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Abstract: The smoothing ball-burnishing process has commonly been used as a post-processing
method to reduce the irregularities of machined surfaces. However, the mechanism of this process
has rarely been examined. In this study, a simulation procedure is proposed to predict the surface
roughness of a burnished workpiece under varying burnishing forces. The roughness of the work-
piece surface was firstly approximated by parabolic functions. The burnishing process was then
numerically simulated through two steps, namely the elastic–plastic indentation of the burnishing
ball on the workpiece’s surface, and the sliding movement of the burnishing tool. The results of the
simulation were verified by conducting small ball-burnishing experiments on oxygen-free copper
(OFC) and Polmax materials using a load cell-embedded small ball-burnishing tool. For the OFC
material, the optimal burnishing force was 3 N. The obtained experimental surface roughness was
0.18 µm, and the simulated roughness value was 0.14 µm. For the Polmax material, when the
burnishing force was set at its optimal value—12 N, the best experimental and simulated surface
roughness were 0.12 µm and 0.10 µm, respectively.

Keywords: smoothing small ball-burnishing; numerical simulation; elastic–plastic contact simulation;
surface roughness

1. Introduction

The conventional cutting processes unavoidably damage the surface integrity of the
components, producing cracks and tensile residual stress. These defects cause fatigue
failures when the components are operated under dynamic loads. Thus, post-processing
methods, such as grinding, lapping, and polishing, are required for most workpieces.
Unlike chip removal processes, the ball-burnishing process uses a rigid ball to deform and
drive materials from peaks into valleys. Therefore, the surface of a burnished workpiece
has the qualities of low roughness and compressive residual stress.

According to Korzynski [1], ball-burnishing can be categorized into four types in terms
of its operational purposes: hardening, dimensional, smoothing, and a mix of all three. The
small ball-burnishing process mainly aims to improve the surface roughness, while the
surface hardness is often not a significant concern. Therefore, this study investigates the
surface smoothing mechanism.

Despite the compelling achievements reported in previous experimental works [2–6],
universal application of these methods is not attainable. The validity of each empirical
model is limited to a particular operating condition. For several decades, the theoretical
study of burnishing processes has been developed using Hertz’s theory, which investigates
the elastic deformation of a soft, flat surface under a load applied by a smooth, rigid
ball [7,8]. Although the Hertzian model can be used to estimate the burnishing force in a
static burnishing process, there are discrepancies in the obtained optimum forces between
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experimental works and the theoretical models [5,7]. This is because the Hertzian model
does not consider plastic deformation and the effects of the initial workpiece’s surface.
Luo et al. [9] proposed an analytical model for a cylindrical tool burnishing process with
a surface comprising Gaussian-distributed spherical asperities. However, many actual
engineering surfaces possess non-Gaussian height distribution. Pre-burnishing processes—
turning or milling—usually produce surfaces with systematically stripy asperities, con-
sidered as non-Gaussian [9]. For the smoothing models established by Korzynski [1] and
Li et al. [10] with wedge-shaped stripy surfaces, the drawbacks are that the authors used
asperities of the same height and equal spaces between the surfaces’ stripes.

Therefore, in this study, a milled workpiece surface was numerically generated from
experimental measures of surface roughness [10]. Then, Aramaki’s method [11] was
applied to simply describe the surface profile with parabolas to obtain the asperities’ radii
of curvature and heights. The small ball-burnishing process could then be simulated
through two steps: the indentation of the ball on the surface and the sliding movement
of the tool. The results of the simulated process were verified by experimental works
on two different materials: the mold steel Polmax and oxygen-free copper (OFC). A load
cell-embedded small ball-burnishing tool able to clamp a 0.5 mm diameter tungsten carbide
ball was used to perform the burnishing processes.

2. Small Ball-Burnishing Process

The ball-burnishing process is one of the cold surface finishing methods that can
improve the physical and mechanical properties of a workpiece. This process uses a
polished ball with high hardness to deform and move material from peaks to valleys of the
workpiece’s superficial irregularities with a normal and uniform load [1], as illustrated in
Figure 1. This mechanism is performed by feeding the burnishing ball perpendicularly to
the pre-machined surface’s lay direction while maintaining a regular compression force.
The ball-burnishing process gives many advantages in comparison with chip removal
processes. In addition to the benefit of producing a smoother surface [3,4], the burnishing
process induces compressive residual stresses on the surface of a working piece and,
therefore, the resistance to wear and fatigue also increases [2].
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Figure 1. Schematic of the small ball-burnishing process.

In order to conduct the small ball-burnishing process, a tool embedded with a spring
or a load cell system to set and maintain the burnishing force is designed to clamp the
small burnishing ball. The burnishing tool is mounted on a machining center to control the
sliding speed and the burnishing step-over. There are many parameters involved in the
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small ball-burnishing process: the initial surface roughness of the workpiece, the number of
burnishing passes, the ball and workpiece material, the ball diameter, the burnishing speed,
the burnishing force, depth of penetration, burnishing feed, and the type of lubricant.
Among these parameters, the burnishing force is the most significant factor to improve the
workpiece’s surface roughness [5,6].

3. Simulation Process
3.1. Simulation Procedure

The simulation procedure of the smoothing small ball-burnishing process is shown
in Figure 2. Inputs for the simulation included the pre-machined surface topography,
the geometry of the burnishing ball, and the material properties of the workpiece and
the ball. The simulation procedure began with the generation of the workpiece surface,
(z_s(i,j)) and the ball’s surface, (z_b(i,j)) based on the input data. The indentation process
was investigated afterward. The elastic–plastic deformation of the workpiece surface was
estimated using the data from the generated topographical arrays, (z_s(i,j)) and (z_b(i,j)),
and the material properties. After each iteration, the continuous sliding movement of the
burnishing ball over the workpiece surface was maintained at the same rate to incrementally
shift the indentation position. The workpiece surface array, (z_s(i,j)), was updated after
every repetition of indentation and sliding movement. The output surface roughness
parameters were then estimated using the obtained workpiece surface array (z_s(i,j)).
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Figure 2. Simulation procedure of the smoothing small ball-burnishing process.

3.2. Surface Generation

In this study, the Aramaki roughness model with quadratic function was utilized to
describe the surface profile of the milled workpieces (Figure 3). The relationship between
the parabola width, L, and height, z, was generated as the following equation:

〈z(L∗)〉
σ

=

(
2π

L2∗ + 1

)1/2
L∗ (1)

where σ is the standard deviation of the roughness profile heights; L∗ = (αL)/π with α is
the coefficient of the auto correlation function.
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The simulated surface of the milled workpiece was composed of successive ridges
and furrows, generated by extruding the parabolic peaks and valleys (Figure 4).
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Figure 4. The simulated surface of the workpiece: (a) 4000 × 4000 µm, (b) in detail.

3.3. Indentation Process

In this study, the workpiece was pre-machined by a face milling process. Its roughness
tips were approximated by the parabolic ridges and furrows perpendicular to the direction
of the feed. The ball’s surface (Figure 5) was considerably smoother compared to the
surface of the workpiece. Hence, contact between the ball and the workpiece surface
could be assumed as the sum of the parabolic ridge contacts and the smooth ball surface
(Figure 6). Therefore, the indentation process was the constitution of the interference of the
burnishing ball with each ∆y length ridge in the contact region (Figure 7).
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Figure 7. Two-dimensional elastic–plastic interaction of an individual ∆y length parabolic ridge with
a smooth surface.

Under the pressure of the ball, the ridge was initially elastically deformed. As the load
increased, the elastic behavior still described the deformation until a critical interference,
wc, was reached [12]. Upward of this critical load, the interaction also included plastic
contact. Thus, the total burnishing load, W, was the collective effect of the load in the
elastic and plastic regime. According to the fictitious plastic asperity theory proposed by
Abdo et al. [13], if we let A be the characteristic of contact (area, or load), then A may be
obtained by appropriately accounting for the aforementioned interaction. Therefore,

W = We1 −We2 + Wp2 (2)

where We1 is the characteristic of contact due to the elastic contact between the plane and
surface asperity; We2 is the characteristic of contact due to elastic interference between the
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plane and the fictitious plastic asperity; Wp2 is the characteristic of contact due to the plastic
interference of the plane and plastic asperity.

3.3.1. Elastic Analysis

In this research, the burnishing contact of the ball’s and workpiece’s surfaces was
divided into equal ∆y length slices perpendicular to the y-axis (Figure 4). Within the small
contact area, the burnishing ball surface was a combination of cylindrical surfaces that
had the same ∆y length and 0.5 mm diameter. For the workpiece’s surface, the burnishing
contact at each slice was the sum of the ∆y length parabolic ridges. Therefore, in this
simulation model, the Hertzian solution of the contact width and contact pressure of the
elastic contact between the two cylinders were estimated using the following equations [14].

The contact patch is of half-width ai, such that

ai = 2
{

We1R
πE∗

}1/2
(3)

where We1 is the normal load per unit length along y axis, and R and E∗ are the reduced
radius and modulus of contact, respectively. R and E∗ are determined using the follow-
ing equations:

1
E∗

=
1− ν2

1
E1

+
1− v2

2
E2

(4)

where E1, E2 are the Young’s moduli of the ball and workpiece material, respectively. ν1, ν2
are the Poison’s ratios of the ball and workpiece material, respectively.

1
R

=
1

R1
+

1
R2

(5)

where R1, R2 are the radii of the ball and the contacted asperity.
The peak pressure, p0, is calculated as

p0 =

(
We1E∗

πR

) 1
2

(6)

The mean pressure, pm, over the contact strip is given by

pm = πp0/4 (7)

The center of the ball moves by a small distance, ω, where

ω =
2We1

π

[
1− ν2

1
E1

(
ln
(

4R1

ai

)
− 1

2

)
+

1− ν2
2

E2

(
ln
(

4R2

ai

)
− 1

2

)]
(8)

In a numerical solution, the positions of the two cylinders were obtained first; the con-
tact force was then calculated at each integration time step. Therefore, for each given pene-
tration, ω, Equation (8) had to be solved iteratively to obtain the contact force. Equation (8)
includes the logarithmic function, which imposes mathematical complications. Hence, in
this study, the simplicity model suggested by Liu et al. [15] was used: the contact force can
be expressed as an explicit function of the penetration. Thus, the elastic load of the ball
applied on a ∆y length ridge can be determined as

We1 =
1
2

πωE∗
√

ω

2(∆R + ω)
∆y (9)

where ∆R = R1 + R2 for external cylindrical contact, R1, R2 are the ball radius and the ∆y
length ridge radius, respectively.
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3.3.2. Plastic Analysis

It was proposed by Tabor [16] that the maximum contact pressure reach, p0 = kH,
where H is the hardness of the softer material, the critical interference distance, ωc, can be
determined as

ωc =
2R(kH)2

E∗2

[
1− ν2

1
E1

(
ln
(

2πE∗R1

R(kH)

)
− 1

2

)
+

1− ν2
2

E2

(
ln
(

2πE∗R2

R(kH)

)
− 1

2

)]

When ω exceeds critical value ωc, plastic deformation occurs. Utilizing the model of
elastic–plastic proposed by Jamil Abdo et al. [13], the fictitious surface was obtained by
replacing every point on the real surface with the critical interference distance along the
direction normal to the surface (Figure 8). The equation describing the fictitious surface
was obtained as the following:

z′ =
1

2(R−ωc)
x2 (10)
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The plastic contact area was determined using the volume conservation model. Be-
cause the parabola-shaped ridges were along the y direction, it could be assumed that
these ridges were solely deformed along the x direction. Hence, the volume conservation
model could be transformed into a cross-sectional area conservation model. As depicted
in Figure 8, the deformed ridge was modeled by the truncated parabolic segment. The
equation of the truncated parabolic ridge is

z′′ =
1

2R′′
x2 (11)

where R” is the summit radius of the deformed fictitious parabola.
This parabola passes through the point (x = a, z′′ = ω′′ ), where ω′′ is the interference

depth of the fictitious parabola wedge, ω′′ = ω−ωc. Thus,

R′′ = a2/2ω′′ (12)

The cross-sectional area of the truncated ridge is

A′′ = 2
(∫ L′′ /2

0
z′′ dx−

∫ a

0
z′′ dx

)
(13)
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Substitute Equations (12) and (13) into Equation (14):

A′′ =
2ω′′

3a2

(
L′′ 3

8
− a3

)
(14)

The cross-sectional area of the truncated ridge, A′′ , is equal to the cross-sectional area
of the un-deformed fictitious parabolic ridge, A′

A′ =
2
3

L′′
(

zpeak −ωc

)
(15)

where L′′ is the width of the fictitious peak at the mean line, L′′ = L− 2ωc.
The width of the plastic contact a can be determined using the following Equation:

a3 + 3a2 A′′ −ω′′ L′′ = 0 (16)

with the constrain 0 < a < L′′/2.
For an individual ∆y length ridge, the plastic portion of a normal load applied on it

when the ball moves a small distance, ω, is

Wp = H2a∆y (17)

The elastic portion of the normal load between the plane and the fictitious plastic
asperity can be determined by

We2 =
1
2

π(ω−ωc)E∗
√

ω−ωc

2(∆R + ω−ωc)
∆y (18)

Therefore, from Equations (2), (9), (18), and (19), the net load of contact between the
ball and an individual ∆y length ridge, Wi, when the interference depth, ω, exceeds the
critical interference, ωc, can be estimated as

Wi =
1
2

πωE∗
√

ω

2(∆R + ω)
∆y− 1

2
π(ω−ωc)E∗

√
ω−ωc

2(∆R + ω−ωc)
∆y + 2aH∆y (19)

Cross-sectional deformation analysis of each ∆y length parabolic ridge should be
integrated to obtain the burnishing force. Therefore, the normal load can be determined by

∑ W =
n

∑
i=1

Wi (20)

where n is the number of ∆y length ridges in contact with the ball, and Wi is the contact load
of each ridge estimated using Equation (9) or Equation (20), depending on the magnitude
of their interference with the burnishing ball.

4. Experimental Verification
4.1. Experimental Materials

Oxygen-free copper (OFC) and Polmax rectangular blocks with dimensions of
40 × 70 × 30 mm were used for validation. The two blocks were pre-machined using one-
pass 50 mm face milling with a spindle speed of 350 rpm, feed rates of 150 and 80 mm/min
for OFC and Polmax, respectively. The average surface roughness values of the milled OFC
and Polmax surfaces, measured by a Hommel Tester T4000, were approximately Ra 0.89,
and Ra 0.76, respectively.
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4.2. Small Ball-Burnishing Process

A novel double-spring-mechanism tool (Figure 9) was used to conduct the experi-
ments. The tool was designed so that a 0.5 mm diameter burnishing ball could be clamped
and replaced. A low-cost load cell system was embedded in the burnishing tool to precisely
monitor the forces induced during the burnishing process. The MV-3A three-axis machin-
ing center made by Yang-Ion Co was used for the milling and burnishing experiments. The
experimental setup of the small burnishing process is shown in Figure 10.
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4.3. Process Parameters

The burnishing parameters used in the confirmation experiments were referenced
from the research of Shiou et. al. [17,18]. The burnishing experiments were conducted on
15 different regions of each material block, corresponding to different equivalent sets of
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parameters. The burnishing conditions were grease as the lubricant, a burnishing speed of
500 mm/min, a step-over of 4 µm, burnishing forces of 3, 6, 9, 12, and 15 N for Polmax,
and 1, 2, 3, 4, and 5 N for oxygen-free copper (OFC). The burnished surface roughness
values, Rmax and Ra, were measured at each specific region using the Hommel Tester T4000
measurement device.

5. Results and Discussions

Figures 11 and 12 illustrate the topography of the simulated and experimental milled–
burnished areas, respectively. As depicted in these two figures, the two resultant surfaces
resemble each other. The milling tool marks were noticeably removed after the burnishing
process. The quantitative results of the simulated and experimental workpieces’ surface
roughness are shown in Table 1.
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Table 1. Simulated and experimental surface roughness results.

Workpiece Force (N)

Rmax(µm) Ra (µm)

Experiment
Simulation

Experiment
Simulation

1 2 3 Mean 1 2 3 Mean

Polmax

Milled 6.22 6.05 6.11 6.13 5.71 0.77 0.75 0.76 0.76 0.76
3 1.6 1.52 1.54 1.40 1.71 0.32 0.28 0.30 0.30 0.39
6 1.37 1.4 1.42 1.12 1.33 0.17 0.19 0.19 0.18 0.21
9 1.09 1.13 1.15 1.22 0.83 0.13 0.14 0.15 0.14 0.13
12 1.25 1.2 1.2 1.22 0.64 0.12 0.12 0.13 0.12 0.10
15 2.18 2.2 2.27 2.73 N/A 0.21 0.22 0.22 0.22 N/A

OFC

Milled 7.07 6.86 6.82 6.98 6.21 0.90 0.88 0.88 0.89 0.89
1 2.1 1.92 1.98 2.00 2.22 0.25 0.23 0.27 0.25 0.35
2 1.89 2.08 2.21 2.06 2.01 0.23 0.23 0.25 0.24 0.19
3 1.44 1.37 1.42 1.41 1.61 0.19 0.17 0.19 0.18 0.14
4 2.56 2.49 2.68 2.58 N/A 0.32 0.32 0.33 0.32 N/A
5 3.85 3.66 3.75 3.76 N/A 0.51 0.49 0.47 0.49 N/A

When the burnishing forces were set at 12.5 N for Polmax and 3.5 N for OFC, the
penetration depths of the burnishing ball after the indentation processes were 5.78 µm
for Polmax, and 6.25 µm for OFC. The simulated milled surface roughness, Rmax, was
5.71µm for Polmax and 6.21 µm for OFC. If the burnishing forces increased, the values of
depth of penetration kept rising. Thus, the process cannot be considered as smoothing
burnishing [1]. Therefore, when the burnishing forces reach 12.5 N for Polmax, and 3.5 N
for OFC, the simulation process will stop, and the surface roughness values will no longer
be available.

For the Polmax material (Figure 13a), the experiment and simulation yielded the small-
est burnished surface roughness at 12 N force. The best experimental surface roughness
value was 0.12 µm, slightly larger than the simulated result, 0.10 µm. For OFC (Figure 13b),
the best surface roughness was obtained when the burnishing force was set at 3 N. The
experimental result was 0.18 µm, and the simulated roughness value was 0.14 µm. Notably,
in both cases, the simulation process yielded better results than the experiment did. This is
due to the fact that the simulation process did not take into account additional reasons for
the deterioration of the burnished surface, such as the friction between the burnishing ball
and workpiece, the vibrations and deformations of the machine chuck tool system, and the
heat generated during the process.
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6. Conclusions

In this research, a numerical simulation of the smoothing small ball-burnishing process
was conducted to predict the surface roughness of the workpiece. The pre-burnishing sur-
face roughness was numerically described using parabolic approximation. The mechanism
of the burnishing process was divided into two consecutive steps, namely the elastic–plastic
contact between the burnishing ball and the workpiece surface, and the sliding movement
of the ball along the surface. In addition to Hertzian’s elastic contact model, the novel
conservation of the cross-sectional areas mechanism was utilized to determine the new
surface asperities’ heights in the plastic contact domain. Therefore, the surface roughness of
the burnished workpiece could then be determined from the resultant surface array. A load
cell-embedded small ball-burnishing tool was used to conduct the burnishing experiments
on the Polmax and OFC materials to verify the simulated results. The obtained surfaces
proved that the simulated results were in agreement with the experimental ones. Thus, the
proposed simulation procedure can be applied to determine the optimal burnishing force
of the smoothing small ball-burnishing process on a specific material.
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