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Abstract: The article is devoted to cybersecurity risk assessment of the dynamic device-to-device
networks of a smart city. Analysis of the modern security threats at the IoT/IIoT, VANET, and WSN
inter-device infrastructures demonstrates that the main concern is a set of network security threats
targeted at the functional sustainability of smart urban infrastructure, the most common use case of
smart networks. As a result of our study, systematization of the existing cybersecurity risk assessment
methods has been provided. Expert-based risk assessment and active human participation cannot be
provided for the huge, complex, and permanently changing digital environment of the smart city.
The methods of scenario analysis and functional analysis are specific to industrial risk management
and are hardly adaptable to solving cybersecurity tasks. The statistical risk evaluation methods
force us to collect statistical data for the calculation of the security indicators for the self-organizing
networks, and the accuracy of this method depends on the number of calculating iterations. In our
work, we have proposed a new approach for cybersecurity risk management based on object typing,
data mining, and quantitative risk assessment for the smart city infrastructure. The experimental
study has shown us that the artificial neural network allows us to automatically, unambiguously, and
reasonably assess the cyber risk for various object types in the dynamic digital infrastructures of the
smart city.

Keywords: cybersecurity; dynamic network; machine learning; network attack; neural network; risk
assessment; smart city; quantitative risk; ANN; IoT; IIoT; VANET; WSN

1. Introduction

The technological aspect of a smart city is reflected by IBM, the leading promoter of
the smart city concept. The smart city is an instrumented, interconnected, and intellectual
environment [1]. The term instrumented means an ability to receive various data on city
life and digital infrastructure in real-time mode through the connected devices, measuring
sensors, and personal systems. The term interconnected indicates an ability to integrate data
on digital platforms, sharing them with various digital city services. The term intellectual
refers to data processing by advanced analytics, modeling, optimization, and visualization
services in order to make the best decision.

By 2024, the number of smart infrastructures for digital urban services is estimated to
be around 1.3 billion. At the same time, security researchers and experts claim the need to
pay notable attention to the issue of smart city cybersecurity (e.g., [2–4]). In fact, 135 billion
USD will be spent on the cybersecurity of smart cities [5]. Smart cities are increasingly being
exposed to various cybersecurity impacts: complex cyberattacks on critical infrastructures
by interrupting the automated control systems, hacking communications between the smart
IoT/IIoT devices, blocking the VANET nodes (autonomous cars, off-road infrastructure),
and other connected systems using ransomware, changing the sensing data (for example,
in alarm and emergency systems) [5]. The concept of a smart city involves a merger of
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digital and physical infrastructures into a single global cyberphysical system. Hacking or
infecting one network-connected device opens up the possibility of infecting many other
devices, which leads to cascading damage, causing a massive “theft of data from citizens,
patients, and consumers, personally identifiable information, etc.,” as stated by Dimitrios
Pavlakis, the analyst of ABI Research [5,6]. For example, in hacking a road-side VANET
node, the intruder may gain unauthorized access to a driverless car and then penetrate the
smart home network and disrupt the operation of the smart house gateway, breaking the
water, power, and heat supply. The high risk of an attacker obtaining financial information,
business plans, and private data as a result of hacking sensitive assets is highlighted in
the research [7]. For such a serious problem, it becomes important to choose an effective
protection strategy.

Building a large-scale infrastructure for the smart city with the application of modern
IoT/IIoT-, MANET-, VANET-, and WSN-based cyberspaces requires a thorough approach
to monitor, measure, maintain, and improve its cybersecurity. A specific characteristic
of self-organizing network infrastructure is an entire complex of processes and assets
of the smart city, the main purpose of which is to enhance the efficiency of the digital
urban services. Therefore, the resulting set of protective measures should be rationalized
by the costs–benefits ratio. To achieve this, cybersecurity standards (e.g., 27,000 and
13,335 families) propose the concept of risk-driven security management [8–10].

There are many methods for assessing the cybersecurity risks that are applicable to
an information system. As the BS 7799-3 and NIST 800-30 standards state, a large amount
of security monitoring data about the cyberattacks and the protected assets is required,
which is not always possible to implement due to the large scale of the uncontrolled
environment, the limited time available for the risk analysis and measurement, and the
limited financial, knowledge, and computing resources. In addition, there are specific
issues for the cybersecurity risk assessment in a mobile inter-device network of the smart
city:

• A huge amount of data for knowledge processing;
• An undefined number of assets: users, connected nodes, communications, etc.;
• Insufficient formalization of the risk calculus and the requirement for the regular risk

expertise;
• The inability of the detailed risk analysis in the case of the limited awareness of the

smart network hosts about the current state of the cyberattacks;
• Incomplete and inaccurate rules for statistical data calculations to obtain a probability

of the cybersecurity risk events.

For the smart city, these issues make the calculated risk estimation difficult, and it
cannot be applied to substantiate a rational set of protective measures and acts. The goal
of our research is to propose a new method corresponding to the dynamic assessment
of cybersecurity risk in the abovementioned conditions of the smart city. This work is a
continuation of our research described in a previous conference paper [11]. The novelty
lies in the fact that, for the first time, we propose to use an artificial neural network that
allows us to reasonably assess cybersecurity risks by processing big security datasets. It
allows for faster response time in critical situations and makes the decision-making more
effective due to deeper insights and visibility of the cybersecurity risks.

The paper is organized as follows: Section 2 reviews the current types of cyber threats
specific to the dynamic smart city infrastructure; Section 3 provides an overview of the
related works for cybersecurity risk assessment applicable to the smart city; Section 4
proposes an artificial neural network method for the assessment of cyber risks for the smart
city; Section 5 discusses the outputs of the experimental study of our method; and, finally,
the last section concludes our work and sets further plans.

2. The Cybersecurity Threats Typical to the Smart City Network Infrastructure

The smart city concept implies the interaction of information and communication
technologies for the management of modern urban services: transportation, medical care,
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power planting and supplying, etc. Data processing and analysis of dataflow received from
a variety of smart sensors allow it to monitor and predict the occurrence of cyber threats
of different types [12]. Currently, intruders using network infrastructure and wireless
data transmission channels can remotely invade a target device (group of the connected
devices), intercept network traffic, launch the denial of service (DoS) attacks (including the
distributed ones), and capture IoT devices to construct a botnet of smart devices [13,14]. The
security issue for the smart city is the variety of horizontal connections, the heterogeneous
nature of the network infrastructure, and a huge number of entities at a constantly changing
topology. Making risk-based security management in real-time requires the availability of a
powerful operating center that aggregates data from many different sources with different
characteristics.

Software vulnerabilities also pose a serious problem for ensuring a high level of
security for smart city systems [15]. Connected devices implement different functions, they
have various capabilities and features, they are produced by different manufacturers, and
with different versions of hardware and software, they meet different security standards.
All of these form fertile soil for an intruder to exploit the software vulnerabilities and
applied protocols. The main problem is that attacker can make a successful attack on a
poorly protected device that can directly or through a device-to-device chain interact with
the target device (or digital service) of the attack. Software vulnerabilities can vary from
developer’s errors to backdoors, as well as from the hardware level to the city-specific
application level.

A complete enumeration of different reasons causing most of the security alerts in the
self-organizing network of the smart city includes:

• The absence of fixed network topology and central nodes makes it impossible to
organize a centralized security policy;

• There are no protective tools on each network node;
• This type of the smart networks is public, which makes it possible to spoof a message,

signal, or even a network node;
• There is a wide range of possibilities to compromise the poorly protected nodes;
• There is a huge number of connected nodes, and, correspondently, there is a require-

ment to process large data of cybersecurity;
• There is a set of channel vulnerabilities;
• The network has a limited computing power of the connected devices.

There is a large amount of research devoted to the analysis of cyber threats and the
creation of methods of protection against them in smart cities. In [16], the authors point out
that the main threats to medical applications in a smart city are threats aimed at breaching
privacy and security, including a DoS attack, MitM attack, and password sniffing. The
authors argue that when developing cybersecurity systems, it is necessary to take into
account the characteristics of the IoT, creating lightweight solutions. The work of [17–20]
highlights the danger of network threats, while two types of intruders can be distinguished:
internal and external. The work of [21] formulates security requirements, which smart
city systems must meet: authentication and confidentiality, availability and integrity,
lightweight intrusion detection and prediction, as well as privacy protection. The authors
have developed a classification of possible approaches to ensuring the cybersecurity of
the smart city infrastructures: cryptography, blockchain, biometrics, machine learning and
data mining, game theory, ontology, and non-technical supplements.

Cyberattacks on the dynamic self-organizing networks of the smart city can be divided
into passive and active ones. The passive cyberattack usually violates confidentiality. The
intruder eavesdrops on and intercepts information being transmitted over the network
without performing any destructive acts, which makes it extremely difficult to detect. The
active attack is targeted at interacting with the information flow, violating the integrity
and availability. The active intruder changes or hides/drops the data packets, violating
the logic of the network work. They can be organized either by an external or internal
attacker. Another possible classification of attacks is classification by violation of one of
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the traditional security requirements: confidentiality, integrity, and availability, as well as
authentication and responsibility (Figure 1).
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The greatest damage is caused by network attacks since they disturb the work of
the entire smart infrastructure [22]. The larger the area occupied by the attack, the more
damage it brings to the system. Therefore, in further research, we pay our attention to
the availability aspect of smart city security, i.e., the class of the cyberattacks targeted at
disrupting a dynamic network routing (Figure 2).
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2.1. The Denial of Service (DoS) Attacks

The intruder’s node creates a large number of messages, which can be multiplied as a
result of the broadcasting, and this leads to an overload in the data transmission channel
and degradation of the computing resources of the network nodes to process all of the
messages created by the intruder [23]. The intruder is thus able to break communication in
a smart city network (Figure 3).
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2.2. The Distributed DoS (DDoS) Attack

The intruders’ nodes start their attacks from rather locations at different times. For
example, malicious nodes situated next to the target node can send a stream of messages to
it at the same time and thereby isolate it from other networks (Figure 4).

Machines 2021, 9, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 3. A denial of service (DoS) attack case. 

2.2. The Distributed DoS (DDoS) Attack 
The intruders’ nodes start their attacks from rather locations at different times. For 

example, malicious nodes situated next to the target node can send a stream of messages 
to it at the same time and thereby isolate it from other networks (Figure 4). 

 
Figure 4. A DDoS attack case. 

2.3. The Black Hole Attack 
The intruder’s node catches and drops off the received packets that have to be trans-

mitted to other nodes. This sort of attack is especially effective when the trust policy is 
compromised in the dynamic network (Figure 5). 

Figure 4. A DDoS attack case.

2.3. The Black Hole Attack

The intruder’s node catches and drops off the received packets that have to be trans-
mitted to other nodes. This sort of attack is especially effective when the trust policy is
compromised in the dynamic network (Figure 5).
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2.4. The Gray Hole Attack

If the intruder’s node drops off all of the received packets, it can be detected by
neighbor nodes. Therefore, the intruder can partially drop the packets (Figure 6).
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2.5. The Sinkhole Attack

The intruder’s node can be the most preferred one for the neighbor nodes to arrange
an optimal route [24]. In a dynamic network, a node can send out the routing messages,
informing its neighbors that it is the best node for the packet sending to the base station.
This allows the intruder to become a network hub and collect all the packets addressed to
the base station (Figure 7).
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2.6. The Wormhole Attack

The intruder catches the data packets and replays them to another malicious node by
using a wormhole link (a tunnel). This attack is harmful to the avoidance of valid routes
and leakage of the data packets (Figure 8).
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2.7. The Sybil Attack

The intruder represents several network nodes at once for other nodes [25], which
becomes a security issue for the dynamic routing protocols, as it can affect the vote-based
routing and load balancing algorithms (Figure 9).
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2.8. The Illusion Attack

The intruder’s node tries to purposely manipulate the sensing data to produce falsified
information about the moving node [26]. The impact of this attack is that the human
decision and reaction is dependent on the falsified data that can cause accidents, traffic
jams, and reduce transportation efficiency. The message authentication and integrity
control cannot protect the networks against this type of attack as the intruder’s node
directly manipulates the sensors to broadcast the wrong traffic (Figure 10).
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The implementation of just one attack from the above list may lead to system faults,
which can cause negative consequences: a threat to human health, ecological disaster, or
industrial blackout.

3. The Security Risk Assessment Methods

The security analysis of the smart city infrastructure is the process of identifying
vulnerabilities, cybersecurity threats and security risks associated with the assets, and
counter-measures that mitigate these threats. There are three basic approaches to cyber risk
assessment: qualitative, quantitative, and mixed approaches [27].

The following methods of qualitative risk analysis are distinguished:

• Expert assessment;
• Rating estimates;
• Checklists of risk sources;
• Method of analogies.

The expert assessment is a combination of logical and mathematical procedures
to elaborate the expert’s opinion on a certain range of security issues in an inspected
system [28]. The key to this method is the ability to use the experience and intuition
of a field specialist to make the optimal decisions. There is no need for accurate data
and expensive software toolkits. However, the main drawbacks of this method are the
subjective estimations and the difficulty to attract independent and highly skilled experts.
The samples of the expert estimation technique are questionnaires, brainstorm, SWOT
analysis, SWIFT, and the Delphi method.

The rating method is based on the formalization of the ratings obtained. If specialists
are involved in this, then this method is considered a type of expert assessment. However,
recently semi-formalized procedures are often applied, and thereby this method is consid-
ered the independent one. The simplest way of rating is ranking. In this case, they use a
scoring system. The most commonly used is a five-point scale (as well as a scale of 10 or
100 points). An expert assigns a certain score to each risk depending on the influence on
the system’s security. When building a rating, the competence of each expert is taken into
account. The result of this method is a completed risk rating table.

The checklists of risk sources form a method of which the essence is to use retrospective
information of the system. It is based on the fact that risk lists compiled earlier for previous
activities are used. The security incidents in the past, risk factors, and last security attacks
are explored. This trace is constantly expanded by adding a current history of the system.
However, in time, this endless log of the system security events can lead to the loss of
control. In addition, some events may not be added to the checklist, and correspondently
they will not be explored at risk analysis. This method is useful for risk identification. The
use of a checklist of risk sources allows negative cases to be identified. This approach may
accompany other methods.

The essence of the analogy method is to look for similarities in a phenomenon, objects,
and systems. The method of analogies is widely used in assessing the risk for the typical
systems. This method is used in the case when other methods of risk assessment are
unacceptable.

For quantitative risk analysis, the following methods are applied:

• Analytical methods: sensitivity analysis, scenario analysis, method of the risk-adjusted
discount rate, and method of reliable equivalents;

• Probabilistic theoretical models: simulation (Monte Carlo method, historical simula-
tion method), simulation of situations based on the game theory, and tree constructing
methods (event trees, failure trees, events-consequences);

• Group of unconventional methods: modeling with fuzzy logic and machine learning
(neural networks, k-means, support vector machine).

The sensitivity analysis takes place with a sequentially single change in each variable:
only one of the variables changes its value, for instance, by 10%, on the basis of which
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the new value of the criterion used (e.g., Net Present Value or Internal Rate of Return) is
recalculated. After that, the percentage change in the criterion is estimated in relation to the
basic case. The sensitivity indicator is calculated, which is the ratio of the percentage change
in the criterion to the change in the value of the variable by one percent. The elasticity of
the change in the indicator. In the same way, the sensitivity indicators are calculated for
every variable. After calculating the results, an expert ranking of the variables is carried
out according to the degree of importance and an expert assessment of the predictability
of the variable values (e.g., high, medium, low). Then, the expert can build a sensitivity
matrix, which allows us to identify the least and most risky indicators.

The scenario analysis is a method for building a forecast for the system. The prognosis
includes several possible ways for the progress of the security situation and the relative
dynamics for the key indicators of the system’s security. The pessimistic scenario of
the possible change of the indicators, the optimistic one and the most likely one, are
calculated. According to the built scenarios, new values of the performance criteria are
determined. These indicators are compared with the baseline values, and the necessary
recommendations are made. The basis of each scenario is the expert’s hypotheses about
the direction and magnitude of changes in factors for the forecasting period.

The method of risk-adjusted discount rate is the basic and most frequent method of
assessing risks. Its peculiarity is a change in the basic discount rate, assessed as minimally
risky. Regulation takes place by adding the amount of the required risk premium. The
method of reliable equivalents corrects the estimated values of cash flows by multiplying
them by special decreasing coefficients (reliability or certainty factors).

The simulation is the most accurate, complex, and expensive method of quantitative
risk analysis and is based on mathematical statistics. Some authors propose measuring the
level of risk in economic decision-making on the basis of special tools based on the concept
of the measurement theory, which includes system analysis, choosing a risk measurement
scale depending on the measurement goals and the amount of information available, and
then choosing the method for determining the values of a risk measurement indicator. They
propose to separately address issues of measuring the probabilities and socio-economic
assessment of the case situation. The scales for measuring the probabilities and magnitude
of deviations depending on the purpose of the measurement and the amount of available
data can be ordinal, nominal, scale of relations, or absolute. One of the most famous
methods of simulation is the Monte Carlo statistical test method, which allows to build
a mathematical model for a system with uncertain parameter values and, knowing the
probability distributions of the system parameters, as well as the relationship between
parameter changes, obtain the distribution of the project or transaction profitability [29].

One of the most common modeling methods for choosing a solution is game the-
ory [30]. Traditionally, choosing a solution in the face of security risks is a game with
nature. This technique begins with a construction of a payment matrix (performance
matrix or game matrix), which includes all possible outcome values. In the absence of
information about the probabilities of the state of the medium, the theory does not provide
unambiguous and mathematically rigorous recommendations for choosing the decision
criteria. This is explained to a greater extent not by the weakness of the theory but by the
uncertainty of the situation itself and the difficulty of obtaining quantitative estimates of
goals and outcomes.

However, most of the tasks require the analysis of a whole sequence of decisions and
environmental conditions when complex multi-stage decisions have to be made. If there
are two or more consecutive sets of solutions, and subsequent decisions are based on the
results of the previous and two or more sets of environmental conditions, a decision tree is
applied [31]. The decision tree is a schematic representation of a decision problem. The
branches of the decision tree represent various events (decisions), and its vertices are the
key states in which the choice has to be made. Most often, the decision tree is downward.
The basis of the simplest structure of the decision tree is the answers to the questions, yes
and no. For each arc of the tree structure, the numerical characteristics can be determined,
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for example, the amount of profit for a particular system and the probability of its receipt.
In this case, it helps to take into account all possible options for action and to correlate
financial results with them. Then they go on to compare alternatives. The disadvantage of
this method is the limited number of solutions for the problem. In the process of building
the decision tree, you have to pay attention to the tree size. It should not be too big to limit
your ability to generalize the analysis and provide the correct answers.

In recent years, unconventional methods for risk assessment based on artificial in-
telligence systems and models have become increasingly popular [32]. A feature of the
mathematical apparatus of fuzzy logic is that it uses fuzzy sets with incomplete, missing,
or probabilistic data [33]. For example, the authors of [34] have proposed fuzzy logic to
reduce the subjectivity of the qualitative method of the risk analysis. Fuzzy logic works
not so much with concepts that have clear semantic-quantitative boundaries but with a
lot of probabilistic data within the boundaries. The fuzzy logic does not set up the logical
relationships with specific values but with data areas with the possible updating of any
value within the boundaries of this area.

Correlations between certain risks can be evaluated by the machine learning models,
identifying connections that are not easily observable [35]. The work [36] also discusses
the important role and significance of big data and machine learning as the emerging data
analysis methods for insurance risk estimation and introduces the random forest algorithm
for the risk assessment. According to [37], artificial neural networks (ANN) are to be the
most applied machine learning method to aid in engineering risk assessment. The use of
neural network technology is appropriate in cases where the formalization of the decision
process is difficult or even impossible [38]. The ANN is a very powerful modeling tool
because it is a nonlinear calculating apparatus by nature. Linear modeling has been so
far a fundamental one in most areas of the assessment since there are a large number
of optimization methods for it. However, in the problems of the risk analysis, the linear
modeling methods in the vast majority of use cases are not applicable. In [39], it is proposed
to use artificial intelligence to analyze cyber risks during the colonization of Mars. The
authors apply the adapted version of the aggregate loss method to compound a poisson
discrete probability distribution. The following metrics are used: expected present value of
the loss, shortfall probability, shortfall of the expected present value of the loss, value at risk
(VaR), and conditional tail expectation (CTE). The mathematical formulas present a better
understanding of the cost and risk evaluation with multiple risk calculation metrics for
different cyber risk levels and tail risk under different assumptions. However, the metrics
used in this work require serious mathematical methods, which lead to a slowdown in
the risk analysis system. In the rapidly changing and moving environment of a smart city,
finding a balance is an important task; mathematical calculations should not require a huge
amount of input data and take too long.

Figure 11 denotes the taxonomy of the existing risk assessment approaches.
After analyzing the methods considered, it was concluded that risk assessment meth-

ods (Delphi method, brainstorming, SWIFT, etc.) based on an expert’s assessment and
requiring the active participation of a human cannot be applied for the dynamic infrastruc-
tures of the smart city. Methods that use scenario analysis (root cause analysis, fault tree
analysis, event tree analysis, etc.) and functional analysis (protection level analysis, hidden
defects analysis, types and consequences of failures, etc.) are industry-specific and poorly
adaptable to address cybersecurity challenges. The use of statistical models (Monte Carlo
method, Bayesian networks, etc.) is hampered by the complexity of collecting statistical
data for the calculations of the resulting indicators in networks with a peer-to-peer archi-
tecture, as well as the dependence of the accuracy of the decisions made on the number of
iterations.
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Therefore, the modern methods based on artificial intelligence, due to their adaptabil-
ity and predictability, are the most suitable approaches for assessing the cybersecurity risks
in the dynamic networks of the smart city. The ability to work with big data, fast classi-
fication speed, discovering hidden patterns, and higher accuracy—all these advantages
of machine learning are especially important in the application field under consideration
in the conditions of a large number of connected devices, the interaction and influence of
the devices on each other, as well as the hierarchy of the systems of different levels and
scales. The quantitative approach used in the neural networks sets the exact values of
the probability of the security threats and possible consequences, as well as the risk itself
for each type of asset. Numerical values are convenient for the analysis and the results
comparison.

4. The Neural Network Model for the Cybersecurity Risk Assessment

It is proposed to reduce the task of assessing the cybersecurity risks to the task of
classification. Let S = {S1, . . . , Sn} be the set of the considered states (modes of operation)
of a large-scale dynamic network, among which there are both safe and unsafe states. Each
state is characterized by a certain value of the cybersecurity risk. It is required, with a
minimum time for accumulating statistical information tk → min , to identify the risks of
the cybersecurity violations of the dynamic network with sufficient accuracy.

As part of the task, a methodology for identifying the risks of cybersecurity violations
has been developed (Figure 12). The technique consists of four stages:

1. Preparatory stage;
2. Formation of training samples, the base of scenarios (BS) of the dynamic networks

operation modes;
3. Classification;
4. The cybersecurity risk assessment.

The set of types of the network nodes Types = {T1, T2, . . . , Tl}, selected for the
specific dynamic network, forms a time series X = {{x1(t1), x1(t2), . . . , x1(tk)},
{x2(t1), x2(t2), . . . , x2(tk)}, . . . , {xm(t1), xm(t2), . . . , xm(tk)}}, which are the time-
synchronized network characteristics (interaction and influence coefficients, probability of
cyberattacks, etc.) from various devices D = {D1, D2, . . . , Dm} located on the controlled
node of the dynamic network.
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The key indicators in assessing cybersecurity risks are the likelihood of a cyberattack
occurring and the damage caused, usually expressed in monetary terms. However, when
assessing risks in the smart city networks, it is important to understand that not only the
integrity, confidentiality, and availability of data but also the life and health of people
are at risk. Typically, the cybersecurity risk assessment is a classification problem and
a regression tree that either classifies the current cybersecurity risk level as acceptable
or unacceptable or predicts classes based on past data. Although traditional statistical
analysis and mathematical models are widely used in various cybersecurity risk assessment
analysis scenarios, the artificial neural network models are more flexible and capable of
modeling more complex nonlinear functions than classical statistical models such as linear
discriminant analysis and logistic regression. For example, for a neural network model
using a logistic function, its more hidden layers allow the study of complex nonlinear
relationships. In addition, the advantage of the ANNs is that they do not require an explicit
indication of the functional relationship between the dependent and independent variables.
The ANN weighing process simply assigns less weight to variables that it predicts will be
less important.

Based on the analysis of the problem, it has been decided to use the perceptron model
and the backpropagation algorithm as a training one. This type of ANN is pretty well
researched and described in scientific reports [40]. The advantage of a multilayer perceptron
is the ability to solve the linearly inseparable problems, high classification accuracy with a
small dimension of the input data [41]. Each ANN’s element builds a weighted sum of its
inputs, adjusted in the form of a term, and then passes this activation value through the
transfer function, thus obtaining the output value of this element. Elements are organized in
a layered topology with direct signal transmission. Such an ANN can easily be interpreted
as an input-output model, in which weights and threshold values (offsets) are the free
parameters of the model.

A typical backpropagation neural network consists of a three-layer structure: input
nodes, output nodes, and hidden nodes. To solve the problem of assessing cybersecurity
risks, the network parameters of the smart city nodes (such as the interaction with other
nodes) and economic indicators (for example, the value of an asset) are used as input
variables, and the assessment result (acceptable or unacceptable) is used as output variables.
The unacceptable level of risk suggests that measures need to be taken to improve the
security of the large-scale smart city network. The input layer is used to enter the training
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data, the hidden layers transform the raw data into multidimensional nonlinear objects,
and the output layer classifies the data. The input layer consists of neurons that take
cybersecurity risk measurement indicators as the input vector. Low-level elements from the
original input are abstracted into the high-level elements through multiple hidden layers.
There is only one neuron in the output layer, representing the level of the cybersecurity
risk (acceptable—0 and unacceptable—1).

One of the most important steps in training a neural network is preparing datasets. To
solve the problem of assessing cybersecurity risks, datasets collected in smart city networks
and containing various types of assets, network traffic, and the level of cybersecurity
risks are needed. The analysis showed that today there are no datasets that meet such
requirements, so it was decided to build our datasets in a synthetic manner applying the
network simulator NS-3. In the NS-3 environment, a large-scale dynamic network was
built, and such smart city systems as VANET, MANET, IoT, and IIoT were simulated in a
single complex. During the simulation, the following network attacks were implemented
in the NS-3 network model: black hole (BH), gray hole (GH), DoS, DDoS, and wormhole
(WH). This choice is due to the fact that in dynamic networks with peer-to-peer architecture,
the problem of attacks aimed at disrupting the dynamic routing is acute [42]. All of these
intrusion test cases are related to the types of devices that they can affect. Table 1 shows
the features that were extracted during the modeling and included in the datasets.

Table 1. Neural network input parameters.

Parameter Description

Device number Device ID (0–10,000)
Device type Mobile, vehicle, traffic light, smart door lock, medical sensor, . . . (0–n; n = 10)

QTk Device cost in U.S. dollars (100–50,000)
Associated with Ti (n times) The device is associated with Ti (0 or 1)

Probability of BH Probability of black hole attack (0–100)
Probability of GH Probability of gray hole attack (0–100)
Probability of DoS Probability of DoS attack (0–100)

Probability of DDoS Probability of DDoS attack (0–100)
Probability of WH Probability of wormhole attack (0–100)

ITiTk (n times) Coefficient of influence of devices of the type Ti ∈ T on devices of the type Tk ∈ T (0–1)

CTiTk (n times) Coefficient showing the number of devices of type Tk ∈ T with which device of type Ti ∈
T interacts (0–N)

Device number Device ID (0–10,000)
Device type Mobile, vehicle, traffic light, smart door lock, medical sensor, . . . (0–n; n = 10)

QTk Device cost in U.S. dollars (100–50,000)
Associated with Ti (n times) The device is associated with Ti (0 or 1)

The device types were identified, and this allows us to avoid the exact enumeration
of the ever-growing number of connected devices. Types of devices accumulate devices
that perform the same functions in the system, as well as interact and exchange messages
with the same number of devices of another type. For a risk assessment, the types T = {Ti}
of the smart devices were obtained, where 1 ≤ i ≤ n, n is a number of the allocated
types of devices. |Ti| = nTi is a number of devices of type Ti. For each device, its cost
was determined. The parameter QTk shows the size of the possible damage during the
implementation of the threat. The amount of damage is expressed in monetary units.

The cybersecurity threats for the smart network environment U = {Uj}, 1 ≤ j ≤ m, also
were denoted, where m is a number of the identified security threats. It is also necessary to
determine the correspondence of Uj ∈ U threats with the types of Ti ∈ T devices that are
the subject of these threats.

To correspond to the specific features of the dynamic networks, the special coefficients
ITiTk and CTiTk are used. ITiTk is the coefficient of influence of the devices of the type Ti ∈ T
on the devices of the type Tk ∈ T. To calculate it, the communications are analyzed between
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the device of the type Ti ∈ T and the device of the type Tk ∈ T. Based on this, the formula
is derived to calculate the coefficient of Influence (1):

I =
Nsign

Ntotal
, (1)

where Nsign is a number of the significant messages exchanged between the device of the
type Ti ∈ T and the device of the type Tk ∈ T; Ntotal is a number of all messages sent from
the device of the type Ti ∈ T to the device of the type Tk ∈ T. Significant messages are
the large volume messages via the TCP/UDP protocols when a node purposefully sends
information to another node. The influence coefficient can take a value from [0; 1]. If I = 0,
the devices are not connected. If C = 1, the devices affect themselves.

CTiTk is the coefficient showing the number of the devices of the type Tk ∈ T with
which the device of type Ti ∈ T interacts, i.e., the nodes exchanged the messages at least
once. This coefficient can take the values [0; nTi]. nTi is a number of the devices of the
type Ti.

Thus, as a result of modeling, a vector is formed containing 38 parameters. The
developed ANN was trained on the marked dataset. Table 2 presents the thresholds for the
unacceptable risk.

Table 2. The thresholds for the unacceptable risk.

Asset Type Network Type Permissible Probability of Node Failure

Smart phone MANET <1%
Laptop MANET <0.5%
Vehicle VANET <0.01%

Traffic light VANET <0.1%
Road-side unit VANET <1%

Smart door lock IoT <3%
Medical sensor IoT <0.03%

Temperature sensor IIoT <0.01%
Database server IIoT <0.1%

Smart robot IIoT <0.1%

The thresholds were set by the author independently according to the following
principle: assets, the failure of the functioning of which can directly refuse to affect the
life and health of people, have the least probability of acceptable risk (vehicles, medical
sensors, etc.). Assets that can indirectly cause harm to human health (traffic lights, smart
robots, etc.) have an average risk tolerance level of around 0.1%. In case of a cyberattack
on a smartphone, laptop, etc., if there is no threat to human life, and the cost of the assets is
usually small, these assets have a threshold of 1% and 0.5%, correspondently. In the future,
it is planned to develop an approach to calculate the permissible probability thresholds of
the unaccepted risks.

For instance, the following vector was obtained for node 1 (vehicle). The values of the
vector parameters are presented in Table 3. This script was run 10,000 times to determine
the level of the risk how often this node will fail. As a result of the study, it was determined
that this node fails five times, the probability of such an event is 0.05%, which exceeds the
established threshold of acceptable risk set in Table 2. The risk for such a vector is marked
as unacceptable—1.

Figure 13 shows the scheme of the experimental setup configuration. Using the NS-3
simulator, we simulate the environment of a smart city, during which files with network
information are logged, which are subsequently converted into vectors and fed to the input
of the developed neural network risk assessment system.
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Table 3. Vector example.

Parameter Value

Device number 1
Device type Vehicle

QT1 10,000
Associated with T1 1
Associated with T10 0

Probability of BH 20
Probability of WH 5

IT1T1 1
IT1T10 0
CT1T1 10
CT1T10 0
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5. The Experimental Study Results

In the simulation environment, two datasets were generated: a training one consisting
of 10,000 vectors and a test one consisting of 10,000. The training was based on labeled
data, and the vector size was 38 elements. When developing the ANN, Tensorflow and
Keras frameworks were used. The neural network model has:

• Input layer with 38 neurons;
• One hidden layer with 20 neurons and relu activation function;
• Output layer with one neuron and Softmax activation function.

As a result of experimental studies, it was determined that the maximum classification
accuracy of 97% was achieved with the following neural network parameters: three layers,
40 epochs of training, a training set equal to 10,000, and Adam optimizer. Figure 14 presents
the results of comparing the quality of the ANN classification and classification according
to Formula (2).

R
(
Uj

)
Ti = P

(
Uj

)
∑n

k=1 ITiTk CTiTk ×QTk , (2)

where R
(
Uj

)
Ti is the security risk when implementing the threat Uj ∈ U for the device

of the type Ti ∈ T; P
(
Uj

)
is the probability of realization of the threat Uj ∈ U; ITiTk is a

coefficient of influence of the connected devices on each other; CTiTk is the coefficient of
the number of the device interactions with each other; and QTk is the amount of possible
damage.

When analyzing the confusion matrixes, a significant superiority of the neural network
method over the method using Formula (2) was established. Such results can be explained
by the fact that the neural network is able to establish hidden patterns and select optimal
weights.
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6. Discussion and Future Perspectives

An analysis of the security and risk management research for the dynamic networks
of the smart city has shown that the current works actively propose new approaches to
risk assessment, as the traditional methods are unable to operate with the specifics of the
rapidly changing network assets.

The machine learning methods have already shown their effectiveness in tasks that
require working with big data and hidden dependencies. Our work presents a neural
network approach to assessing cybersecurity risks. Using the network simulator, it was
possible to recreate the dynamic network infrastructure of a smart city. Modeling scenarios
were developed, and five types of network attacks were implemented. From the data ob-
tained in the course of modeling, a dataset was prepared, including network characteristics
and economic characteristics. All assets were typed, and a threshold of the acceptable
level of risk was determined for each asset type. A neural network model was developed,
namely a three-layer perceptron, which was trained on labeled data, and then the classi-
fication quality was assessed on unlabeled data. The test results showed an accuracy of
98–99%, which speaks of the promise of the proposed approach. The main advantages of
the proposed approach are the ability to work in rapidly changing conditions, high classifi-
cation accuracy when working with big data, the possibility of dynamic risk assessment, as
well as the ability to work in conditions of limited awareness of the state of the entire smart
city network.

In practice, to ensure high accuracy, the central node calculating the cyber risks has
to collect data on the controlled network in real-time, constantly update the probabilities
of network attacks, the interaction coefficients, and the influence of nodes on each other.
In addition, the operation of a neural network requires significant computing power: the
more nodes are in the controlled network, the more computing resources are required.
Nevertheless, despite the mentioned limitations, the proposed approach is more flexible
than the existing approaches discussed in Section 3. The ability to constantly supplement
the training set, dynamically monitor the level of cyber threats in the smart city network,
and update the parameters of nodes all favorably distinguish the proposed method from
existing analogs.

In the future, it is planned to continue our research in these areas:

• Add new features to datasets (for example, various network indicators: the ratio of
sent and lost packets, throughput, number of hops, etc., as well as economic indicators:
ROI, ROA, and ROE);

• Compare the proposed neural network approach with other existing cybersecurity
risk assessment methods.
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