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Abstract: A tremendous amount of work has been done in the recent years in the optimization
of input parameters, however, current optimization techniques can only provide a single optimal
input process parameter combination. Although alternative techniques have been developed to
provide multiple solutions with identical objective values, these techniques have low efficiency when
searching for multiple solutions. In this paper, a two-stage filter split-optimization approach is
proposed to obtain multiple solutions, at a higher efficiency than for a single-objective optimization
problem. The aforementioned tasks are accomplished by first performing an initial split-optimization
and then performing a second optimization after excluding input parameters from having their range
split into sub-ranges based on the results of the initial optimization. The proposed approach enables
the algorithm to explore input parameters that have a more significant impact on the objective
function, thereby enabling it to find multiple optimal solutions more efficiently. The proposed
approach was validated by using it to optimize the input process parameters of an electrochemical
machining problem with five input parameters. The results from the case study show that though
the proposed approach provided fewer optimal solutions it was able to obtain them at twice the
efficiency when compared to the original method.

Keywords: input parameter optimization; multiple optimal solutions; two-stage filter; split-optimization
approach; electrochemical machining (ECM)

1. Introduction

Throughout time, industries have evolved to meet the ever-growing demands of the
customers [1], handle higher complexities [2], and accomplish flexible manufacturing [3].
With the development of automated machinery that came with the third industrial revolu-
tion, manufacturing industries saw a large increase in production efficiency, a decrease in
labor and production costs, and an increase in the quality of the product. Even though, with
each industrial revolution, the bounds of what manufacturing industries can accomplish
increased significantly, with the rapid development of global industry, manufacturing
industries are facing many challenges, such as the rapid growing complexity and flexibility
of the problem, the increasing human labor cost, optimal allocation of resources [4], and
the urgent requirement of sustainable production. These problems create a bottleneck to
traditional manufacturing systems as they are inefficient when being used for material with
extremely high hardness, strength, flexibility etc. Non-traditional machining processes
utilize chemical, electrochemical, thermal, electrothermal, and other means for the process
of material removal and have shown to be a suitable substitute for traditional machining
processes and have given the manufacturing industries the ability to meet global demands
and keep up with intense competitiveness in markets [5].
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Input process parameter optimization is an extremely important task in these non-
traditional manufacturing processes as the selection of optimal input process parameters
can help improve the quality of the finished product, increase productivity, and decrease
production cost. However, for non-traditional manufacturing processes, input process
parameter optimization is a challenging task as there is no physical understanding about
the mechanisms of the process. Therefore, optimal process parameters are either obtained
through a trial-and-error based approach or are selected by experienced engineers. A trial-
and-error based approach can be very time consuming and depending on the resolution
of the input process parameters, not all combinations of input process parameters can be
tested. To cope with these drawbacks, researchers have used machine learning techniques
such as neural networks (NN), fuzzy logic (FL), etc. to map from the input process
parameters to the key performance indicators (KPIs) of ECM and then utilized these
intelligent prediction models to obtain the optimal combination of input process parameters
that achieve the desired KPIs using heuristic and metaheuristic algorithms.

The rest of the paper is presented as follows: Section 2 briefly presents the literature
review related to our study along with the problem under consideration. Section 3 presents
the proposed approach for improving Rajora et al.’s method. Section 4 talks about the
application of the proposed approach in the input parameter optimization problem of
ECM saw tooth making. Section 5 shows the comparison of the results obtained by the
proposed approach and Rajora et al.’s method in the case study and Section 6 draws upon
conclusions based on the results obtained.

2. Literature Review

Over the years, a large body of research has been focused on using machine learn-
ing techniques to create models for both traditional and non-traditional manufacturing
processes to improve final product quality.

Ciurana et al. [6] developed a NN model to map the relationship between the scan
speed, pulse intensity, pulse frequency, cutting time, surface roughness, geometrical and
dimensional features, error in volume, and material removal rate of pulsed laser micro-
machining. The trained NN was used as a fitness function in multi-objective particle
swarm optimization (PSO) to minimize the surface roughness and volume error. Mukher-
jee et al. [7] developed equations, by utilizing the response surface methodology (RSM),
to map from lamp current, pulse frequency, air pressure, pulse width and cutting width
to the heat affected zone, taper, upper deviation, lower deviation and depth deviation
for Nd:YAG laser beam machining (LBM). Single and multi-objective optimization of
the input parameters was then achieved by applying particle swarm optimization (PSO).
Teixidor et al. [8] created experimental models based on quadratic regression for pulsed
Nd:YAG laser milling. PSO was then applied to these equations to obtain the optimal
depth error, width error and surface roughness values. Lin and Chou [9] used NNs to
map from electrode angle, welding current, travel speed, and the proportion of mixed
flux to the depth and width of the weld bead geometry for the process of gas tungsten arc
(GTA) welding. Optimal parameter values were obtained by applying a genetic algorithm
(GA) to the NN model. In the work of Gowtham et al. [10], an adaptative neuro fuzzy
inference system was used to develop independent models correlating the welding process
parameters like current, voltage, and torch speed with weld bead shape parameters like
depth of penetration, bead width, and HAZ width. GA was then employed to determine
the optimum A-TIG welding process parameters to obtain the desired weld bead shape
parameters and HAZ width. Sathiya et al. [11] modeled the relationship between various
inputs (heating pressure, heating time, upsetting pressure, and upsetting time) and outputs
(tensile strength and metal loss) for the process of friction welding using NNs. This model
was then optimized by employing GA, simulated annealing (SA), and PSO. Sedighi and
Afshari [12] used mathematical models as well as NNs to develop the relationship between
feed rate, depth of cut, and wheel width to the material removal rate and surface roughness
of the creep feed grinding (CFG) process. The GA was then employed to minimize the
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surface roughness and maximize the material removal rate. Rao and Pawar [13] applied
artificial bee colony (ABC), SA, and harmony search algorithms (HAS) to minimize the
production cost, maximize the production rate, and minimize the surface roughness of a
grinding process.

Though much has been done in intelligent modelling and optimization of input pro-
cess parameters, current techniques used for the optimization process only provide a single
combination of optimal input process parameters when executed. Though this optimal
input process parameters combination may theoretically achieve the desired KPI, it might
not be applicable in real life or might lead to unstable experimental conditions. Technically,
multiple optimal input process parameter combinations with a similar objective value
can be obtained by executing the optimization algorithm multiple times, but the effec-
tiveness and efficiency of this method is very uncertain. To cope with these drawbacks,
Rajora et al. [14] proposed a method to obtain multiple solutions for a single-objective opti-
mization problem. In their proposed split-optimization approach, a cluster center splitting
strategy was used to split the original search space into smaller sub-search spaces and then
each sub-search space was optimized individually. “Best solutions” were then selected
from the optimal solutions by performing a significance check, that is, solutions that had
an objective value better than a threshold value were labelled as “best solutions”. Though
their proposed approach was able to find multiple optimal input parameter combinations
that had an identical objective value, no clear guideline was provided for selecting the
value of the parameter k used in the cluster center splitting strategy. Also, to obtain more
“best solutions”, the search space had to be split into a larger number of sub-search spaces.
Though this increased the total number of “best solutions” obtained, it came at a cost of
decreased efficiency, given by Equation (1). In this paper, a method is proposed to obtain
more “best solutions”, while also increasing the efficiency of the method proposed by Ra-
jora et al., which is often a concern of manufacturing industries. This is done by performing
an initial split-optimization, then based on its results, excluding some input parameters
from having their range split and performing a second stage optimization. Additionally,
the selection of a k value is also taken into consideration in the proposed method.

E f f iciency =
Number of “Best Solutions” obtained

Number of sub− search spaces searched
× 100% (1)

In this paper, input process parameter optimization of machine profile features in ECM
was used as a case study. As mentioned earlier, ECM is a non-traditional manufacturing
process of material removal that provides a good alternative to traditional material removal
machining process due to the absence of tool wear and stresses on the workpiece. However,
there is no clear understanding of its mechanism, therefore, researchers have tried different
techniques for input-output modeling and input parameter optimization. Rao, Pawa, and
Shankar [15] used a PSO algorithm for single and multi-objective optimization to maximize
the material removal rate, dimensional accuracy, and tool life in ECM. Jain and Jain [16]
used GA to optimize the dimensional inaccuracy in ECM. Chakradhar and Gopal [17] used
grey relation analysis to optimize electrolyte concentration, feed rate, and voltage of ECM
of EN-31 steel. Senthilkumar, Ganesan, and Karthikeyan [18] created a multiple regression
model to represent the relationship between the input and output parameters of ECM and
used a non-dominated sorting genetic algorithm-II (NSGA-II) to perform a multi-objective
optimization of its process parameters with the aim of maximizing material removal rate
and minimizing surface roughness. Rao and Kalyankar [19] developed a teaching-learning-
based optimization algorithm and used it for minimizing radial overcut and maximizing
the material removal rate. Santhi, Ravikumar, and Jeyapaul [20] used desirability function
analysis, fuzzy set theory, and technique for order preference by similarity to and ideal
solution (TOPSIS) to minimize the surface roughness and maximize the material removal
rate in ECM of titanium alloy (Ti6A14V). Samanta and Chakraborty [21] utilized the
artificial bee colony (ABC) algorithm for single and multi-objective process parameter
combinations of ECM, electrochemical discharge machining (EDM), and electrochemical
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micromachining. Goswami, Chaturvedi, and Chouhan [22] used a combination Taguchi’s
method, analysis of variance (ANOVA), and the signal to noise ratio (S/N Ratio) to optimize
the ECM process parameters.

The objective of this paper was to test the hypothesis that by excluding input process
parameters, which had a relatively low impact on achieving the desired KPI, from the
cluster centers splitting strategy, its efficiency could be improved. For this reason, ECM
was used as a case study to test this hypothesis as it had 5 input process parameters which
meant that there was a higher probability of finding those input process parameters that
had a relatively low impact on achieving the desired KPI. Both the proposed method and
the original split-optimization approach proposed by Rajora et al. were applied in this case
study with the aim of comparing their efficiencies.

3. Description of Methodology

In the split-optimization method proposed by Rajora et al., the k-means clustering
algorithm [23] was used to obtain several cluster centers based on the original experimental
data. These cluster centers, along with the range of the input parameters, were used
to divide each input process parameter’s original range into smaller sub-ranges. Next,
all the combinations of the sub-ranges between different input parameters were found
and the original search space was divided into smaller sub-search spaces. GA was then
utilized to optimize each sub-search space to obtain multiple optimal input parameter
combinations that had the best objective value. Since there is always error associated with
the experimental data as well as the forward prediction model, a significance check was
used to obtain “best solutions” from the optimal solutions.

In this paper, a two-stage filter split-optimization method is proposed to cope with the
drawbacks of methods proposed by Rajora et al., that is, increasing the efficiency (given by
Equation (1)) of the original method while also aiming to increase the total number of “best
solutions”. The proposed method utilizes the cluster center splitting strategy proposed by
Rajora et al. to split the original search space in smaller sub-search spaces. As the name
suggests, the two-stage filter split-optimization method consists of two stages: 1. an initial
split-optimization stage and 2. a second split-optimization stage with certain input process
parameters not having their range split into sub-ranges. The steps of the proposed method
are outlined below, and its flowchart is shown in Figure 1.

1. Select a range of k values, an input parameter exclusion threshold, and the significance
level.

2. Use each k value to split the original search space into smaller sub-search spaces.
3. Select the k value that provides the least number of sub-search spaces and perform

the initial optimization of its sub-search spaces to obtain multiple optimal input
parameter combinations. Use a significance check to extract “best solutions” from the
optimal solutions. These “best solutions” will be called solution set A.

4. For each input parameter being optimized, obtain its standard deviation in the solu-
tion set A.

5. Obtain the partial correlation coefficients (r and p value), between each of the input
parameters being optimized and the objective, based on the original dataset.

6. Compare the standard deviation and partial correlation coefficients with the input
parameter exclusion threshold to determine which input parameters will not have
their range split in the second split-optimization stage.

7. If there are no input parameters removed from step 6, stop the procedure and use
solution A as the final “best solution” set.

8. If there are input parameters to be excluded, exclude them and split the original
search space into smaller sub-search spaces using the k values from step 1.

9. Select the k value that provides the most sub-search spaces and perform the second op-
timization of its sub-search spaces using GA. Use a significance check to determine the
“best solutions” from the optimal solutions and name them solution set B. Combine
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solution sets A and B and determine the number of unique “best solutions” found.
These remaining unique best solutions will be called the final “best solution” set.
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As mentioned in the steps above, the partial correlation and the standard deviation
of each input process parameter in solution set A were used to determine whether an
input process parameter’s range was split into smaller sub-ranges. The partial correlation
coefficient was used as an indicator of the linear relationship between the input parameter
and the objective value. A higher absolute value indicated a less complex contour in
the search space, thereby not requiring splitting if the target is efficient. A low standard
deviation of the optimized input process parameter in solution set A indicated that the
target objective value lies within a very limited range. This also suggested that the splitting
of the input process parameter range is not required. It should be noted that partial
correlation coefficients and the standard deviation are not affected by the magnitude
change after normalization. Therefore, a unified threshold of input parameter exclusion
can be applied to different case studies.

4. Case Study

Electrochemical machining (ECM) is known as a non-traditional machining process
that is used to remove an electrically conductive work piece material through anodic
dissolution. The process of material removal for ECM is based on Faraday’s law, which
states that if two conductive poles are placed in a conductive electrolyte bath and energized
by a current, metal may be depleted from the positive pole (the anode) and plated onto the
negative pole (the cathode) [24]. During the process of ECM, improper input parameter
combination may lead to failure of the production, therefore, the capability of obtaining
multiple best solutions of the proposed method meets the urgent requirement of this field.
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The experimental setup used to obtain the data and the description of the case study are
discussed below.

4.1. Experimental Setup

Figure 2A shows the actual device used in the experiments, Figure 2B shows the
structure of the electrode module used in this study while Figure 3 shows desirable
dimension of the saw tooth profile. In the experiment, the saw electrode was fixed on the
upper adapter and the workpiece on the pedestal of lower adapter. The electrode was then
positioned to obtain the initial gap between the workpiece and the electrode. Sequentially,
the input parameters were configured on the GUI and the process was automatically started.
During the processing period, the process condition was monitored using an oscilloscope.
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Other basic information and settings are shown as follows: material of workpiece:
SUS304 stainless steel; material of electrode: Copper Tungsten Alloy (WCU30 indicating W
70%, Cu 30%); electrolyte velocity: 10 m/sec; electrolyte temperature: 25 ◦C; initial gap:
100 µm; tool moving distance in the Z axis: 1200 µm; and electrolyte: 10% NaNO3.

4.2. Experimental Data

Five controllable input parameters have been chosen as experimental factors, and the
range and levels of each factor are shown below. The parameters, their ranges and levels
were based on the works of Satish [25] and Rajurkar et al. [26].

Voltage: (1) range: [8, 11V], (2) levels of factor: 8, 9, 10, and 11V;
Pulse on time: (1) range: [50 µs, 110 µs], (2) levels of factor: 50, 70, 90, and 110 µs;
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Pulse off time: (1) range: [50 µs, 110 µs], (2) levels of factor: 50, 70, 90, and 110 µs;
Feed rate: (1) range: [5 µm/s, 8 µm/s], (2) levels of factor: 5, 6, 7, and 8 µm/s;
Electrolyte pressure: (1) range: [2.0 kg/cm2, 3.5 kg/cm2], (2) levels of factor: 2.0, 2.5,

3.0, and 3.5 kg/cm2.
In this study, two independent experiments were run with the same input parameter

combination. A charge coupled device (CCD) camera was utilized to measure all the
workpieces after the process of ECM saw tooth making. The experimental data is given in
Appendix A.

4.3. Input-Output Modeling

NNs are a commonly used technique for input-output mapping in many fields due to
their ability to approximate functions to the desired degree of accuracy, and unlike physics-
based models, the shape of the approximation function does not need to be assumed before
training. Due to the lack of physics-based models, NN was used to model the relationship
between the input parameters and performance indicators of the ECM. NN, as shown in
Figure 4, consists of input, hidden, and output layers with weighted connections connecting
the input layer to the hidden layer and the hidden layer to the output. Gradient descent
(GD) and Levenberg–Marquardt (LM) are commonly used to train the weight values of the
NN but as they are gradient based algorithms, their convergence to the global minimum is
very sensitive to the starting points; therefore, a hybrid GA-LM algorithm was used to train
the NN. GA is metaheuristic algorithm that can search the solution space more thoroughly,
therefore, it was initially used to set the weights of the NN. The training of these weights
was then continued with LM to leverage its rapid local convergence capabilities.
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Figure 4. Neural network structure used for prediction of outputs.

The objective of training the NN is to find a structure and a set of weight values that not
only minimize the mean squared error (MSE) of the training set but is also able to predict
future outputs with a high degree of accuracy. To ensure that the trained NN did not overfit
to the training data, the experimental dataset was split into 3 sets: training, validation, and
testing. The training set was used to train the weights of the NN, the validation set was
used to ensure that the overfitting did not occur, and the testing set was used to evaluate
the prediction capabilities of the trained NN structure. Once a satisfactory NN was created
and trained, it was then used as the fitness function in the optimization algorithm.
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4.4. Optimization Objective

In this case study, four different optimization scenarios with different single objectives
were tested. In scenario 1, the optimization objective was to obtain a tooth width of
1.125 mm. The objective function for scenario 1 is shown in Equation (2).

Objective 1 = min|(Toothwidth− 1.125 mm)| (2)

In scenario 2, the optimization objective was to obtain a tooth depth of 1.194 mm. The
objective function for scenario 1 is shown in Equation (3).

Objective 2 = min|(Toothdepth− 1.194 mm)| (3)

In scenario 3, the optimization objective was to obtain a left pressure angle of 20◦. The
objective function for scenario 1 is shown in Equation (4).

Objective 3 = min|(Le f t pressureangle− 20◦)| (4)

In scenario 4, the optimization objective was to obtain a right pressure angle of 20◦.
The objective function for scenario 1 is shown in Equation (5).

Objective 4 = min|(Right pressureangle− 20◦)| (5)

5. Result and Analysis
5.1. Neural Network Model

As stated earlier, the available experimental data was divided into training, validation,
and testing sets. Out of the 32 data sets available, 24 data sets were used in the training
set, 4 in the validation set, and 4 in the testing set; assignments were made by random
selections. During the training procedure, GA had a population size of 50, a crossover
fraction of 0.8, and it was run for 500 generations. Once the training was completed using
GA, the weights were then trained using the LM algorithm, which had an iteration limit of
1000. A trial-and-error method was used to determine the best NN structure, which had
5 input neurons, 1 hidden layer with 4 neurons, and an output layer with 4 neurons. To
validate the trained NN, it was used to predict the outputs of the 4 different test sets and
the relative error between the predicted and the actual outputs was calculated as shown in
Figure 5. Table 1 shows the mean absolute percentage error for each output of all of the
test sets.
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Table 1. Mean absolute percentage error (MAPE) for the test sets.

Test Set 1 (%) Test Set 2 (%) Test Set 3 (%) Test Set 4 (%)

MAPE 1.69 3.38 2.37 2.18
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As can be seen from Figure 5, the highest relative error is 7.19% for the 2nd output of
the 2nd test set. All the errors are below 8% and the MAPE of the test sets are below 8%.
The low values of the relative error and the MAPE indicate that the chosen NN structure
was able to predict future output values with a high degree of accuracy.

5.2. Two-Stage Filter Split-Optimization

In the first stage of the proposed method, the cluster centers splitting strategy was
used to obtain the k value that gave the least number of sub-search spaces. In this case
study, this was obtained using a k value of 2 as indicated by Table 2. It can also be observed
that if the k value was increased from 5 to 6, the number of sub-search spaces decreased,
therefore, in this paper the k value was only varied from 2 to 6.

Table 2. Number of sub-search spaces obtained for each objective under different k values.

Objective
k-Value

2 3 4 5 6

1 243 576 1200 2592 1250
2 243 576 1200 1800 1200
3 243 576 1000 1728 1500
4 243 768 1500 2592 1000

Next, the sub-search spaces, when a k value of 2 was used for each objective; the spaces
were optimized to get optimal input process parameter combinations. “Best solutions”
were obtained from the optimal input process parameter combinations by performing
a significance check. Since the measurement error of the experimental data was ±3%,
the significance level was also set as ±3%, that is, any optimal input process parameter
combination whose output was within 3% of the target value would be considered a part of
the “best solution” set and this set would be called solution set A. The number of solutions
in solutions set A when the k value varied from 2 to 6 are shown in Tables 3–6.

Table 3. Number of solutions in solution set A and the efficiency of the original method obtained
using the original method for Objective 1.

k-Value Number of Solutions in
Solution Set A

Number of Searched
Sub-Spaces Efficiency (%)

2 225 243 92.59
3 455 576 78.99
4 839 1200 69.92
5 1440 2592 55.56
6 864 1250 69.12

Table 4. Number of solutions in solution set A and the efficiency of the original method obtained
using the original method for Objective 2.

k-Value Number of Solutions in
Solution Set A

Number of Searched
Sub-Spaces Efficiency (%)

2 8 243 3.29
3 16 576 2.78
4 20 1200 1.67
5 45 1800 2.50
6 22 1200 1.83
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Table 5. Number of solutions in solution set A and the efficiency of the original method obtained
using the original method for Objective 3.

k-Value Number of Solutions in
Solution Set A

Number of Searched
Sub-Spaces Efficiency (%)

2 16 243 6.58
3 29 576 5.03
4 51 1000 5.10
5 47 1728 2.72
6 51 1500 3.40

Table 6. Number of solutions in solution set A and the efficiency of the original method obtained
using the original method for Objective 4.

k-Value Number of Solutions in
Solution Set A

Number of Searched
Sub-Spaces Efficiency (%)

2 23 243 9.47
3 54 768 7.03
4 106 1500 7.07
5 100 2592 3.86
6 54 1000 5.40

As can be observed from Table 3 (Objective 1), when the k value increased from 2
to 5, the number of sub-search spaces increased from 243 to 2592, but decreased to 1250
when a k value of 6 was used. An increase in the number of sub-search spaces meant
that the optimization algorithm had a much higher probability of finding a combination
of optimal input process parameters that belonged to solution set A. This hypothesis is
confirmed as the number of solutions in solution set A increased from 225 to 1440 when
the k value was increased from 2 to 5 but decreased to 864 when a k value of 6 was utilized.
Though the number of solutions in solution set A increased significantly with an increase
in k value, the efficiency of the algorithm decreased. A k value of 2 provided the highest
efficiency of 92.59% while a k value of 5 provided the lowest efficiency of 55.56%. Similar
trends can be observed in Tables 5–7 where the number of solutions in solution set A
increased from 8 to 45, 16 to 47, and 23 to 100 when the k value increased from 2 to 5 but the
efficiency decreased from 3.29% to 2.50 %, 6.58% to 2.72%, and 9.47% to 3.86% in Tables 4–6,
respectively. Therefore, to find more “best solutions” at a higher efficiency, certain input
process parameters were excluded from the cluster centers splitting strategy based on the
standard deviation of solution set A as well as the characteristics of the experimental data.
Several threshold values were tested to determine which combinations of the threshold
vales would provide the highest number of “best solutions” at the highest efficiency. The
test threshold values are given in Table 7.

Table 7. Settings of threshold for removing input process parameters.

Settings # Absolute Value of r Value p Value Standard Deviation

1 ≥0.50 ≤0.01 ≤0.15
2 ≥0.60 ≤0.01 ≤0.30
3 ≥0.70 ≤0.01 ≤0.45

Setting 1 requires a relatively low linear relationship between the input parameters and
the optimization objective and a low standard deviation of the optimized input parameter.
Settings 2 and 3, on the other hand, have a stricter linearity requirement (with setting
3 having the highest requirement), however, the standard deviation of the optimized
parameters can be significantly higher. The results obtained using these settings are given
in Tables 8–11.
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Table 8. Input process parameters excluded from cluster centers splitting strategy for Objective 1.

Absolute Value of Partial
Correlation Coefficient

(r Value)

Standard
Deviation Removed

Pulse on Time 0.56 0.32 No
Pulse off Time 0.59 0.22 No

Voltage 0.71 0.22 Yes (based on settings
2 and 3)

Feed Rate 0.01 0.31 No
Electrolyte
Pressure 0.03 0.25 No

Table 9. Input process parameters excluded from cluster centers splitting strategy for Objective 2.

Absolute Value of Partial
Correlation

Coefficient (r Value)

Standard
Deviation Removed

Pulse on Time 0.29 0.51 No

Pulse off Time 0.63 0.12 Yes (based on settings
1 and 2)

Voltage 0.82 0.22 Yes (based on settings
2 and 3)

Feed Rate 0.40 0.15 No
Electrolyte
Pressure 0.46 0.25 No

Table 10. Input process parameters excluded from cluster centers splitting strategy for Objective 3.

Absolute Value of
Partial Correlation

Coefficient (r Value)

Standard
Deviation Removed

Pulse on Time 0.76 0.11 Yes (based on settings 1,
2, and 3)

Pulse off Time 0.10 0.13 No
Voltage 0.35 0.12 No

Feed Rate 0.55 0.00 Yes (based on settings 1)

Electrolyte Pressure 0.62 0.13 Yes (based on settings 1
and 2)

Table 11. Input process parameters excluded from cluster centers splitting strategy for Objective 4.

Absolute Value of
Partial Correlation

Coefficient (r Value)

Standard
Deviation Removed

Pulse on Time 0.66 0.15 Yes (based on settings 2)
Pulse off Time 0.15 0.21 No

Voltage 0.29 0.18 No
Feed Rate 0.41 0.11 No

Electrolyte Pressure 0.59 0.16 No

According to Table 8, since only input 3 (voltage) fits the requirements of both settings
2 and 3 it would be removed from the split optimization strategy for Objective 1. For
Objective 2 and 3, different simulations were performed with only input 2 (pulse-on time)
being removed, inputs 2 and 3 removed, and only input 3 removed. Similarly, for Objective
3, simulations were performed with inputs 1 (pulse-on time), 4 (feed rate), and 5 (electrolyte
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pressure) being removed, inputs 1 and 5 removed, and only input 5 removed. Lastly, for
Objective 4, only input 1 was removed from the cluster centers splitting strategy.

Next, the input process parameters that were not excluded based on the results of
Tables 8–11 had their ranges split into smaller sub-ranges using the results in Tables 3–6. In
this case study, k = 5 was used for all objectives since it gave the most sub-ranges. Once the
sub-search spaces had been obtained, GA was used to obtain the solution set B for each
optimization objective. The sub-search spaces were then optimized using GA and solution
set B was obtained for each optimization objective. Finally, solution set C was formed by
combining the unique solutions from set A and set B and the efficiency was calculated
using Equation (1). These results are given in Table 12.

Table 12. Number of solutions in solution set C and the efficiency of the original method obtained after excluding input
process parameters for all the four objectives.

Objective Inputs Removed Number of Solutions in
Solution Set C

Total Number of
Searched Sub-Spaces Efficiency (%)

1 4 493 543 90.79

2
2 36 543 6.63

2 and 3 15 293 5.12
3 25 513 4.87

3
1, 4, and 5 23 263 8.75

1 and 5 25 318 7.86
1 47 618 7.61

4 1 104 603 17.25

For Objective 1, the range splitting was done after excluding pulse-off time and the
total number of solutions obtained in solution set C was significantly reduced to 493
from 1440 solutions, obtained using the original method with a k value of 5 (Table 3).
Noticeably, the solution efficiency increased to 90.79% compared to 55.56%, observed for
the original method.

Similarly, for Objective 2, somewhat fewer solutions were obtained, while the efficiency
was considerably higher using the proposed method. Additionally, the higher efficiency
was achieved regardless of whether pulse-off time, voltage, or both were excluded from
the cluster centers splitting strategy. The largest number of results (36) were obtained at
the highest efficiency (6.63%) when pulse-off time was excluded.

For Objective 3, the highest number of solutions in solutions set C were obtained
when pulse-on time was excluded from the cluster centers splitting strategy compared
to when inputs pulse-on time, feed rate, and electrolyte pressure or only pulse-on time
were removed. However, the highest efficiency was achieved when inputs pulse-on time,
feed rate, and electrolyte pressure were removed. Again, similar trends as those for
Objectives 1 and 2 were observed here, that is, higher efficiency with a slightly lower
number of solutions.

Finally, for Objective 4, the proposed method provided 104 solutions when pulse-on
time was removed from the cluster centers splitting strategy at 17.25% efficiency while
the original method provided 106 solutions at 7.07% efficiency (Table 6, k = 4). The results
from these experiments show that though the proposed method provides slightly less
solutions than the original method, it can find them at a much higher efficiency than the
original method.

6. Conclusions

In this paper, a two-stage filter split-optimization approach was developed to further
enhance the capabilities of the split-optimization technique proposed by Rajora et al. In
the proposed approach, a method was developed to investigate which input process
parameters should be excluded from the original cluster centers splitting strategy with the
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aim of achieving a higher number of “best solutions” at a high efficiency. The proposed
approach consisted of two stages: 1. an initial split-optimization stage and 2. a second
split-optimization stage with certain input process parameters excluded from the cluster
centers splitting strategy. An input parameter optimization problem in ECM with five
controllable input process parameters was used as an application of the proposed method.
Based on the results obtained from the case study the following conclusions can be made:

• If the objective is to obtain the largest amount of “best solutions” then all process
parameters should be included in the cluster centers splitting strategy and the k value
that provides the largest number of sub search spaces should be used.

• Though many “best solutions” will be obtained using the original method, they will
be obtained at low efficiency.

• To obtain multiple “best solutions” at a high efficiency, certain input process param-
eters should be excluded. This should be based on an analysis of the experimental
data and the solutions obtained when the using a k value that provides the smallest
number of sub-search spaces.

• Some potential future work for this research is as follows:

• Application to problems with linear and non-linear constraints. The addition of
constraints on the inputs would require enhancement of the splitting strategy as
it is unable to cope with constraints in its current form.

• Application to problems with comparatively more controllable parameters. Prob-
lems with a large number of controllable parameters would give a better indicator
of the proposed approach’s efficiency as significantly more sub-search spaces
would be formed after the splitting strategy.

• Utilization of other clustering algorithms (density-based spatial clustering, Gaus-
sian mixture modelling) to split the original search space into smaller sub-search
spaces and comparing their performance to the proposed approach.
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Appendix A

Table A1. Experimental data used for training and testing.

No.
Pulse on

Time
(µs)

Pulse off
Time
(µs)

Voltage
(V)

Feed Rate
(µm/s)

Electrolyte
Pressure
(kg/cm2)

Tooth
Depth
(mm)

Tooth
Width
(mm)

Left
Pressure

Angle
(◦)

Right
Pressure

Angle
(◦)

1-1
50 50 8.0 5 2.0

1.013 1.417 28.438 27.082
1-2 1.085 1.455 25.866 25.177

2-1
50 70 9.0 6 2.5

1.076 1.444 25.455 24.873
2-2 1.087 1.451 25.006 23.308

3-1
50 90 10.0 7 3.0

1.085 1.403 25.5 23.862
3-2 1.099 1.42 24.564 24.483

4-1
50 110 11.0 8 3.5

1.083 1.403 23.28 23.495
4-2 1.085 1.412 24.413 24.071
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Table A1. Cont.

No.
Pulse on

Time
(µs)

Pulse off
Time
(µs)

Voltage
(V)

Feed Rate
(µm/s)

Electrolyte
Pressure
(kg/cm2)

Tooth
Depth
(mm)

Tooth
Width
(mm)

Left
Pressure

Angle
(◦)

Right
Pressure

Angle
(◦)

5-1
70 50 9.0 7 3.5

1.137 1.476 24.278 23.282
5-2 1.143 1.448 24.179 22.361

6-1
70 70 8.0 8 3.0

1.111 1.366 23.338 21.415
6-2 1.104 1.359 22.483 21.388

7-1
70 90 11.0 5 2.5

1.185 1.617 27.562 26.565
7-2 1.173 1.612 27.845 26.176

8-1
70 110 10.0 6 2.0

1.131 1.48 24.658 24.071
8-2 1.128 1.496 25.022 24.787
9-1

90 50 10.0 8 2.5
1.193 1.537 25.99 25.834

9-2 1.171 1.564 26.41 24.389

10-1
90 70 11.0 7 2.0

1.07 1.49 28.068 26.665
10-2 1.079 1.474 28.221 25.752

11-1
90 90 8.0 6 3.5

0.919 1.322 24.547 23.742
11-2 0.901 1.318 25.749 24.261

12-1
90 110 9.0 5 3.0

1.033 1.375 27.404 25.037
12-2 1.018 1.354 26.938 25.926

13-1
110 50 11.0 6 3.0

1.097 1.497 28.632 26.565
13-2 1.105 1.507 28.752 27.195

14-1
110 70 10.0 5 3.5

1.102 1.447 27.502 25.247
14-2 1.061 1.438 26.773 26.112

15-1
110 90 9.0 8 2.0

0.987 1.366 28.706 28.355
15-2 0.99 1.358 27.296 25.723

16-1
110 110 8.0 7 2.5

0.858 1.314 28.709 27.691
16-2 0.862 1.338 28.205 27.981
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