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Abstract: Vibrations in the aircraft assembly building will affect the precision of the robotic drilling
system. A variable stiffness and damping semiactive vibration control mechanism with quasi-zero
stiffness characteristics is developed. The quasi-zero stiffness of the mechanism is realized by the
parallel connection of four vertically arranged bearing springs and two symmetrical horizontally
arranged negative stiffness elements. Firstly, the quasi-zero stiffness parameters of the mechanism
at the static equilibrium position are obtained through analysis. Secondly, the harmonic balance
method is used to deal with the differential equations of motion. The effects of every parameter on
the displacement transmissibility are analyzed, and the variable parameter control strategies are
proposed. Finally, the system responses of the passive and semiactive vibration isolation mechanisms
to the segmental variable frequency excitations are compared through virtual prototype experiments.
The results show that the frequency range of vibration isolation is widened, and the stability of
the vibration control system is effectively improved without resonance through the semiactive
vibration control method. It is of innovative significance for ambient vibration control in robotic
drilling systems.

Keywords: robotic drilling; quasi-zero stiffness; semiactive vibration control; variable stiffness;
variable damping

1. Introduction

In the aviation manufacturing field, a lot of drilling and riveting is required to be
carried out for assembly [1]. Due to the large size and complex profile of the parts of aircraft
to be assembled, such as the wing, fuselage, engine and so on, it is difficult for traditional
multiaxis machining centers to meet the flexibility of manufacturing and assembly of such
large and complex structural parts. Robotic drilling has advantages of high efficiency,
spatial accessibility, stability, flexibility and a fast refactoring capability for the assembly of
large parts with complex shapes [2,3].

Robotic drilling systems can greatly improve the efficiency and precision of drilling
and reduce the cost with their high flexibility and adaptability. Such systems have now
been well researched and widely applied [4–6]. A robotic arm able to provide better
stiffness than traditional industrial robots was proposed to improve the quality of holes in
the drilling process [7]. Due to detrimental effects on surface finish in machining systems,
a novel pregenerated matrix-based real-time chatter monitoring method for robotic drilling
was presented in [8]. Andreas et al. presented a multisensor measurement system for
robotic drilling. The system achieves high position accuracy and low vertical deviation [9].
Rodríguez et al. used liquefied CO2 as a cutting fluid for drilling CFRP-Ti6Al4V stacks as
an alternative to dry-drilling, which effectively prolonged the life of the drilling system [10].
A method for extracting the geometric primitives of a circle in a three-dimensional space
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from a discrete point cloud data set obtained by a laser stripe sensor was introduced to the
robotic drilling process in [11].

However, the improvement of the accuracy of robotic drilling systems is limited by
the impact of ambient vibration in the aircraft assembly building. Ambient vibrations in
the assembly building are independent of the robotic drilling system and are difficult to be
controlled. The operation of other large equipment and the traveling of heavy overhead
cranes are the main sources of ambient vibrations in the assembly building. The natural
vibration frequency of large machine tools is relatively high. Taking large lathes and milling
machines as examples, the frequency caused by spindle rotation is generally above 20 Hz,
and that of some high-rotating lathes is above 100 Hz. Overhead cranes are essential large
equipment for aircraft assembly. Taking for instance the double-beam type 100 T crane,
the natural frequency of the full-load main beam structure is about 1 Hz. Generally, the
frequency of the vibrations generated by large carrier vehicles is relatively low, and the
range is between 5 and 8 Hz. Features of ambient vibrations, such as a wide frequency
band and strong randomness, put forward a higher demand for vibration controllers.
Therefore, it is necessary to design a suitable ambient vibration control system for robotic
drilling systems.

At present, vibration control systems in different fields are well developed. A special
magnetorheological damper is used to control the torsional vibration of a large turbo-
generator rotor [12]. A vibration control system for milling is designed to mitigate the
degradation of machined parts and tools caused by vibration in [13]. Arka et al. designed a
vibration control system for spar-type floating wind turbines to reduce the vibration effect
caused by the marine environment [14]. In [15], a boundary control approach method was
used to control a two-link rigid-flexible wing. Al et al. studied the vibration control of a
smart shell reinforced by graphene nanoplatelets under external load from the perspective
of materials [16].

With the development of nonlinear structure research, new progress has been made in
vibration control. As a typical nonlinear structure, the quasi-zero stiffness structure has
characteristics of high static stiffness and low dynamic stiffness via the parallel connection
of a positive and negative stiffness element. It can effectively widen the vibration isolation
frequency band and improve the vibration isolation efficiency of the system.

In 1989, Alabuzhev systematically put forward a theory of a quasi-zero stiffness
vibration control method and designed various mechanisms [17]. Based on this theory,
a three-spring prototype of a quasi-zero stiffness vibration isolator with a spring fixed
diagonally providing negative stiffness was further put forth in [18]. Cheng et al. found
that the changes in load and excitation amplitude had impacts on vibration control per-
formance [19]. A quasi-zero stiffness vibration isolator based on a shear lever mechanism
was presented in [20], which cannot only guarantee the function of quasi-zero stiffness,
but also has an adjustable capacity to adapt to a variation of load. A cam-roller vibration
control system based on a quasi-zero stiffness mechanism was proposed in [21]. A kind of
quasi-zero stiffness isolator equipped with three springs diagonally was designed in [22],
which provides a wider quasi-zero stiffness region.

With the lucubration of the quasi-zero stiffness vibration control method, its practical
application is also expanding. A practical application of a 2-DOF quasi-zero stiffness
isolator was carried out in antiseismic engineering [23]. A vertical 2-DOF dynamic vibra-
tion absorber based on a quasi-zero stiffness mechanism was developed as well to abate
the low-frequency vibration of high-speed trains in order to improve seat comfort [24].
Moreover, a quasi-zero stiffness mechanism was applied to pipeline vibration isolation
in [25] to attenuate the lateral vibration of a pipeline for liquid transportation caused by
foundation excitation.

This paper develops a quasi-zero stiffness vibration control method for a robotic
drilling system. Considering the influence of nonlinear factors on the stability of the system,
variable parameter methods are introduced on the basis of passive structure to make the
system maintain stable vibration control performance. The organization of the paper is as
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follows. Section 1 describes the proposed system, analyzes its statics characteristics and
determines the range of structural parameters. In Section 2, the dynamic equation of the
system is established, the transfer rate characteristics of the system are derived and the
effects of every parameter on the system are analyzed. The variable parameter methods are
proposed in Section 3. In Section 4, the vibration control capability of the system is verified
by ADAMS simulation. Finally, some conclusions and prospects are given in Section 5.

2. Design of the Vibration Control Mechanism Based on Quasi-Zero Stiffness
2.1. Structural Design

The robotic drilling system comprises a base, an industrial robot, an end-effector and
a vibration control system, as shown in Figure 1. The structural stiffness of the robot is
neglected as it is much higher than the springs. We only focus on studying the vibration
control system. Here, the industrial robot and the load table of the vibration control system
are considered mass. In addition, in Figure 2, the first group of springs near the middle in
the horizontal direction mainly plays a buffering role, its stiffness is significantly less than
that of other springs in the structure, and its influence on the system is negligible.
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By differentiating Equation (6) with respect to the displacement x, the stiffness of the 
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Figure 2. Model of a variable stiffness quasi-zero stiffness vibration control system (1—load platform;
2—linear guide block; 3—bearing spring; 4—linear guide rail; 5—base; 6—linear guide module;
7—buffer spring; 8—driving block; 9—horizontal spring; 10—damper; 11—connecting rod).



Machines 2021, 9, 67 4 of 16

The system includes the load platform, bearing springs, negative stiffness elements,
linear guide module and base. Bearing springs are arranged around the load platform
symmetrically, and the direction constraint is realized through the guide rail. The negative
stiffness elements are composed of two horizontal springs, connecting rods and several
linear guide blocks. The restoring force of the springs acts on the platform through the
connecting rods. The positive and negative stiffness elements are connected in parallel to
form a typical quasi-zero stiffness structure. The linear guide module is driven by a servo
motor to regulate the system stiffness actively. In order to be driven by a single motor, two
ball screws with positive and negative threads, respectively, are connected by a coupling.

2.2. Passive Structural Parameters Analysis

A schematic diagram of the quasi-zero stiffness structure is shown in Figure 3. The
connecting rods are horizontal when the system is under load and in static equilibrium.
The stiffness of the vertical and horizontal springs are Kv and Kh, respectively. The initial
length of the horizontal spring is L0, the length after being compressed is L, the connecting
rod length is a, the structural parameter is d, β represents the angle between the connecting
rod and the static equilibrium position and the load quality is M. Taking the static equilib-
rium position as the coordinate origin, when the vibration control system is excited, the
displacement from the static equilibrium position is x, and the expression of the spring
restoring force F is:

F = Fv + Fh (1)

Fv = Kvx (2)

Fh = −2Kh(L0 − L) tan β (3)

L = d−
√

a2 − x2 (4)

tan β =
x√

a2 − x2
(5)
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Here, Fv and Fh are the restoring force of the vertical and horizontal springs, respec-
tively. Substituting Equations (2)–(5) into Equation (1), the restoring force of the system
can be derived as:

F = Kvx + 2Kh

(
d√

a2 − x2
− L0√

a2 − x2
− 1
)

x (6)

By differentiating Equation (6) with respect to the displacement x, the stiffness of the
system is obtained as:

K = Kv + 2Kh

(
d− L0√
a2 − x2

+ x2 d− L0

(a2 − x2)
3
2
− 1

)
(7)
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The dimensionless parameters are introduced as:

f =
F

KvL0
; u =

x
L0

; α =
Kh
Kv

λ1 =
a

L0
; λ2 =

d
L0

=
L0 +

√
a2 − h

L0

where f is the dimensionless restoring force, u is the dimensionless displacement, λ1 and
λ2 are the configuration parameters and α is the spring ratio.

Thus, the dimensionless restring force f and the dimensionless stiffness k can be
derived from Equations (6) and (7) as

f = u + 2α

 λ2√
λ2

1 − u2
− 1√

λ2
1 − u2

− 1

u (8)

K = Kv + 2Kh

(
d− L0√
a2 − x2

− x2 d− L0

(a2 − x2)
3
2
− 1

)
(9)

Equation (9) defines the relations among the static displacement, configurative pa-
rameters λ1 and λ2, the spring ratio α and the system stiffness, which are illustrated as
Figures 4–6.
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As shown in Figure 4, the configurative parameter λ2 is set as a variable, while λ1 and
α are set as constants. For the value of λ2 > 1, the system stiffness value is at the minimum
at the static equilibrium position and greater than −1. It is obvious that the system is
underloaded when the stiffness is negative. Therefore, configurative parameters should
be selected to ensure that the system stiffness at the static equilibrium position is zero or
greater than zero. For the value of λ2 < 1, the stiffness curve appears as an inverse bathtub
curve, and the stiffness value is less than−1. The system does not achieve vibration control
in this case, and the relevant analysis will not be made subsequently.

As shown in Figure 5, the configurative parameter λ1 is set as a variable, while λ2
and α are set as constants. For the value of λ2 = 1 and α = 1, the effects of λ1 on system
stiffness are analyzed. The system stiffness value is at the minimum at the static equilibrium
position, and both the stiffness and curvature decrease with λ1 increasing. Therefore, under
the premise that the stiffness of the system at the static equilibrium position is zero or
greater than zero, the configurative parameter λ1 should be as large as possible.

As shown in Figure 6, the configurative parameters λ1 and λ2 are set as constants,
while α is set as a variable. For the value of λ2 = 0.8 and λ2 = 1.4, the effects of α on system
stiffness are analyzed as well. The stiffness of the system decreases with α increasing.
Under the condition that the stiffness value of the system at the static equilibrium position
is zero or greater than zero, the spring ratio α should be as large as possible.

According to the above analysis, each parameter is required to satisfy that the system
stiffness value at the static equilibrium position is equal to or greater than zero, thus
we have

Ksep = 1 + 2α

(
λ2 − λ1 − 1

λ1

)
≥ 0 (10)

where Ksep represents the system stiffness value at the static equilibrium position.
Therefore, when designing a passive vibration control system, the parameters should

meet the following requirement:
λ2 ≈ 1, but λ2 > 1

λ2 − 1 < λ1

α < λ1
2(1+λ1−λ2)

(11)
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3. Dynamics Analysis and Modeling
3.1. Dynamic Modeling and Solution of Quasi-Zero Stiffness Vibration Control Mechanism

In order to facilitate the subsequent dynamic analysis, an approximation of the di-
mensionless spring restoring force fa is made by expanding Equation (8) into a third-order
Taylor series form at u = 0.

fa =

(
1 + 2α

λ2 − λ1 − 1
λ1

)
u +

(
α

λ2 − 1
λ2

1

)
u3 (12)

The static equilibrium point is taken as the origin of coordinates of the mass M, and the
coordinate directions of the mass and base are shown in Figure 7. The system is stimulated
by the simple harmonic excitation z = Zcoswt, where Z is the excitation amplitude, and w is
the excitation frequency. The differential equation of motion is established as follows.

M
..
x + Fa + c

( .
x− .

z
)
= 0 (13)

where Fa is the approximation of spring restoring force. Let y = x − z, then convert
Equation (13) into the form of the relative motion differential equation

M
..
y + Fa + c

.
y = MZeω2 cos ωt (14)Machines 2021, 9, 67 8 of 17 
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Figure 7. Schematic diagram of the quasi-zero stiffness vibration isolation system.

The dimensionless parameters are defined as follows:

q =
y
L0

; ze =
Ze

L0
; ωn =

√
Kv

M
Ω =

ω

ωn
; ξ =

c
2
√

Kv M
; τ = ωnt

Substitute the dimensionless parameters into Equation (14), we obtain

..
q + 2ξ

.
q + ηq + εq3 = zeΩ2 cos γτ (15)

where η = 1 + 2α λ2−λ1−1
λ1

and ε = α λ2−1
λ3

1
.

Equation (15) can be solved by the harmonic balance method, and the steady-state
response of the equation is assumed to be

q = A cos(Ωτ + θ) (16)

where A represents the response amplitude and θ the initial phase.
Let φ = Ωτ + θ, and substitute Equation (16) into the differential Equation (15), thus(

η −Ω2
)

A cos φ− 2ξ AΩ sin φ + εA3 cos3 φ = zeΩ2 cos(φ− θ) (17)
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By using trigonometric functional relationships, the term of cos3φ is simplified as
(3cosφ)/4 by neglecting cos3φ. Let the coefficients of terms containing sinφ and cosφ on
both sides of the equation be equal; we can get

ηA +
3
4

εA3 − AΩ2 = zeΩ2 cos θ (18)

− 2ξ AΩ = zeΩ2 sin θ (19)

By using sin2θ + cos2θ = 1, we can get the amplitude–frequency characteristic equation
of the vibration control system:

(
A2 − z2

e

)
Ω4 +

(
4ξ2 − 2η − 3

2
εA2

)
A2Ω2 +

(
ηA +

3
4

εA3
)2

= 0 (20)

The absolute displacement transmissibility of vibration is defined as the ratio of
absolute displacements of the mass to that of the base

Ta =

√
A2 + Z2

e + 2AZe cos φ

Ze
=

√√√√( A
Ze

)2
+ 1 +

2A
(
ηA + 3

4 εA3 − Aγ2
)

(Zeγ)2 (21)

3.2. Stability Analysis

For the nonlinearity of the quasi-zero stiffness structure, the vibration control system
may be unstable in some cases. In the unstable region, the system will not be able to achieve
vibration control or even cause damage to the vibration isolated system, so it is essential to
analyze the stability of the vibration control system.

The Mathieu equation discriminant method is used to analyze the stability of the
system. A small perturbation n(t) is introduced into the steady-state solution of the
dimensionless differential equation of motion.

The expression of the solution of the equation can be written as follows:

q = q1(t) + n(t) (22)

where q1(t) is the steady-state solution.
Substituting Equation (22) into Equation (15)

..
q1 +

..
n + 2ξ

( .
q1 +

.
n
)
+ η(q1 + n) + ε

(
q3

1 + n3 + 3q1n2 + 3q2
1n
)
= zeΩ2 cos Ωτ (23)

By combining Equations (23) and (15) and omitting the nonlinear high-order terms
(the influence of high-order small perturbation on the system is very small), the differential
equation of small perturbation n(t) is obtained:

..
n + 2ξ

.
n +

(
η + 3εA2 cos2(Ωτ + θ)

)
n = 0 (24)

Equation (24) is a Mathieu equation with a damping term. Let τ = τ − θ/Ω, and
assume the solution for differential equation n(t) is:

n(t) = n1 cos Ωτ + n2 sin Ωτ (25)

Substituting Equation (25) into Equation (24), combined with the trigonometric func-
tion, we have(

−n1Ω2 cos Ωτ − n2Ω2 sin Ωτ
)
+ 2ξΩ(−n1 sin Ωτ + n2 cos Ωτ) + η(n1 cos Ωτ + n2 sin Ωτ)

+3εA2
[
n1

(
1
4 cos 3(Ωτ) + 3

4 cos Ωτ
)
+ n2

(
1
4 sin 3(Ωτ) + 1

4 sin Ωτ
)]

= 0
(26)
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The higher-order terms in Equation (26) could be ignored. Let the coefficients of both
cosΩτ and sinΩτ equal zero to obtain the coefficient equations:

(
9
4 εA2 + η −Ω2

)
n1 + 2ξΩn2 = 0

−2ξΩn1 +
(

3
4 εA2 + η −Ω2

)
n2 = 0

(27)

Let the discriminant of the coefficient equations be equal to 0, and the determination
equation under the stability boundary conditions is obtained:

∆ = Ω4 +
(
−3εA2 − 2η + 4ξ2

)
Ω2 +

27
16

ε2 A4 + 3εA2η + η2 = 0 (28)

When ∆ < 0, the response of the vibration control system is unstable, and the corre-
sponding unsteady region is as shown in Figure 8. When the excitation magnitude ze =
0.04, there are two intersection points between the amplitude–frequency characteristic and
the stability boundary curves. The solution obtained in the unstable region is unstable;
when the excitation amplitude decreases, the curves will not intersect, so the steady-state
solution is always stable.
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3.3. The Effects of the Parameters on Vibration Control Performance
3.3.1. Effects of Stiffness Ratio on Vibration Control Performance

In order to study the effects of the nonlinear stiffness term on absolute displacement
transmissibility, the stiffness value of the horizontal spring is set as a variable, while other
parameters of the system are set as constants. As shown in Figure 9, both the frequency
ratio at the peak value point and the peak value reduce with the increase of horizontal
spring stiffness. Within the effective range of the stiffness value, the absolute displacement
transmissibility is significantly reduced, and the vibration control performance is improved
with the increase of the stiffness value. In addition, the effective range of frequency for
vibration control increases with the increase of the stiffness of the horizontal spring.
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3.3.2. Effects of Damping Coefficient on Vibration Control Performance

By setting the damping coefficient of the vertical damper as a variable, the absolute
displacement transmissibility curves of various vertical damping conditions are obtained.
As shown in Figure 10, with the increase of the damping coefficient, the resonance peak
value of the system decreases correspondingly. However, the absolute displacement
transmissibility decreases with the increase of the excitation frequency. Therefore, the
appropriate damping coefficient is found out to ensure the vibration control efficacy of the
system at medium and high frequencies while reducing the resonance peak value.
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To sum up, the increase of the horizontal stiffness of the system and reduction of the
vertical damping are conducive to reducing the absolute displacement transmissibility and
improving the vibration control performance of the system.

4. Parameter Adjustment

The excitation characteristics of ambient vibration and the influence of different
parameters on the absolute displacement transmissibility of the system are analyzed. The
vibration suppression capacity of the system will be further optimized through parameter
adjustment.

4.1. Variable Stiffness Control

In order to ensure the stability of the system, the resonance region should first be
avoided. It is known that the stiffness ratio affects the frequency interval in which the
system resonates. Although the quasi-zero stiffness system can effectively reduce the reso-
nance frequency, resonance will still occur in the low-frequency range, which is not allowed
to exist in engineering applications. However, under the same conditions, the equivalent
linear vibration isolation system has no resonance, and the vibration isolation performance
is good; when the excitation frequency is large, it is obvious that the improvement of the
vibration isolation performance of the nonlinear system is gradually weakened and lower
than that of the linear system.

According to the above analysis, a piecewise variable stiffness method is adopted
to control the system, which sets the input stiffness for adjustment according to different
frequency segments of excitation. Figure 11 shows the transmissibility curves of the
quasi-zero stiffness system and the linear system. It can be seen that when the excitation
frequency ratio is 0.37, the transmissibility curve of the quasi-zero stiffness isolation system
intersects with the equivalent linear system, taking 0.37 as the first frequency-critical point.
When the frequency is high, it can be found that the transmissibility difference between the
two systems gradually decreases, and 1.8 is selected as the second frequency-critical point.
The vibration isolation effect of the variable stiffness system is obviously better than that of
the passive system because it avoids the resonance frequency bands.



Machines 2021, 9, 67 11 of 16

Machines 2021, 9, 67 11 of 17 
 

 

4. Parameter Adjustment 
The excitation characteristics of ambient vibration and the influence of different pa-

rameters on the absolute displacement transmissibility of the system are analyzed. The 
vibration suppression capacity of the system will be further optimized through parameter 
adjustment. 

4.1. Variable Stiffness Control 
In order to ensure the stability of the system, the resonance region should first be 

avoided. It is known that the stiffness ratio affects the frequency interval in which the 
system resonates. Although the quasi-zero stiffness system can effectively reduce the res-
onance frequency, resonance will still occur in the low-frequency range, which is not al-
lowed to exist in engineering applications. However, under the same conditions, the 
equivalent linear vibration isolation system has no resonance, and the vibration isolation 
performance is good; when the excitation frequency is large, it is obvious that the im-
provement of the vibration isolation performance of the nonlinear system is gradually 
weakened and lower than that of the linear system. 

According to the above analysis, a piecewise variable stiffness method is adopted to 
control the system, which sets the input stiffness for adjustment according to different 
frequency segments of excitation. Figure 11 shows the transmissibility curves of the quasi-
zero stiffness system and the linear system. It can be seen that when the excitation fre-
quency ratio is 0.37, the transmissibility curve of the quasi-zero stiffness isolation system 
intersects with the equivalent linear system, taking 0.37 as the first frequency-critical 
point. When the frequency is high, it can be found that the transmissibility difference be-
tween the two systems gradually decreases, and 1.8 is selected as the second frequency-
critical point. The vibration isolation effect of the variable stiffness system is obviously 
better than that of the passive system because it avoids the resonance frequency bands. 

 
Figure 11. Effect of the damping coefficient on transmissibility. 

As shown in Figure 12, when the frequency ratio Ω < 0.37 or Ω > 1.8, the actuating 
slider is at Position A, and the negative stiffness element will not work in the structure. 
When the frequency ratio is 0.37 < Ω < 1.8, the actuating slider will be moved to Position 
B through the linear module so that the structure will have quasi-zero stiffness character-
istics. 

Figure 11. Effect of the damping coefficient on transmissibility.

As shown in Figure 12, when the frequency ratio Ω < 0.37 or Ω > 1.8, the actuating
slider is at Position A, and the negative stiffness element will not work in the structure.
When the frequency ratio is 0.37 < Ω < 1.8, the actuating slider will be moved to Position B
through the linear module so that the structure will have quasi-zero stiffness characteristics.
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Let dΩ/dA = 0, in the above equation, and further simplify 
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Equation (30) is a quadratic equation of one variable of Ω2, which is obtained by solv-
ing 
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Substituting the above equation into Equation (30),  
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Figure 12. Realization of input stiffness by the actuator.

4.2. Variable Damping Control

It can be seen from the amplitude–frequency characteristic curve that the curve will
jump under a certain excitation amplitude, which will have a great influence on the stability
of the system. It is essential to determine the antijump condition of the system.

When a jump appears in the system, there will be at least two points on the curve that
satisfy dΩ/dA = 0, and when dΩ/dA 6= 0, the amplitude of the frequency is unique, so
the system is stable. Therefore, there exists a critical value of the excitation amplitude to
make sure that only one point of the amplitude–frequency characteristic curve satisfies
dΩ/dA = 0. If the amplitude is greater than this critical condition, it will cause the jump
phenomena of the system; otherwise, it will not.

The derivative of Equation (20) with respect to A is obtained

2AΩ4 + 4Ω3(A2 − Z2
e
) dΩ

dA +
(
8ζ2 A− 4ηA− 6εA3)Ω2

+2Ω
(
4A2ζ2 − 2ηA2 − 3

2 εA4) dΩ
dA + 2

(
ηA + 3

4 εA3)(η + 9
4 εA2) = 0

(29)
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Let dΩ/dA = 0, in the above equation, and further simplify

2Ω4 +
(

8ζ2 − 4η − 6εA2
)

Ω2 + 2
(

η +
3
4

εA2
)(

η +
9
4

εA2
)
= 0 (30)

Equation (30) is a quadratic equation of one variable of Ω2, which is obtained by
solving

Ω2 = η +
3
2

εA2 − 2ζ2 ± 1
4

√
64ζ4 + 9ε2 A4 − 64ηζ2 − 96εAζ2 (31)

Substituting the above equation into Equation (30),

(
A2 − z2

e
)(

η + 3
2 εA2 − 2ζ2 ± 1

4

√
64ζ4 + 9ε2 A4 − 64ηζ2 − 96εAζ2

)2

+
(
4ξ2 − 2η − 3

2 εA2)A2
(

η + 3
2 εA2 − 2ζ2 ± 1

4

√
64ζ4 + 9ε2 A4 − 64ηζ2 − 96εAζ2

)
+
(
ηA + 3

4 εA3)2
= 0

(32)

The curve of response amplitude A with excitation amplitude ze is shown in Figure 13.
When the excitation amplitude is larger than the critical value, there are two amplitude
points of the response, which are the jump-down and jump-up amplitude points. The
larger the excitation amplitude, the larger the corresponding jump amplitude is. When the
amplitude is equal to the critical value, the two jump points coincide. In this case, there is
only one point of the amplitude–frequency characteristic curve that satisfies dΩ/dA = 0,
and the system jump phenomenon disappears. When the excitation amplitude is less than
the critical value, the jump amplitude point does not exist; that is, there is no jumping
phenomenon in the system. Therefore, the critical value zc is the maximum permissible
excitation amplitude under the premise that the vibration control system does not occur
in the jumping phenomenon. Due to the randomness of ambient vibration, the excitation
amplitude is uncontrollable, so it is necessary to adjust the parameters to avoid the influence
of large amplitude on the stability.
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The influence of the damping coefficient on the critical excitation amplitude is shown
in Figure 13 as well. When the damping coefficient increases, the jump-up amplitude
increases and the jump-down amplitude decreases. The critical excitation amplitude also
increases obviously with the increase of the damping coefficient. Therefore, the variation of
the damping coefficient is beneficial to avoid the occurrence of the jumping phenomenon.

Because the equation of the jump amplitude is too complicated and difficult to ana-
lyze, the relationship between damping coefficient and critical amplitude is analyzed by
numerical method. By data fitting, three fitting curves of first-, third- and fourth-order
polynomials are plotted, respectively, as shown in Figure 14a. The error of the fitting curves
is analyzed by the residual diagram, as shown in Figure 14b. Figure 14 shows that the third-
and fourth-order curves are obviously more accurate than the first-order fitting curve, and
the difference between the two curves is slight, so the third-order polynomial is selected.

zc = −77ξ3 + 15ξ2 + 1.3ξ − 0.0068 (33)
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5. Simulation

In order to verify the feasibility of the theoretical analysis results, this paper sets
simulation parameters according to the KR-12-R1810-2 KUKA Industrial Robot, as shown
in Table 1. Figure 15 shows the simulation operation interface.
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Table 1. Simulation parameters.

Name Value

Mass M 300 kg
Stiffness of horizontal spring Kh 27 N/mm

Stiffness of vertical spring Kv 30 N/mm
Vertical damping coefficient c 0.12 N·s/mm

Connecting rod length a 160 mm
Original length of horizontal spring L0 200 mm

Configurative parameter d 280 mm
Excitation amplitude Z 1 mm

5.1. Simulation of the Vibration Control System with Variable Stiffness

The external excitation is designed as a piecewise sinusoidal signal with variable fre-
quency and invariable magnitude, and the expressions are shown as follows. The vibration
control ability of different systems under the same excitation condition is compared and
analyzed through simulations.

2 sin(3t), 0 s ∼ 25 s
2 sin(10t), 26 s ∼ 50 s
2 sin(40t), 51 s ∼ 75 s

As shown in Figure 16, the two passive systems both have obvious resonance in
different frequency bands. Especially in the time domain of 25–50 s, the response magnitude
is about 12 times the excitation magnitude, and it will cause instability of the system.
However, the system with variable stiffness can actively regulate the system to avoid
instability according to excitation frequencies. It will effectively avoid resonance, broaden
the frequency domain of vibration isolation and achieve stable vibration control.
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due to the influence of instability, the vibration control of the variable stiffness system is 
not realized, and the response magnitude is obviously greater than that of the excitation, 
which may even affect the normal operation of the system. The variable damping active 
control is added to ensure the stability of the system under the condition of large magni-
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5.2. Simulation of the Vibration Control System with Variable Stiffness and Damping

Considering that the excitation magnitude is also random, the variable magnitude
feature is added. {

20 sin(3t), 0 s ∼ 10 s
12 sin(6t), 11 s ∼ 20 s

Under the condition that the excitation amplitude increases and the damping coeffi-
cient remains constant, the system will have an unstable region. As shown in Figure 17,
due to the influence of instability, the vibration control of the variable stiffness system is not
realized, and the response magnitude is obviously greater than that of the excitation, which
may even affect the normal operation of the system. The variable damping active control is
added to ensure the stability of the system under the condition of large magnitude and
realize the optimization of the variable stiffness system.
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6. Conclusions

An ambient vibration control system is developed to improve the precision and
efficiency of robotic drilling systems. Based on the quasi-zero stiffness mechanism, a
passive system is proposed, and the value ranges of system parameters are determined by
static analysis. This paper studied the forced vibration of the system under basic harmonic
excitation. The approximate dynamics equation in the form of the Duffing equation is
obtained by approximating the system recovery force. The harmonic balance method
is used to solve the amplitude–frequency characteristic equation effectively. Based on
the functional relationship between the absolute displacement transmissibility and the
excitation frequency of the system, the influence of stiffness ratio, damping coefficient and
amplitude on the transmissibility is analyzed.

By adjusting the system stiffness ratio, the resonance frequency band is avoided,
and the vibration isolation frequency band is broadened. Meanwhile, the stability and
robustness of the system are improved under the condition of large excitation by adjusting
the damping coefficient. The ADAMS simulation results show that the ambient vibrations
are effectively suppressed by the semiactive vibration control system of variable param-
eters compared with the passive vibration control system under different frequency and
amplitude excitation conditions.

At present, nonlinear dynamic vibration absorption systems have become a research
hotspot in the field of vibration control. On the basis of the proposed structure, the
nonlinear energy sink [26] theory can be introduced to further improve the vibration
isolation performance.
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