
machines

Article

Machine Learning-Based Cognitive Position and Force Controls
for Power-Assisted Human–Robot Collaborative Manipulation

S. M. Mizanoor Rahman

����������
�������

Citation: Rahman, S.M.M. Machine

Learning-Based Cognitive Position

and Force Controls for

Power-Assisted Human–Robot

Collaborative Manipulation. Machines

2021, 9, 28. https://doi.org/10.3390/

machines9020028

Academic Editor: Antonio J. Marques

Cardoso

Received: 7 January 2021

Accepted: 29 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Intelligent Systems and Robotics, University of West Florida, Pensacola, FL 32514, USA;
smrahman@uwf.edu; Tel.: +1-850-474-2257

Abstract: Manipulation of heavy objects in industries is very necessary, but manual manipulation
is tedious, adversely affects a worker’s health and safety, and reduces efficiency. On the contrary,
autonomous robots are not flexible to manipulate heavy objects. Hence, we proposed human–robot
systems, such as power assist systems, to manipulate heavy objects in industries. Again, the selection
of appropriate control methods as well as inclusion of human factors in the controls is important to
make the systems human friendly. However, existing power assist systems do not address these issues
properly. Hence, we present a 1-DoF (degree of freedom) testbed power assist robotic system for
lifting different objects. We also included a human factor, such as weight perception (a cognitive cue),
in the robotic system dynamics and derived several position and force control strategies/methods for
the system based on the human-centric dynamics. We developed a reinforcement learning method to
predict the control parameters producing the best/optimal control performance. We also derived
a novel adaptive control algorithm based on human characteristics. We experimentally evaluated
those control methods and compared the system performance between the control methods. Results
showed that both position and force controls produced satisfactory performance, but the position
control produced significantly better performance than the force controls. We then proposed using
the results to design control methods for power assist robotic systems for handling large and heavy
materials and objects in various industries, which may improve human–robot interactions (HRIs)
and system performance.

Keywords: power assist robot; force control; position control; adaptive control; object manipulation;
human–robot collaboration; machine learning; weight perception; human cognition

1. Introduction
1.1. Importance of Power Assist Robotic Systems for Manipulating Heavy and Large Objects

Workers in various industries always need to handle heavy and large materials and
objects. For example, they handle materials/objects for (i) loading/unloading heavy and
large luggage, bags, and so forth to and from buses, trains, trucks, aircrafts, ships, and
so forth for logistics and transport; (ii) handling heavy and large bags, objects, materials,
and so forth in various industries, such as agriculture, forestry, automobile, mining, ship-
building/breaking, military activities, manufacturing/assembly, timber, construction, and
so forth. However, handling heavy and large materials and objects manually is usually
hard, time-consuming, and tiresome; and it may reduce work efficiency and also cause
injuries, back pains, musculoskeletal disorders/malfunctions, and so forth to concerned
workers, especially sick, unskilled, novice, aged, and weak workers [1]. On the other hand,
various autonomous robotic devices for handling large and heavy objects, such as cranes,
may not provide the expected level of flexibility in manipulation [2]. Hence, we posit that
suitable robotic systems/devices with human intervention/involvement, such as power
assist robotic systems, may be the most suitable for handling heavy and large objects in
relevant industries, especially in industries with unstructured environments [3]. In such a
case, the strength of a robotic system and the intelligence of a human coworker may jointly
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make the human–robot collaborative system far superior to an individual robotic system
or a human [4]. However, currently, power assist robotic systems are mostly used for
assistive, healthcare, and rehabilitation purposes [5,6]. We thus posit that diversifications
and novelty in power assist applications can be brought if power assist robotic systems
are proposed to be used to manipulate heavy and large objects in various industries [7].
However, such human-friendly power assist robotic devices have not been enormously
employed in the mentioned industries yet.

1.2. Power Assist Robotic Devices and Systems for Manipulating Heavy and Large Objects: State
of the Art

A significant number of power assist robotic systems have already been developed
and proposed for object manipulation [8–13]. However, those systems do not show a
definitive aim of handling heavy/large materials and objects in the mentioned industries.
Those systems also exhibit various limitations; for example, as the systems are too heavy
to use, the amount or level of power assistance is not measureable and clearly under-
standable; the systems are usually not properly examined and evaluated for a coworker’s
comfort, health, adaptability, safety, user-friendliness, and efficiency; the systems may suf-
fer from the disadvantages of the actuation methods designed with hydraulic/pneumatic
principles; and so forth [8]. The systems may produce excessive power and unexpected
oscillations/vibrations [9–11], and they may limit the movement due to various constraints,
causing difficulties in path and motion planning [12]. Moreover, there may have some
common disadvantages and problems with power assist robotic devices/systems (e.g.,
human–machine maladjustment, actuator saturation, noises and disturbances, unsuitable
or less suitable control methods, inappropriate control strategies, inaccuracy in motions,
limited capacity and low efficiency, inappropriate sensor arrangements, anomaly in sensor
readings, insufficient or restricted degrees of freedom, instability and lack of safety, and
so forth) [8–13]. Conventional power assist robotic systems/devices usually do not use
any holistic approach to overcome or reduce these limitations, which result in unsatis-
factory human–machine interactions and poor system performance. Furthermore, a few
power assist robotic devices/systems are already available in applications, as the literature
shows, such as the Hybrid Assistive Limb (HAL) [14], Power Loader Light (PLL) [15], and
BLEEX [16]. However, these robotic systems are not very suitable for handling heavy and
large objects in industries due to their inappropriate suit-like configurations, heavy weight,
and so forth. A few power assist robotic devices have been designed to assist old and
sick workers to handle heavy and large loads instead of amplifying the ability of normal
and skilled workers [17]. Finally, power assist robotic devices that can transfer patients in
hospitals have been made available, but they cannot be used to handle heavy and large
objects in the mentioned industries due to their unsuitable configurations [18,19].

1.3. Human Factor Issues with Power Assist Robotic Systems for Heavy and Large Object Manipulation

Power assist robots usually reduce perceived object weights, and thus a human user
manipulating an object with power assist feels a significant difference between the actual
and the perceived weights of the manipulated object [3,16]. Figure 1 attempts to illustrate
this phenomenon. A human user or coworker usually programs/estimates feedforward
manipulative forces (e.g., load and grip forces) based on his/her visual perception of the
weight of the object to be manipulated, which usually depends on the object’s visual size
and other visual cues [20]. As the haptically perceived weight of the object is usually much
less than the visually perceived weight, the applied load and grip forces to the object are
proven to be too excessive. Consequently, motions of the robotic assist system become
unexpectedly excessive, which can result in poor maneuverability and safety [7]. Hence,
we posit that a user’s weight perception (an example of human cognition) needs to be
taken into account when designing and developing the controls of power assist robots
for object manipulation to mitigate the mentioned weight perceptual effects. However,
state-of-the-art power assist robotic devices usually do not include human features, such as
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weight perception, in the design of the controls, which may result in unsatisfactory human
user–robot interactions and system performance [8–13].
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Figure 1. (a) Manual manipulation of an object where a human perceives the actual weight of the
object; (b) manipulation of an object with a power assist robot where a human perceives a reduced
weight of the object. Ideally, the perceived weight of the same object is very less for the power assist
case because the robot reduces the perceived weight. For the power assist case, the object is carried
by the robot, and the human’s applied forces only control the motions.

1.4. Human-Friendly Control Strategies for Power Assist Robotic Systems: Position and Force Controls

Selecting appropriate control strategies and methods for power assist robotic de-
vices/systems can have a serious impact on system performance and interactions with
users in various terms, such as stability, maneuverability, efficiency, safety, and so forth [7].
As the literature shows, usually, impedance/admittance-based position and force control
strategies and methods are used for power assist robotic systems [10,13]. However, the
selection depends on the applications. Position control strategies may be good in some
aspects (for example, providing positional accuracy), but force control strategies may be
good in some other considerations and aspects (e.g., overcoming the effects of nonlinearity,
friction, inertia, and disturbances) [21,22]. Application-specific complexity and/or linear-
ity/nonlinearity of control methods may have an impact on the control selection as well [7].
The existing literature neither reports weight-perception-based position and force control
methods and strategies for power assist robotic devices for object manipulation nor does
any comparisons between position and force control methods/strategies for their perfor-
mance and effectiveness in deciding appropriate controls for industrial applications [7].

Preliminary results of the effectiveness of weight-perception-based force controls
for power assist robotic systems were presented in [7]. However, the results were not
compared with that for the position control. The optimal control parameters necessary
to produce optimal system-user interactions and system performance were not decided
experimentally [23]. We posit that the optimal control parameters could be decided experi-
mentally following a reinforcement learning model [24–27]. However, such initiatives were
not taken. In addition, we posit that an empirically designed weight-perception-based
adaptive control strategy added to the top of the position and force control strategies could
be able to adapt the effects generated due to the weight perceptual issues [13,28]. However,
such efforts were not attempted in [7].
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1.5. Objectives

Hence, the objectives of this paper were to (i) broaden the scope of the applications of
power assist systems by proposing these systems for manipulating heavy and large objects
in industries, (ii) build an experimental power assist system as a testbed to lift objects
with it by human operators, (iii) include a human user’s weight perception (cognition) in
the derived dynamics of the experimental system, (iv) derive position and force control
methods and strategies along with an adaptive control strategy for the same system for the
same task (lifting objects) based on the human-centric dynamics and predict the control
parameters producing the best/optimal control performance following a reinforcement
learning method, (v) implement the position and force controls for lifting objects with the
assist system and compare the performance between the control methods, and so forth.
Here, the main contributions and novelties are (i) including a human user’s weight percep-
tion (cognition) in the dynamics and control of the system, (ii) deriving a novel adaptive
control strategy for the system for lifting objects based on the human-centric dynamics
and a predictive method producing the best/optimal control performance following a
reinforcement learning method, (iii) comparing the performance between position and
force control methods for the same experimental setting, and so forth, with the aim of
improving the human friendliness and performance of the system [29].

The ultimate objective is to build a multi-degree-of-freedom (multi-DoF) power assist
system for manipulating large and heavy objects. However, the experimental testbed
system was limited to only a 1-DoF system that was suitable to lift only lightweight and
small-sized objects. We proposed to use the findings derived from the testbed system to
scale up to design appropriate control methods and strategies for industrial power assist
robotic systems for manipulating heavy/large objects to improve human–machine interac-
tions and system performance. This paper investigates the proposed control concepts and
tries to understand the evaluation results of the control systems first before verifying them
with large and heavy objects. Robotics follows scaling laws [30]. Therefore, the proposed
upgradation is feasible.

2. Materials: Construction of the Experimental Power Assist Robotic System for
Lifting Objects

This section presents the construction (design and development) details of the exper-
imental power assist robotic system and the objects to be lifted (manipulated) with the
system [31]. This section also introduces the experimental setup and the communication
system of the power assist robotic system.

We designed and built a 1-DoF (vertical lifting motion) power assist system using
a ball screw, which was actuated by an AC servomotor (see Tables 1 and 2 for details
of the servomotor and the ball screw, respectively). We also mounted a noise filter to
prevent electrical noises from the power supply to the servo system. We coaxially fixed the
servomotor and the ball screw on a metal plate and then vertically attached the plate to a
wall, as shown in Figure 2a. The ball screw converted the rotary motion of the servomotor
to the linear motion. As shown in Figure 2a, we attached a force sensor (see Table 3 for
details) to the ball nut of the ball screw through an acrylic resin block. We tied one end
of a universal joint to the force sensor and attached the other end to a wooden block. We
lubricated the ball screw properly to enhance its efficiency and life. We used light machine
oil and sometimes high-pressure grease for lubrication. We kept the backlash as minimum
as possible in the ball screw and also kept it almost free from contamination by wiping it
out properly.
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Table 1. Specifications of the servomotor with encoder.

Item/Parameter Specifications

Category Servomotor (AC)
Manufacturer Yaskawa Electric Co.

Type or product ID 01BF12 (SGML)
Output (rated power) 0.13 HP

Supply voltage 100 V
Noise filter to power supply (type) LF-205A

Shaft type Straight without key
Speed response frequency 50 KHz

Encoder 1024 P/R incremental

Table 2. Specifications of the ball screw system.

Item/Parameter Specifications

Screw length Approximately 0.20 m
Pitch of the screw 2 mm/rev

Efficiency >90% (specified in catalogue)
Nut Metal nut

Lubrication Oil, grease
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Table 3. Specifications of the force sensor.

Item/Parameter Specifications

Category Load transducer
Type NEC 9E01-L44

Shape Cylindrical
Maximum capacity 2 KN

Voltage 1 mV/V
Resistance 350 ohm
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We made three rectangular-shaped objects (boxes) of different sizes by bending thin
aluminum sheets (thickness: 0.0005 m). We covered the top side of each box with a cap
made of thin aluminum sheet (thickness: 0.0005 m). We kept the bottom and back sides
open. Those objects were lifted with the power assist robotic system, and they were called
power-assisted objects, or PAOs. Dimensions such as length × width × height and self-
weights of those objects are detailed in Table 4. A PAO could be tied to the force sensor
through the wooden block and be lifted by a subject. The object was kept on a soft surface
before it was lifted, as shown in Figure 2b. The servomotor included an encoder (see
Table 1) that could measure the position and its derivatives (velocity and acceleration)
of the object lifted with the power assist system. Another dedicated laser acceleration
sensor that could measure the acceleration of the lifted PAO directly was also put above
the PAO. Figure 3 shows the experimental setup and the communication system of the
power assist system.

Table 4. Specifications of the power-assisted objects (PAOs).

Object Size Dimensions Weight

Large 0.06 × 0.05 × 0.16 m 0.020 kg
Medium 0.06 × 0.05 × 0.12 m 0.016 kg

Small 0.06 × 0.05 × 0.09 m 0.012 kg

Machines 2021, 9, x FOR PEER REVIEW 6 of 20 
 

 

1) that could measure the position and its derivatives (velocity and acceleration) of the 
object lifted with the power assist system. Another dedicated laser acceleration sensor that 
could measure the acceleration of the lifted PAO directly was also put above the PAO. 
Figure 3 shows the experimental setup and the communication system of the power assist 
system. 

Table 4. Specifications of the power-assisted objects (PAOs). 

Object Size Dimensions Weight 
Large 0.06 × 0.05 × 0.16 m 0.020 kg 

Medium 0.06 × 0.05 × 0.12 m 0.016 kg 
Small 0.06 × 0.05 × 0.09 m 0.012 kg 

 
Figure 3. The experimental setup and the communication channels for the power assist robotic system for lifting objects. 
A laser-type acceleration sensor is set over the PAO, as the figure shows. 

3. Modeling Weight-Perception-Based System Dynamics 
As shown in Figure 4, the dynamics for manipulating (lifting) an object with the 

power assist system can be expressed as Equation (1) as follows: 𝑚𝑥ሷௗ ൅ 𝐾𝑥ௗሶ ൅ 𝑚𝑔 ൅ 𝐹 = 𝑓௛ ൅ 𝑓௔  (1)

In (1), 𝑓௛ stands for the load force applied by a human user;  𝑓௔ stands for the actuation force;  𝐹 stands for the friction force played in the ball screw; 𝑚 stands for the mass of the object to be lifted;  𝑔 stands for gravitational acceleration; 

Figure 3. The experimental setup and the communication channels for the power assist robotic system for lifting objects. A
laser-type acceleration sensor is set over the PAO, as the figure shows.

3. Modeling Weight-Perception-Based System Dynamics

As shown in Figure 4, the dynamics for manipulating (lifting) an object with the power
assist system can be expressed as Equation (1) as follows:

m
..
xd + K

.
xd + mg + F = fh + fa (1)
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Figure 4. The dynamics of lifting a PAO with the power assist robotic system by a subject (hu-
man user).

In (1),
fh stands for the load force applied by a human user;

fa stands for the actuation force;

F stands for the friction force played in the ball screw;

m stands for the mass of the object to be lifted;

g stands for gravitational acceleration;

xd stands for the PAO′ s desired displacement; and

K stands for the viscocity in the (linear)slider.

Here, we may ignore friction, viscosity, and disturbances if we imagine the targeted
dynamics. Thus, the dynamics model is simplified as in Equation (2) as follows:

m
..
xd + mg = fh + fa (2)

We attempted to include a human user’s weight perception in the robot dynamics,
and then the dynamics was changed as expressed in Equation (3).

m1
..
xd + m2g = fh + fa (3)

The inclusion of a human user’s weight perception in the robot dynamics here means
that the perceived weight due to the inertia is expected to differ from that due to the gravity
while an object is being lifted by a user with the power assist robotic system. It may happen
because the visually perceived weight is different from the haptically perceived weight.
Thus, we here assume that the mass parameter used in the inertial force may be different
from that in the gravitational force in Equation (2) [31], which is reflected in Equation (3). In
Equation (3), m1 is the mass parameter for the inertial force and m2 is the mass parameter for
the gravitational force, and we assume that m1 6= m2 6= m, m1 � m, m2 � m, m1

..
xd 6= m2g.

We then derived dynamics models for the system in three different ways as follows:

3.1. The First Dynamics Model (Dynamics Model 1)

In Equation (3), we also ignored the actuator force (fa) if we imagined it as the targeted
dynamics. Then, the dynamics is changed as in Equation (4) below:

m1
..
xd + m2g = fh. (4)

3.2. The Second Dynamics Model (Dynamics Model 2)

We performed a subtraction of Equation (4) from Equation (2) and obtained
Equation (5), and then obtained Equation (6) from Equation (5). The resulting model is
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different from that in Equation (4). The model includes weight perception as we previously
considered m1 to be different from m2.

(m−m1)
..
xd = fa − (m−m2)g (5)

fa = (m−m1)
..
xd + (m−m2)g (6)

3.3. The Third Dynamics Model (Dynamics Model 3)

We conducted a multiplication of Equation (2) by m1 and of Equation (4) by m, and
then conducted a subtraction of the latter equation from the former equation, and finally
obtained Equation (7). This model was a different dynamics model for the power assist
robotic system, but the model included a human’s weight perception.

fa =
1

m1
{(m1 −m2)mg− (m1 −m) fh} (7)

One of the objectives of this paper was to compare the applications of the position
control with those of the force controls. Furthermore, the force controls may be developed
from different perspectives. For example, dynamics model 2 includes the measurement of
acceleration but does not include a human’s load force. On the other hand, dynamics model
3 includes a human’s load force but does not include the measurement of acceleration.
These differences may have an impact on the performance of the system. Thus, multi-
ple models of the same system give an opportunity to investigate differences in system
performance, which may help decide the most favorable system design and performance.

4. Development of Position and Force Control Schemes Based on Weight Perception
4.1. The Position Control Scheme/Method

We developed the feedback position control scheme based on weight perception for
the power assist robotic system following Equation (4), which is shown in Figure 5. If
the developed position control is simulated in MATLAB/Simulink with the servomotor’s
velocity control mode, the commanded velocity (

.
xc) to the servomotor can be defined by

Equation (8), where G denotes the feedback gain, which is then to be fed to the servomotor
through a digital-to-analog (D/A) converter. The servodrive is used to realize a control
law based on the error in the displacement (xd − x) utilizing the velocity control with a
positional feedback.

.
xc =

.
xd + G(xd − x) (8)
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4.2. Force Control Scheme/Method 1

The load force (LF) symbolized by f h is not included in dynamics scheme/model
2 in Equation (6). Therefore, it is not required to use a force sensor for the design of
the force control for the assist system considering this model of dynamics. It can be
termed as the force sensorless scheme of force control [21]. However, we may require an
acceleration sensor for this type of force control scheme. To do so, we can measure x (actual
displacement of the object) using the servomotor’s encoder and then derive the acceleration
(

..
x) from x. This derivation may be found noisy. Therefore, it seems to be necessary to use

an acceleration sensor for the design of the force control scheme using this dynamics model.
The force control model developed considering Equation (6) is exhibited in Figure 6a.
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4.3. Force Control Scheme/Method 2

We noticed in the proposed dynamics model 3 that f h is included in Equation (7).
Therefore, it is necessary to have a force sensor to measure f h for designing a force control
scheme considering this dynamics model. However, an acceleration sensor is not necessary
for this type of control scheme. The developed force control scheme utilizing Equation (7)
is exhibited in Figure 6b.
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5. Experiment 1: Evaluation of the Weight-Perception-Based Control Methods

The main objective of this experiment was to evaluate the performance of different
control systems derived in Section 4 utilizing the experimental device presented in Figure 2
and the experimental setup shown in Figure 3.

We recruited 20 human subjects (engineering graduate and undergraduate students,
mostly males in gender). Their ages were between 22 and 30 years (the mean age was
23.80 years; the STD was 2.30). The recruited subjects were believed to have no previous
knowledge and experience on the developed experimental device and of the adopted
hypothesis. We briefly trained the subjects separately before they participated in the exper-
imental trials. The study was conducted following local ethical standards and principles
for human subjects.

At the beginning, each of the selected subjects separately estimated/perceived the
weights of three (3) PAOs of three (3) different sizes, which was based on subjective evalua-
tion considering visual cues [20]. We observed the evaluations of the subjects and recorded
each of the subjects’ estimated weights for each size of the object separately. We then
computed the mean (here, n = 20) estimated weight for each size of object. Those estimated
weights were found to be 2.82, 1.98, and 1.49 kg for the large-, medium-, and small-sized
objects, respectively. In this article, we called those visually estimated/perceived weights as
“visual weights.” We found that the objects’ visual sizes influenced the visually perceived
weights significantly [20].

We conducted an experimental study (experiment/simulation with the physical
robotic system) with the three control schemes/systems exhibited in Figures 5 and 6
separately applying a MATLAB/Simulink environment (the solver used was ode4, Runge–
Kutta; the solver type was fixed-step; the fundamental sample time was 0.001 s) for each
size of the objects. We used m1 = 0.6 kg, m2 = 0.5 kg, and m = 1.0 kg for the simulation
where applicable. The values of m1 = 0.6 kg, m2 = 0.5 kg, and m = 1.0 kg were selected
because we found that humans felt good when the system was simulated with those values,
which was decided following a reinforcement learning method [7,24,25]. Details of the
method are given in Appendix A.

The m would be the object’s mass value used to simulate the power assist system for
lifting different objects if the issue of weight perception was not to be considered (this is the
usual case as in Equation (2)). However, m2 was the mass value used for the gravitational
force for simulating the power assist robotic system for lifting different objects when the
issue of weight perception was to be considered (novelty in our case as in Equation (3)).
We called m2 as the “simulated weight” of the object when the issue of weight perception
was considered.

Each of the selected subjects in each experimental trial needed to lift a PAO with the
assist system up to a target height, maintain the lift of the PAO for several seconds, and then
release the PAO. Then, each of the subjects needed to subjectively estimate the perceived
haptic weight of the PAO comparing the haptic weight with that of some prearranged
weights (the reference weights). We observed and recorded the weight of the PAO perceived
by each subject for each experiment trial separately. Those perceived weights were called
“haptic weights” here. In each experiment trial, the subject, just after estimating each
PAO’s haptic weight, evaluated/scored the performance of the assist system subjectively
in various terms, such as the power assist system motion, maneuverability, system stability,
user safety, perceived naturalness, and the system’s ease of use based on a 7-point rating
scale (bipolar and equal-interval scale) as follows [23]:

1. It is (undoubtedly) the best (the score is +3).
2. It is (conspicuously) better (the score is +2).
3. It is (moderately) better (the score is +1).
4. It should be on the borderline (the score is 0).
5. It is (moderately) worse (the score is −1).
6. It is (conspicuously) worse (the score is −2).
7. It is (undoubtedly) the worst (the score is −3).
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We separately recorded all the evaluation scores for each experiment trial. We per-
formed the acquisition of the data for acceleration and load force for each experiment
trial for the position control scheme and recorded the data separately. We performed the
acquisition of acceleration data for each experiment trial for force control scheme/method
1, and of load force data for each experiment trial for force control scheme/method 2. We
recorded the data separately.

6. Results of Experiment 1

The sample acceleration data (for force control scheme/method 1) and the sample
load force data (for force control scheme/method 2) are shown in Figure 7. For the load
force data, the simulated weight of the object is the static force, which is about 5 N because
m2 = 0.5 kg. However, the figure shows a slightly higher static force (>5 N) probably
because the human hand was not stationary while holding the object. Again, the peak
load force (PLF) (about 17 N) is close to the mean visually perceived weight (1.98 kg or
about 19 N), which reveals that the feedforward load force is applied based on the visually
perceived weight, which is in line with what we assumed in Section 1 [20]. The PLF is
about 17 N, but the static force (the actually required load force to lift the object [20]) is
about 5 N, which reveals that the human usually applies excessive load force when lifting
the object.
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Figure 7. (a)The sample data of acceleration for force control scheme/method 1, and (b) the sample data of load force for
force control scheme/method 2 for an object (the medium size). Here, the positive signs/directions of the data indicate the
upward object movement.

For each size object, we computed the mean peak acceleration for force control
scheme/method 1 and the mean PLF for force control scheme/method 2. In the same
way, for each size object, we computed the mean PLF and mean peak acceleration for the
position control scheme. As the figures show, the mean PLFs and mean peak accelera-
tions were larger than the actual requirements. We assume that the large PLFs produced
large accelerations, and both the large PLFs and peak accelerations might reduce the sys-
tem performance that we mentioned in Section 1 [20]. Note that detailed results of the
mean PLFs, mean peak accelerations, and system performance are to be presented in a
forthcoming section. The results indicate that we need an effective strategy to remove or
reduce excessive PLFs and peak accelerations to improve human–system interactions and
system performance [23].
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Figure 7 shows the magnitude of the measured load force when the control system
used m1 = 0.6 kg and m2 = 0.5 kg, which were the smaller values of m1 and m2 (see
Appendix A). Here, m1 = 0.6 kg and m2 = 0.5 kg were the end results of the reinforcement
learning algorithm, which also indicates the best or the most favorable manipulation
condition. However, the subjects needed to lift the objects for other m1 and m2 values used
in the control system before we decided the best values (m1 = 0.6 kg, m2 = 0.5 kg) through
the reinforcement learning procedure. Let us consider the potentially worst situation
when m1 = 1.5 kg and m2 = 1.5 kg (see Appendix A) were used in the control system. In
that condition, the magnitude of the measured load force could be very high. The force
magnitude also depends on the human’s perception of the object weight [20]. If the human
perceives the object to be very heavy, the load force magnitude may further increase [20].
This is why a force sensor with a large capacity was needed (Table 3). In addition, the
availability of a force sensor with a lower capacity but with better resolution was also an
issue. However, in any sense, the use of a force sensor with a higher capacity, keeping the
force sensor and the system size within the expected limit, has no adverse effect on the
system design and application. This motivated us to choose a force sensor with a slightly
large capacity as in Table 3.

7. Experiment 2: Evaluation of a Novel Adaptive Control Strategy to Improve System
Performance

The main objective of this experiment was to derive and evaluate the performance of
a newly proposed adaptive control strategy and to compare its performance with that of
different control systems derived in Section 4 utilizing the experimental device presented
in Figure 2 and the experimental setup shown in Figure 3.

We performed experiment 2 with the aim of reducing excessive PLFs and peak acceler-
ations by applying another innovative adaptive control technique/strategy. We previously
observed in [7] that PLF magnitudes are to be linearly proportional to m1 values, but human
users usually do not feel such changes in m1. Hence, the novel adaptive control strategy
that we derived was such that the value of m1 should exponentially decline from a large
value (say, m1 = 6.5) to a small value of m1 (say, m1 = 0.6) when the subject lifts the PAO
with the assist system and the lifting velocity (e.g., VL) of the PAO exceeds a threshold.
The reduction in m1 would reduce the PLFs (and accelerations) proportionally as m1 was
linearly proportional to the PLFs [7]. Furthermore, the reduction in PLFs would not have
an adverse impact on the relationships expressed in Equation (3) because a human user
would not feel any changes in m1 [7]. Therefore, the novel adaptive control strategy defined
by the following two equations for m1 and m2 may be adopted. Figure 8 diagrams the
novel adaptive control algorithm/strategy as a flowchart.

m1 = 6e−6t + 0.6 (9)

m2 = 0.5 (10)

In the algorithm, the values of VL, m1 = 6.5, and the digits 6 in m1 = 6e−6t + 0.6 were
estimated by trial and error. We conducted experiment 2 following the same procedures
and setup as those we employed for experiment 1 (i.e., the tasks were repeated), but
the control systems shown in Figures 5 and 6 were modified by the novel control algo-
rithm shown in Figure 8 (i.e., m1 of Figures 5 and 6 was replaced by m1 as expressed in
Equation (9)).
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Figure 8. The flowchart for the novel adaptive control algorithm (a) and the hypothetical time
trajectory of m1 for lifting the PAO when the novel control algorithm is implemented (b).

8. Results of Experiment 2

We determined the mean PLF and peak acceleration for each size object for the po-
sition control scheme, the mean peak acceleration for each size object for force control
scheme/method 1, and the mean PLF for each size object for force control scheme/method 2
for experiment 2 (after the implementation of the novel adaptive control strategy/algorithm),
and compared them with those of experiment 1 (before the implementation of the novel
adaptive control strategy/algorithm). The results are shown in Figures 9 and 10.
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Figure 9. Mean (n = 20) peak load force for the position control and force control scheme/method 2
for objects of different sizes before (experiment 1) and after (experiment 2) the implementation of the
novel adaptive control algorithm.
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Figure 9 shows that (i) before the implementation of the novel control algorithm,
the PLFs for the position control scheme were smaller than those for force control
scheme/method 2, and the PLFs for both control schemes/methods were larger than
the minimum load force requirements (about 5 N, which was equal to the object’s simu-
lated weight); (ii) the novel control algorithm reduced the PLFs, but the reduction was
more intensive for the position control than for the force control, which means that for the
position control, the PLF reduced to almost the minimum, but the reduction was not so
much for the force control; (iii) the load force was proportional to the visual object sizes [20];
and so forth. Figure 10 shows that (i) before the implementation of the novel algorithm, the
peak accelerations for the position control scheme were smaller than those for force control
scheme/method 1, although the accelerations for both of the control methods were large;
(ii) the novel control algorithm reduced the peak accelerations, but the reduction was more
intensive for position control than for force control; (iii) accelerations were proportional to
visual object sizes [20]; and so forth.
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For each size object and for each control scheme/method, we computed the mean
performance evaluation scores for each performance evaluation criterion after the imple-
mentation of the novel adaptive control strategy/algorithm (in experiment 2) separately,
and then compared the results with those in experiment 1, which was conducted before
implementing the novel adaptive control strategy/algorithm. The results (for the medium-
sized object only) are shown in Figure 11 as the representative results. The results in
general reveal that the performance for all of the three (3) control strategies/methods in
experiment 1 was satisfactory, even though this experiment was not benefited through the
implementation of the novel adaptive control algorithm. We assume that the favorable
results in experiment 1 were the benefits/advantages of the inclusion of a human user’s
weight perception (or cognition) in the dynamics and controls by using the optimum/best
mass values (values of m1, m2, m) in the control systems obtained through the machine
learning model [26,27]. The results in general reveal that, for experiment 1, the position
control scheme/method produced the best/optimal performance in all evaluation criteria,
then force control scheme/method 2 could be ranked for its performance, and then force
control scheme/method 1 could be ranked in terms of its ability to produce a satisfactory
system performance. In addition, the obtained performance significantly improved in
all of the three (3) control schemes/methods through the implementation of the novel
adaptive control strategy/algorithm in experiment 2. However, the observed improvement
in system performance was highest/best in the position control scheme. Force control
scheme/method 2 stood second in terms of improving system performance by applying
the novel adaptive control scheme/algorithm. Force control scheme/method 1 stood at
third position/rank. Analyses showed that the order of excellence in generating system
performance among the control schemes/methods exactly matched with the order of their
excellence observed in terms of PLFs and peak accelerations. Based on these findings, we
may conclude that the position control scheme was able to produce the highest performance
among the three (3) control schemes/methods in both experimental conditions (before
and after the implementation of the novel adaptive control strategy/algorithm). It might
happen because the magnitudes of the PLFs and peak accelerations for the position control
scheme/method were lowest or smallest. We conducted analyses of variances (ANOVAs),
which showed that the variations in the system performance scores between object sizes
were not statistically so significant (p > 0.05 at each case). The reason behind these results
may be that the human subjects needed to evaluate the assist system based on their haptic
senses where the visual object sizes (visual cues) had no or little influences [20]. We also
found that the variations in the system performance scores between the human subjects
were not statistically so significant (p > 0.05 at each case).
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For each size object and for each control scheme/method, we computed the mean
haptic weights separately for the case of experiment 2 (after the modification of the control
schemes), and then compared the results with those obtained for the case of experiment
1 for the visual and simulated object weights. The obtained comparative results are
exhibited in Figure 12. The obtained results reveal that the power-assist-lifted weights (the
haptic weights), on average, were about 58%, 50%, and 40% of the simulated weights for
force control scheme/method 1, force control scheme/method 2, and the position control
scheme/method, respectively. These findings indirectly indicate 42%, 50%, and 60% of
power assistance obtained in object lifting/manipulation for force control scheme/methods
1 and 2 and the position control scheme, respectively [7]. The results also reveal that, on
average, the haptic weights were about 10%, 14%, and 19% of the visually perceived
weights of the large, medium, and small objects, respectively. We mentioned the possibility
of such findings in Section 3 while introducing our weight perceptual hypothesis. The
obtained results thus justify that our hypothesis is true. The obtained results also reveal that
the novel adaptive control scheme/algorithm in experiment 2 did not change the haptically
perceived weights, which in turn indicates that the novel adaptive control algorithm did
not have an adverse impact on the relationships expressed in Equation (3), which was in
line with our expectations. The obtained results also reveal that the haptically perceived
weights for the position control scheme were lowest/smallest among the three (3) control
schemes/methods, indicating that the position control scheme produced the best/highest
system performance because of the lowest haptic weights (i.e., because of the highest power
assistance). In the same way, the perceived haptic weights for force control scheme/method
2 were found to be lower than those for force control scheme/method 1. We assume
that the lower haptic weights (the corresponding higher power assistances) for force
control scheme/method 2 over force control scheme/method 1 produced a better system
performance for force control scheme/method 2. We conducted ANOVAs that showed that
the variations in the haptic weights between object sizes were not statistically significant
(p > 0.05 at each case). The probable reasons might be that the human subjects attempted to
estimate the perceived haptic weights based on their haptic senses, and the visual object
sizes or the visual cues had no or little influences [20]. We also found in the ANOVAs
that the variations in the haptic weights between the human subjects were not statistically
significant (p > 0.05 at each case).

1 
 

 
Figure 12. Mean (here, n = 20) weights (visually perceived, simulated, and haptically perceived) for the three control
methods for different sizes of lifted objects before (experiment 1) and after (experiment 2) the implementation of the novel
adaptive control algorithm.
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9. Discussion
9.1. Reliability and Acceptance of Subjective Evaluations

A significant portion of the presented results was based on subjective evaluations (see
Figures 11 and 12). However, we also conducted objective assessments/measurements (see
Figures 7, 9 and 10). We believe that the subjective evaluation results should be acceptable
and reliable because (i) in many cases with human–system interactions, it may be difficult
to generate objective-type data, and thus we need to depend on subjective evaluations, and
(ii) the subjective evaluations were performed following well-established standards, and
thus they should be reliable. For example, such subjective evaluation results were proven
to be acceptable and reliable in many past cases [23]. The subjective results can be used to
triangulate with the objective results through the mixed-methods analyses [29].

9.2. Validity of the Experimental System Design and the Experimental Results

The final objective of this research direction is to apply the proposed control strate-
gies to power assist robotic devices for handling heavy and/or large objects in various
industries, which can produce satisfactory human user–robot interactions and perfor-
mance. However, the presented experimental system was a 1-DoF simple testbed system,
and the selected object sizes and object weights were also small. Nonetheless, we posit
that the presented experimental robotic system satisfactorily proved the efficacy of (i)
adopting the hypothesis regarding the consideration of a user’s weight perception in the
robot dynamics and controls; (ii) deriving several alternative control strategies/methods
considering a user’s weight perception; (iii) implementing the selected/derived control
strategies/methods and their experimental evaluations; (iv) deriving, implementing, and
evaluating a novel adaptive control strategy/algorithm based on weight perception; and
(v) comparing the system performance between the derived control strategies/methods;
and so forth. We posit that the obtained results will be able to improve existing power
assist robotic systems, and also believe that the presented findings will be able to benefit
researchers when developing and evaluating multi-DoF real power assist robotic systems
for handling heavy and large materials and objects.

9.3. Superiority of Position Control: The Reasoning

We think that the higher power assistance (Figure 12) of the position control is one of
the reasons behind its superiority. For manipulating objects from one location or position
to another location or position with power assist, usually, the positional inaccuracy causes
problems, and thus the accuracy seems to be more expected. In addition, human users
perceive and/or realize robotic system characteristics and performance generated through
positional commands more ergonomically, comfortably, intensely, and realistically [7]. In
addition, the position control strategy seems to be able to compensate various dynamic
effects, such as inertia, friction, and viscosity, in system configurations, which cannot
be compensated easily through force controls. We believe that the mentioned dynamic
effects and resulting nonlinear forces may have an impact on the system configurations and
performance for force controls, especially the force controls of multi-degree-of-freedom
systems. However, these types of dynamic effects are not to be so significant for position
controls [21,22,28]. All these factors have favored the position control over its counterparts
(force controls).

On the contrary, if we observe a difference in values between m and m1 and if the
difference is large (i.e., if (m − m1) is large), the proposed position control strategy may
create high load on the servomotor of the assist system, resulting in system instability.
However, in the proposed position control system, the difference (i.e., (m − m1)) was not
large; thus the problem was not observed [7].
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10. Conclusions and Future Extension

We presented the development of a 1-DoF testbed power assist robotic system for
lifting small objects of different sizes. We considered a human user’s weight perceptions
and reflected those perceptions in modeling the robotic system dynamics, and derived a
position control and two different force control strategies/methods based on the dynamics
models. We implemented the control methods separately and evaluated their performance.
The results showed that the controls produced satisfactory performance. We also derived
and implemented another novel adaptive control algorithm that successfully augmented
the performance of the control strategies/methods. The position control was found to be
the best for improving performance using the novel control algorithm. The main novelties
were (i) including a human user’s weight perception (cognition) in the dynamics and
control of the system, (ii) deriving a novel adaptive control strategy for the system for
lifting objects based on the human-centric dynamics and a predictive method produc-
ing the best/optimal control performance following a reinforcement learning method,
(iii) comparing the performances between position and force control methods for the same
experimental setting; and so forth, with the aim of improving the human friendliness and
performance of the system. In addition, the amount of power assistances in object manipu-
lation in different conditions was made clearer. The derived human-centric control systems
were proved to make the assist system more human friendly and produce better system
performance. The obtained results can help design and develop control strategies/methods
for power assist robotic systems for manipulating heavy and/or large objects in various
relevant industries, which can improve manipulation productivity and a coworker’s health
and safety and ensure better human–machine interactions.

In the future, we plan to verify and validate the results using heavy and/or large
objects and a multi-DoF power assist robotic system. We will use more subjects and trials to
create a bigger training dataset to achieve more accurate reinforcement learning outcomes.
We will design a Q-learning method to further learn the control policies and modify the
controls accordingly.

Funding: This particular research presented herein received no external funding.

Institutional Review Board Statement: The study was guided by ethics. The study was conducted
following local ethical standards and principles for human subjects.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Available from the author on request.

Acknowledgments: The research was partly conducted when the author was with the Mechanical
Engineering Department, Mie University, 1577 Kurimamachiya-cho, Tsu City, Mie, 514-8507, Japan.
The author acknowledges the support that he received from his past lab members and Ryojun Ikeura
of Mie University, Japan.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The same reinforcement learning procedures were followed for the position con-
trol in Figure 5 and the force controls in Figure 6. For example, for the position control
for the robotic system exhibited in Figure 2, the system was implemented using a MAT-
LAB/Simulink environment. Table A1 shows 36 pairs of m1 and m2 values that we selected
based on our experiences. In each experimental trial, a set (pair) of values of m1 and m2
from Table A1 was randomly selected and put in the control system (Figure 5). However,
the exact values of m1 and m2 were confidential to the subject. Then, the assist system was
run, and a human subject lifted an object with the system up to a certain height (about
0.1 m), maintained the lift for a few seconds, and then released the object. For that pair
of values of m1 and m2, the trial was repeated three times by the same subject. Then, the
subject subjectively evaluated (scored) the human–robot interaction (HRI) following a
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rating scale between 1 and 10, where 1 indicated the least favorable HRI and 10 indicated
the most favorable HRI. The HRI was expressed in terms of maneuverability, safety, and
stability, and such expression was communicated to the subject before he/she lifted the
object. The subject perceived the maneuverability, safety, and stability of the collaborative
system during the lifting task. The combined perception created an integrated feeling in
the subject, and the subject rated the system depending on that feeling about the HRI. In
total, 20 subjects participated in the experiment separately, and each subject lifted the object
(e.g., medium size) with the system for 36 × 3 times for 36 pairs of m1 and m2 values. The
grand total trials were 36 × 3 × 20 = 2160, and thus 2160 rating values were obtained.

Table A1. Values of m1 and m2 used in the experiment (6 × 6 pairs).

m1 (kg) 0.25 0.50 0.60 1.0 1.25 1.5
m2 (kg) 0.25 0.50 0.60 1.0 1.25 1.5

A grand total of 2160 trials (2160 pairs of m1 and m2 values) and 2160 rating values
were used as the training dataset of a machine learning problem. The training dataset
may be elaborated as in Equation (A1) (where n is the number of trials), which used the
pairs of m1 and m2 values as the inputs vector (x) and the subjective rating values as
the outputs vector (y) [24,25]. Table A2 partly illustrates the training dataset. A target
function or general formula (f ) as in Equation (A2) was learned based on the input–output
relationships in Equation (A3), which was used to predict the performance rating for the
given pairs of m1 and m2 values.

D = {(x1, y1), (x2, y2), . . . . . . . . . . . . . . . (xn, yn)} (A1)

f : X → Y (A2)

Y = f (X) (A3)

Table A2. The sample machine learning training dataset (partial list for illustration only).

Trials Pairs of m1 and m2 Values (Inputs, x) Performance Rating (Outputs, y)

1 m1 = 1.0 kg, m2 = 1.0 kg 5

2 m1 = 1.0 kg, m2 = 1.5 kg 2

The 2160 pairs of m1 and m2 values were available from the beginning of the experi-
ments. However, how the users felt and evaluated the HRI for the 2160 pairs of m1 and m2
values was not available in the beginning. Then, we obtained the 2160 rating values for
the 2160 pairs of m1 and m2 values, which completed the training dataset. As a result, this
could be considered a reinforcement learning model [24,25]. We then developed a simple
frequency-based optimization algorithm that was used to pick a pair of m1 and m2 values
or a few pairs of m1 and m2 values that produced the highest levels of ratings (for example,
9 and 10 ratings) (i.e., the target function f in Equation (A2)). The results showed that
m1 = 0.6 kg and m2 = 0.5 kg produced most of the 10 ratings, and m1 = 1.0 kg and
m2 = 0.5 kg produced most of the 9 and 10 ratings. Hence, m1 = 0.6 kg and m2 = 0.5 kg
were considered the learned control system parameters that could predict the highest levels
of HRI (and thus the control performance).

At the testing phase, we randomly selected 10 subjects (out of 20 originally selected
subjects). We put m1 = 0.6 kg and m2 = 0.5 kg in the control system shown in Figure 5.
However, information about m1 = 0.6 kg and m2 = 0.5 kg was confidential to the subjects.
Each subject separately lifted the object (e.g., medium size) with the robotic system once,
and then rated his/her perceived HRI in the 10-point rating scale. The results showed that
the rating values were 10 out of 10 nine times (for 9 subjects), and the rating value was
9 out of 10 only one time (for only 1 subject). Thus, it is posited that the control system
parameters learned in the training phase were able to successfully predict the highest levels
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of HRI, as proved in the testing phase. We followed similar approaches to learn the best
control parameters for the force controls and found similar results.
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