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Abstract: In this work, a comprehensive control strategy for obstacle avoidance in redundant manip-
ulation is presented, consisting of a combination of off-line path planning algorithms with on-line
motion control. Path planning allows the avoidance of fixed obstacles detected before the start of
the robot’s motion; it is based on the potential fields method combined with a smoothing process
realized by means of interpolation with Bezier curves. The on-line motion control is designed to
compensate for the motion of the obstacles and to avoid collisions along the kinematic chain of the
manipulator; it is realized by means of a velocity control law based on the null space method for
redundancy control. A new term is introduced in the control law to take into account the speed
of the obstacles as well as their position. Simulations on a simplified planar case are presented to
assess the validity of the algorithms and to estimate the computational effort in order to verify the
transferability of our approach to a real system.

Keywords: collaborative robotics; trajectory planning; obstacle avoidance; redundant manipulator;
Bezier curves

1. Introduction

Collaborative robotics has recently gained an important role in industrial production,
attracting the attention of researchers. Collaborative robotics refers to the cooperation
between humans and robots to accomplish a certain task in a shared workspace; it is the
meeting point between flexibility and productivity needs and is made possible by the
use of advanced safety technologies. In addition, collaborative robotics involves specific
techniques to control robots working in a dynamic environment that is not known in
advance and to modify planned motions to avoid collisions with humans and obstacles [1].

When a manipulator is intended to work in environments in which potential obstacles
may interfere with its motion, a certain degree of redundancy is useful for its kinematic
reconfiguration [2]. Thus, thanks to its dexterity, a redundant manipulator is the best
candidate in collision avoidance applications. Moreover, redundancy can also be exploited
with standard manipulators if some of the degrees of freedom of the end-effector—e.g., the
orientation angles—can be kept free during motion.

An overall control strategy for a manipulator working in a dynamic environment can
be conceived as the combination of the following:

• An off-line path planning algorithm, which plans the trajectory of the robot end-
effector taking into account the possible presence of disturbing obstacles, modifying
the path based on the positions of the obstacles before the motion starts;
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• An on-line motion control algorithm, which controls the robot in real-time to com-
pensate for obstacles that are moving or new obstacles entering the workspace, also
avoiding collisions between obstacles and points belonging to the kinematic chain of
the manipulator.

Several methods dealing with motion planning for obstacle avoidance are available
in the literature [3]. As an example, the obstacle avoidance problem is solved by the con-
figuration space motion method in [4], whereas a distance-propagating dynamic system
is proposed in [5] for dynamic environments. Furthermore, a model predictive control is
presented in [6] with a BIT (Batch Informed Trees) method that improves the path point con-
nections, whereas in [7], collision-free paths are generated using an RRT (Rapidly-Exploring
Random Trees) algorithm. Moreover, a very common approach to path planning is to define
artificial potential fields, which drive the robot to the target inside the workspace [8–11].
The result of the potential fields is a set of forces that are attractive toward the goal and
repulsive from the obstacle regions. Typically, such forces are associated with velocities
applied to the end-effector of the manipulator; then, the trajectory can be obtained by
numerical integration. An example of a path planning strategy based on potential fields
method is proposed in [9], where a saturation function for the attractive velocity is intro-
duced in order to avoid oscillations around the goal point; furthermore, for the repulsive
velocity, a spring–damper system is used to eliminate noise in proximity of the obstacles. A
further problem in optimal path planning for automation and robotics is the generation of
smooth trajectories, as highlighted in [3,12]: an optimal algorithm for trajectory generation
must guarantee smoothness in terms of position and velocity in order to be implemented
in the controller of a real system. That is the case, for example, with CPP (Coverage
Path Planning) techniques, typically used for service mobile robots, where algorithms are
able to generate smooth paths, avoiding sharp turns and thus reducing accelerations and
decelerations[13,14].

The same principle of repulsive velocities generated by obstacles can be used in order
to avoid collisions between obstacles and control points along the kinematic chain of the
manipulator: in addition to the motion imposed on the end-effector, a repulsive velocity
vector can be applied to the point of the robot that is closer to one of the obstacles, adding
a task to the control system [15–19]. Specifying some studies, a comprehensive work can
be found in [2], where a kinematic control for on-line obstacle avoidance in a redundant
manipulator is proposed and an approximated and computationally efficient solution
for the pseudoinverse is used to manage the redundancy of the manipulator; in [5], a
grid-based distance-propagating dynamic system is adopted, where penalty functions are
used to generate safety margins around the obstacles.

Overview and Contribution

This study proposes a control strategy for obstacle avoidance in redundant manipula-
tors using a combination of off-line path planning and an on-line motion control algorithms.
Starting from the research background provided by the aforementioned studies, a com-
bination and synthesis of the best candidate methods has been already presented by
authors in [20]. In this work, some improvements are given, introducing two main novel
contributions:

• Off-line path planning is combined with a smoothing interpolation based on Bezier
curves in order to avoid sharp edges and high accelerations [21–27];

• Regarding collision avoidance control, an additional term depending on the velocity
of an obstacle is introduced, previewing its next position in order to plan the optimal
correction of the trajectory.

Algorithms are tested by simulation on a simplified case; i.e., a planar manipulator
with three revolute joints (3R) in a two degree-of-freedom (2-DOF) task space. The results
confirm the effectiveness of the method and give an insight into the required computational
effort. The advantages due to the novel improvements introduced in the algorithms can be
summarized as follows:
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• The capability of generating smooth trajectories with a closed-form interpolation
procedure, which requires a very low computational time;

• The reinforcement of the motion control strategy in the case of moving obstacles,
without a significant increase of the computational effort.

The remainder of the paper is organized as follows: Section 2 describes the trajectory
path planning algorithm, where the artificial potential fields method and a smoothing
procedure that exploits Bezier curves are combined; Section 3 discusses the on-line motion
control, including the direct and inverse kinematics of the manipulator, the obstacle avoid-
ance strategy based on the null space method and the introduction of an additional term
that improves the ability of the robot to avoid moving obstacles; Section 4 discusses and
compares the performance of the algorithm in different conditions; and a preview of future
work and concluding remarks are given in Sections 5 and 6, respectively.

2. Off-Line Path Planning

A trajectory planning algorithm is needed at first in order to define the motion xe(t)
to be assigned to the end-effector to reach a target position and avoid the obstacles that are
inside the workspace before the motion of the manipulator starts. The strategy proposed
in [20] is based on the definition of potential fields that generate repulsive or attractive
velocity components, defined as vrep and vatt, respectively, which drive the end-effector
E following the minimum potential path towards the goal. As shown in Figure 1, P is
the initial position of the end-effector, G is the goal and Oi represents the obstacles, with
their area of influence outlined by the radius r. Moreover, dO = E−Oi and dG = G− E.
Equation (1) defines attractive and repulsive velocities as

vatt =

 vatt
dG
r

dG < r

vattd̂G dG ≥ r
vrep =


vrep

dO

(
1

dO
− 1

r

)
∇dO dO < r

0 dO ≥ r
(1)

Figure 1. Potential field for trajectory planning.

The end-effector trajectory can be found by the numerical integration of the resulting ve-
locity:

ẋe = vrep + vatt xe(t + dt) = xe(t) + ẋe(t)dt (2)

Then, an interpolation with a fifth-order polynomial allows the generation of a motion
law.

A path resulting from Equations (1) and (2) is typically characterized by short-radius
curves and sharp corners that may cause high accelerations and vibration problems, as
shown in the example of Figure 2: the robot in the initial and final configurations is sketched
in blue, while obstacles are the red circles and their region of influence is delimited by
dashed circles; the green curve is the path obtained by means of the potential fields method.
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End Effector
Goal

Base

Links
Control points
Obstacles
Region of influence
Trajectory (potential fields)
Trajectory (Bezier)

Figure 2. Path planning for a planar 3R manipulator and two fixed obstacles.

An improvement of the presented algorithm can be obtained by avoiding its critical
issues due to sharp corners by using a smoother kind of curve—i.e., a Bezier curve—which
interpolates the original curve with a best-fit approach. The new algorithm considers
three possible orders of Bezier curves, from three to five, with an increasing level of
detail/complexity and computational effort. Given n + 1 points P0, P1, . . . , Pn, where n is
the power of the Bezeir curve, the latter is defined as

B(s) =
n

∑
i=0

(
n
i

)
Pi(1− s)n−isi, s ∈ [0, 1] (3)

Without any loss of generality, let us consider a third-order Bezier curve:

B = P0(1− s)3 + 3P1s(1− s)2 + 3P2s2(1− s) + P3s3 (4)

where the points P0 and P3 are coincident with the starting and goal points, respectively; the
fitting procedure seeks for points P1 and P2, generating the curve B that best approximates
the original one with a least-square metric. A closed-form solution to the problem can be
found by manipulating Equation (4) as follows:

BT =
[
1− s3 s3][P0 P3

]T
+
[
3s(1− s2) 3s2(1− s)

][
P1 P2

]T (5)

If the curvilinear abscissa s is discretized in m samples, the trajectory xe becomes a
set of m points. Thus, Equation (5) can be written m times for the points Bj, j = 1 . . . m,
assuming the form

N = S1C1 + S2C2 (6)

where:

N =
[
B1 . . . Bm

]T S1 =

1− s3
1 s3

1
...

...
1− s3

m s3
m

 S2 =

 3s1(1− s2
1) 3s2

1(1− s1)
...

...
3sm(1− s2

m) 3s2
m(1− sm)

 (7)

C1 =
[
P0 P3

]T C2 =
[
P1 P2

]T (8)

A closed-form solution for the optimal set of coefficients C2 can be easily found
by manipulating Equation (6) and substituting the matrix N with the analogous matrix
X that is built with the points belonging to the trajectory xe found with the potential
field algorithm:

C2 = S2
†(X− S1C1) X =

[
xe,1 . . . xe,m

]T (9)



Machines 2021, 9, 30 5 of 16

where † represents the pseudoinverse operator according to the Moore–Penrose definition.
The result of the smoothing procedure is shown in Figure 2 by the magenta curve. Fur-
thermore, Figure 3 gives a comparison between third and fourth-order polynomials: in
the first case, the interpolation is less accurate, violating the influence area of an obstacle,
whereas in the second case, the fitting is better, but the trajectory is less smooth; higher
orders will result in overly sharp curvatures and high computational times and thus they
are not suitable for this purpose.

3rd order 4th order

potential fields
Bezier

(a) (b)

Figure 3. Trajectory interpolation: comparison between 3rd (a) and 4th (b) order Bezier curves.

3. On-Line Motion Control

A simplified planar case is analyzed in this work in order to assess the functionality
of the algorithms: a 2D motion in the Cartesian space x = [x y]T is planned using the 3R
manipulator shown in Figure 4, which is controlled in the joint space q = [θ1 θ2 θ3]

T . Thus,
the kinematics of the manipulator has a redundant degree of freedom with respect to the
task. Each link has the same length, L. Besides the end-effector E, a total of 12 control
points belonging to the kinematic chain characterizes the manipulator; three of them are in
correspondence with the joints O, A and B, and the others are equally spaced along the
links (e.g., A1, A2, A3).

A

B

O

E

A
A

A
L

θ1

θ2

θ3

Figure 4. Planar 3R manipulator with control points.

The forward kinematics of the manipulator can be described by

x = f(q) (10)

ẋ = J(q)q̇ (11)

where f represents the expression of the position forward kinematics and J is the (2× 3)
Jacobian matrix. Due to redundancy, the inverse position kinematics problem is not defined
in a closed form, but it can be defined by the following differential formulation:
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q̇ = J†ẋ + Nq̇0 (12)

q(t + dt) = q(t) + q̇(t)dt (13)

where q̇0 is the joint null space velocity, whose effect is to generate internal motions, leaving
the pose of the end-effector unchanged; J† = JT(JJT)−1 is the pseudoinverse of the Jacobian
matrix J; N = I− J†J is the projection into the null space of J.

In addition to the basic control law, an obstacle avoidance strategy is introduced:
inspired by the null space methods for the control of redundant manipulators, an additional
velocity vector is assigned to the control point of the robot which is the closest to one of the
obstacles within the workspace, so that the control point can move away form the obstacle,
while the motion of the end-effector is not affected. In more detail, referring to Figure 5,
the pair of points Pr and Po at the minimum distance do is identified at each time step.
The area of influence of the obstacles is delimited by the radius r. If, at a certain time step
during the motion, the condition do < r is verified, a repulsive velocity ẋ0 is imposed to the
relative control point along the direction of do. As the manipulator is characterized by one
redundant DOF, only one repulsive velocity vector can be assigned at each time step; thus,
the point to which it is assigned may change over time with the criterion of the minimum
distance from one of the obstacles. This point can be also the end-effector: besides the
velocity vector ẋe assigned by the off-line path planning in order to describe the desired
trajectory, the repulsive velocity vector can be applied to E, modifying its trajectory, if the
position of an obstacle changes from its initial state or a new obstacle enters the workspace,
interfering with the motion of E. In this case, the position of the end-effector drifts from
the originally planned trajectory, originating a position error that must be recovered by
introducing a proportional corrective term in the control law, as typically done in Closed
Loops Inverse Kinematics (CLIK) algorithms [28].

Po

do

PPrr

xe
.

O

E

B

A r

x0
.

Figure 5. Velocity components for the end-effector and the closest control point of the robot.

In terms of equations, the expressions given in Equations (14) and (15) must be
imposed in order to assign the two velocity tasks described above:

Jq̇ = ẋe (14)

J0q̇ = ẋe (15)

where J0 represents the Jacobian matrix associated to the velocity of the point Pr.
Thus, Equation (12) can be modified in [29,30]:

q̇ = J†ẋc + (J0N†)(ẋ0 − J0J†ẋe) (16)

where ẋc = ẋe + ke is the corrected end-effector velocity, k the positive gain and e is the
position error between the desired position xe and the actual position x. The first term of
Equation (16) guarantees the exact velocity of the end effector with a minimum joint speed.
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The second term drives the motion of the point Pr of the robot, satisfying the collision
avoidance additional task.

The Equation (16) can be further simplified: as the obstacle avoidance strategy requires
only the motion in the direction of the line connecting the most critical point of the robot
with the closest point on the obstacle, this is a one-dimensional constraint. Therefore, it is
possible to define the Jacobian J0 as proposed by [2]:

Jd0 = d̂TJ0 (17)

where d̂ = do/||do|| is the direction along which the repulsive velocity is applied. The
dimension of the matrix Jd0 is (1× n), and velocities ẋ0 and J0J†ẋe become scalars. It was
proved in [2] that, with this approach, the calculation of the term (J0N)† in Equation (16)
is faster and the system has fewer singularities. With few passages, the final form of the
solution for q̇ is

q̇ = J†ẋc + NJd0(Jd0NJT
d0)
−1(ẋ0 − Jd0J†ẋe) (18)

The choice of ẋ0 is a critical point of the algorithm. The proposed strategy is to change
ẋ0 according to the distance from the obstacle. To avoid discontinuity and give smoothness
to the motion, two weighting coefficients, ah and av, are introduced:

ẋ0 = avvrep (19)

q̇ = J†ẋc + ahNJd0(Jd0NJT
d0)
−1(avvrep − Jd0J†ẋe) (20)

Thus, a nominal repulsive velocity vrep is modulated by av as a function of the distance
do, whereas ah acts with a weight that balances the effect of the homogeneous solution
(related to the collision avoidance) with respect to the total.

In more detail, let r be the control distance that defines the area of influence of an
obstacle, rmin be the distance under which no action is possible and rm be an intermediate
critical distance between rmin and r. No influence of the obstacle is desired if do > r, while
the algorithm fails (the robot stops) if do < rmin. Between these limits, the weighting
coefficients must vary continuously from 0 to 1, as shown in Figure 6 and according to the
following equations:

av =


(

do − rm

rmin − rm

)2
do < rm

0 do ≥ rm

(21)

ah =


1 do ≤ rm
1
2

[
1− cos

(
π

do − rm

r− rm

)]
rm < do < r

0 do ≥ r

(22)

0

1

ahav

rmin rm r do

Figure 6. Weighting coefficients av and ah as functions of the distance do.
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A further novel contribution is introduced to improve the ability of the algorithm to
avoid moving obstacles: it is reasonable that not only the position but also the velocity of
an obstacle should influence the control of the robot. As an example, if the end-effector
moves toward an obstacle moving with an orthogonal velocity, it is preferable to modify
the trajectory of the end-effector, pushing it in a direction opposite to the obstacle velocity.
Thus, if the end-effector is the control point closest to the obstacle, the repulsive velocity
vector ẋ0 is modified as follows:

ẋ∗0 = ẋ0
x̂0 − kvẋobs√

1 + kv
2ẋ2

obs
(23)

where, as described in Figure 7, ẋobs is the obstacle velocity, ẋ0 is the repulsive velocity
along the direction of d0, kv is a gain term and ẋ∗0 is the modified repulsive velocity applied
to the end-effector in combination with the planned velocity ẋe. The effect is that the
direction of the repulsive velocity is modified, whereas its magnitude does not change;
furthermore, for kv = 0, the effect vanishes.

xobs
.

x0
.

xe
.

-kvxobs
.

x0
.x0

.*

E

moving
obstacle

Figure 7. Modified repulsive velocity.

4. Results

The algorithms presented in the previous sections were tested by simulations over a
wide range of conditions. In this section, two examples are shown: the first one investigated
the avoidance of two fixed obstacles, while the second one considered two moving obstacles.
In both cases, a common set of parameters were used, which are summarized in Table 1.

Figure 8 shows six steps of the motion of the 3R robot when two fixed obstacles were
interposed between the starting and the goal points. In this case, the off-line planner was
able to find a smooth curve (third-order Bezier curve) to accomplish the task; then, the
on-line control acted to avoid collisions with internal points of the robot. For example, at
t = 0.45 s the second-last control point, immediately upstream of the end-effector, entered
the area of influence of the obstacle, but the control reacted by imposing a repulsive velocity
to that point, as clearly visible also in Figure 9 where θ2 and θ3 angles are subject to a sudden
rotation.

Table 1. Parameter values used for simulations.

L [m] r [m] rm [m] rmin [m] vrep [m/s] vatt [m/s] K T [s] dt [s]

1 0.25 0.225 0.2 10 5 20 1 10−3
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t = 0 s t = 0.3 s

t = 0.45 s t = 0.55 s

t = 0.7 s t = 1 s

planned executed

[m]

[m]

[m]

[m]

[m]

[m]

[m]

[m]

[m]

[m]

[m]

[m]

Figure 8. Example of the avoidance of two fixed obstacles.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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-2.5
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-1.5
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0.5

1

1.5

2

ra
d

θ1
θ2
θ3

Figure 9. Joint rotations for the example of Figure 8.

The fast change in joint angles may result in a peak of the velocity profile, which
must be compared with the limits of the manipulator. Considering the previous example,
the resulting joint speed law is plotted in Figure 10a. As the times and dimensions of the
manipulator were arbitrary chosen in the simulation, absolute values of joint speeds may
not have been realistic, which would make it unhelpful to compare them to the hypothetical
speed limits of a real machine. Nevertheless, we can imagine that a joint speed limit was
fixed at 15 rad/s so that the peak related to the third joint would not have admissible and
the speed would reach saturation approximately at t = 0.45 s (Figure 10b). In this case,
the end-effector would be subjected to a further deviation due to the speed saturation, as
shown in Figure 10c, where the black curve is related to the simulation without saturation,
whereas the blue curve corresponds to the velocity law of Figure 10b. Nevertheless, the
end-effector would still be able to reach the goal thanks to the term in the control law which
is proportional to the position error e.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

-15

-10

-5

0

5

10

15

20

25

30

ra
d/

s

θ1
θ2
θ3

.

.

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t

-15

-10

-5

0

5

10

15

20

25

30

ra
d/

s

θ1
θ2
θ3

.

.

.

joint speed saturation limit

(a) (b)

with joint
speed saturation

without
saturation

(c)

Figure 10. (a) Joint speeds for the example of Figure 8; (b) joint speeds with saturation limit; (c) comparison between
trajectories.
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The second simulated case, shown in Figure 11, considered two obstacles initially
external to the trajectory of the manipulator but that moved toward the path of the robot
with orthogonal (opposite) velocities. Thus, approximately at t = 0.45 s, the control
modified the trajectory of the end-effector in order to avoid the collision. However, at
t = 0.7 s the obstacles stimulated the control in two opposite ways, and the robot became
stuck in its position, failing the task. This criticality is even more evident in Figure 12,
where the curves of the joint angles can be seen to be unstable due to the fast counteracting
effects of the control.

Figure 11. Example of avoidance of two moving obstacles (kv = 0).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 12. Joint rotations for the example of Figure 11.

A solution to this kind of problem can be found by introducing the modified repulsive
velocity defined in Equation (23): Figure 13 plots the motion of the manipulator in the
same scenario as Figure 11 (where the gain kv was null), with the only difference being
a positive gain kv = 100, thus activating the dependency of the repulsive velocity on the
velocity of the obstacle. In this case, when the first interference occurred at t = 0.45 s the
control pushed the end-effector downwards, opposite to the velocity of the first obstacle,
and vice versa when the second obstacle was reached at approximately t = 0.55 s. Then,
as the position of the end-effector drifted from the planned trajectory due to the action
of the control for collision avoidance, the position error was recovered by the action of
the proportional term ke in Equation (16) until the final position was correctly reached. In
this case, the velocity profile shown in Figure 14 demonstrates the stability of the control
strategy in completing the task.

A further issue assessed by the simulations was the computational effort required
for the execution of the algorithms. In all cases, a standard laptop was used (i7 CPU
@1.8 GHz, 16 GB RAM). For the execution of the off-line path planning algorithm with
the third-order Bezier curve, the average computational time was in the order of 10−2 s,
depending on the number of obstacles, and this may reach 10−1 s using the fourth-order
curve. The on-line motion control was able to run in all cases with a cycle time in the order
of 10−4 s, thus being comparable with rates typically used in the communication between
external controllers and the main controllers of robots. An increase of computational time
is expected when extending the algorithm to the 3D space, but the use of better performing
hardware hints at the applicability of our approach to real systems.
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Figure 13. Example of avoidance of two moving obstacles (kv = 100).
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Figure 14. Joint rotations for the example of Figure 13.

5. Discussion

In a industrial environment, a robot, while performing its task, could meet obstacles
which could represent both humans (a point may represent the distal extremity a part of the
body, such as an arm, a hand, etc.) and objects interfering with the path and the kinematic
chain of the manipulator. The objects could be, for example, furniture or mechanical
equipment left inadvertently inside the workspace. As an example, consider a pick and
place application in which a robot performs its task assisted by a human operator who
may accidentally interfere with the operation by placing an arm along the path of the
robot. In this case, the robot must be able to recognize and avoid a dangerous situation.
Thus, it becomes necessary to apply a strategy to control the robot, even in the presence
of unknown obstacles. Considering this kind of scenario, future work will include the
implementation of the proposed algorithms on a 7 degrees of freedom manipulator (KUKA
LBR iiwa), extending the control to a full mobility problem in 3D [31]. The final objective
will be to transfer the control framework to a real system, now under construction in the
laboratory, where the robot will be equipped with a vision system composed of multiple
3D cameras that is able to acquire information regarding the surrounding environment
and extrapolate the positions of objects and humans inside the workspace [32–35]. The
collision-free HRC system will be tested in the laboratory, and the transferability of the
algorithms to a real system will be finally experimentally validated.

6. Conclusions

In this paper, an obstacle avoidance strategy for robots moving in dynamically varying
environments was presented and verified by simulation. Two novel contributions to the
algorithms have been introduced: first, the trajectory planned by the potential field method
is smoothed using a best-fit interpolation with Bezier curves; second, a modified repulsive
velocity for the end-effector was introduced in order to consider also the velocity of the ob-
stacles, improving the avoidance ability in dynamic environments. Simulations confirmed
the effectiveness of the control strategy and gave an estimation of the computational effort
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required to execute the algorithms, which is in line with the typical requirements of robot
controllers and can be improved by using high-performing hardware.
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