potentiometers Mechanical 1.5
1 Permanent magnet 0.50
1 DC-Motor 12/24 Volts 15
1 Bread board 4
1 Dual power supply 20
1 Hall-Effect sensor 0.50
Others 0.50

Total 50

Nowadays, the development of low-cost experimental platforms is now possible due
to the accessibility and low-priced of the electronic components [34–36]. Finally, in the
Appendix A, there is the reference Python code used in our numerical experiments.

5. Conclusions

As final comments, it is observed that the idea to externally manipulate a motor by
employing vibrational control theory seems interesting to the academic field of control,
instrumentation, and electronics. The granted video link on the experimental performance
of our control approach evidences it. Furthermore, some important facts have been con-
sidered, such as the dead-zone nonlinearity. The main contributions of this paper can be
summarized in the following items:

• A mathematical design of a vibrational control based on a simple model of a DC-Motor.
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• A control scheme that strategically incorporates a constant parameter to mitigate the
actuator dead-zone nonlinearity.

• A low-cost realization of the resultant controller.
• A contribution of a low-priced experimental platform to vibrational control.
• A control method that uses a magnetic Hall-effect sensor.

On the other hand, the main findings of this work can be summarized as follows: (1)
external manipulation for position control of a DC-Motor can be realized by manipulating
a moveable magnetic Hall-effect sensor; (2) vibrational control is acceptable for vibrational
control of DC-Motors, and (3) an experimental control platform is realizable at low-cost.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DC Direct current
Opamp Operational amplifier

Appendix A. Python Code

This section presents the Python code used in numerical experiments.

import numpy as np
import matplotlib.pyplot as plt
t=[0]
v=[1.0]
uc=[0]
h=0.01
k=0
kg=1
while(True):

u=kg*np.sign(v[k]+0.1+np.random.normal(scale=1,loc=0.0))
v.append(v[k]+h*(-u-0.2*np.sign(v[k])))
t.append(h+k*h)
uc.append(u)
k=k+1
if t[k]>15-h:

break
plt.figure(1)
plt.plot(t,v,color=’red’)
plt.grid(True)
plt.xlabel(’t(s)’)
plt.ylabel(’v(t)’)
plt.figure(2)
plt.plot(t,uc,color=’red’)
plt.grid(True)
plt.xlabel(’t(s)’)
plt.ylabel(’u(t)’)
plt.show()
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