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Abstract: The dimensioning of general-purpose machines such as manipulators involves the solution
of a number of preliminary issues. The determination of reference external loads and the identification
of machine configurations that give the maximum internal load for each component are two of these
issues. These two problems are commonly addressed through trial-and-error procedures based on
dynamic modelling, which are implemented with the support of simulation software, since static
analyses are commonly considered inadequate to solve them. Despite this, here, a technique based
on influence coefficients and static analyses is presented which solves them. Such technique is also
able to foresee and justify dynamic issues (i.e., possible vibrations, etc.) that could heavily affect the
machine behavior. The effectiveness of the proposed technique is proved by implementing it on a
3T1R parallel manipulator. The presented design method is general and applicable to any type of
non-overconstrained manipulator or mechanism.

Keywords: parallel manipulators; dimensional synthesis; kinetostatics; influence coefficients

1. Introduction

The mechanical design of manipulators has mandatory steps summarizable as follows:
type synthesis [1–4], dimensional synthesis [1,2,4], and machine-element design [5–7]. Type
synthesis identifies the machine topologies that meet the motion requirements, dimensional
synthesis determines the values of the geometric parameters that affect the motion tasks
the machine has to perform, and, finally, machine-element design chooses materials and
sizes of each component of the machine.

The third step needs, as input data, the reference external loads applied to the machine
and the identification of the machine configurations that give the maximum internal loads
for each component. In general-purpose machines, such as manipulators, these input data
are not straightforwardly obtainable from the design requirements and their deduction
becomes even more difficult when dealing with parallel manipulators (PMs) since PMs’
reachable workspace usually includes particular configurations, named “parallel” singu-
larities [8–10], where the end effector cannot carry any (even infinitesimal) load without
breaking down the PM.

Various performance indices were conceived for identifying PMs’ reachable-workspace
regions that are free and far from singularities, where safely locating the useful workspace [11–18].
These indices well identify kinetostatic issues and can be useful to perform the dimensional
synthesis and to locate the useful workspace (see, for instance, [19,20]) far from singularities.
Nevertheless, they fail in relating the “distance” from singularities to the actual internal
loads of the links.

Other indices take into account also robot stiffness and dynamic performances [16–
18,21–26]. These other indices require the knowledge of data (e.g., masses, stiffness, etc.)
that are available at the end of the machine design. Therefore, they are certainly suitable for
comparing already-built manipulators, but their use during design is not straightforward
since it requires trial-and-error procedures.
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In general, all these indices can help the design procedure, but do not provide sufficient
pieces of information for determining the input data of PMs’ machine-element design.
This determination is commonly addressed through trial-and-error procedures based on
dynamic modelling, supported by multi-body simulation software, due to the preeminent
dynamic nature of the loads applied to a manipulator. This widely adopted procedure
is not able to justify unforeseen/unwanted machine behaviors that come out from the
simulations thus making difficult to intervene for eliminating them.

Here, an algorithm, based on influence coefficients and static analyses, is presented
which provides sufficient pieces of information for determining the input data of PMs’
machine-element design. The proposed algorithm is also able to foresee and justify dynamic
issues (i.e., possible vibrations, etc.) that could heavily affect the machine behavior. Its
effectiveness is proved by implementing it on a 3T1R parallel manipulator. The presented
design method is general and applicable to any type of non-overconstrained manipulator
or mechanism.

The proposed algorithm is a novel way of computing and using influence coefficients
in the design of general-purpose machines, mainly ideated for PMs, which aims at integrat-
ing the design methodologies based on performance indices and/or extended multibody
simulations by solving their lacks. Indeed, it can overcome the fact that performance
indices are not able to provide sufficient data for the machine-element design, and that
extended multibody simulations often do not provide sufficient pieces of information for
intervening when an unforeseen phenomenon comes out from the simulations.

The paper is organized as follows. Section 2 provides some background and presents
the novel technique. Then, Section 3 applies the proposed method to a 3T1R parallel ma-
nipulator. Eventually, Section 4 discusses the results and Section 5 draws the conclusions.

2. Materials and Methods

Most manipulators are based on non-overconstrained architectures [27]. Non-overcon
strained manipulators become isostatic structures when the actuated joints are locked. The
static analysis of an isostatic structure is sufficient to relate external loads to links’ internal
loads and involves the solution of a problem that is linear and homogeneous in the input
(i.e., external loads) and the output (i.e., links’ internal loads) variables [28]. This solution
does not need to know the materials the links are made of and links’ cross-sections, which
is an ideal condition for tools to employ during design when materials and actual sizes of
the links are not known since their choice/determination is the design goal. In addition,
such static analyses are based only on equilibrium equations and can take into account an
esteem of the dynamic loads among the known external loads thus simulating an inverse
dynamic problem [27].

Problems that involve the solution of a linear system, as the above-mentioned static
analyses do, can be addressed by using the superposition principle [29]. In the case of a
static analysis, the linear system to solve can be put into the following canonic form

A x = y (1)

where x = (x1, . . . ,xr)T is an r-tuple collecting all the scalar components, xi for i = 1, . . . ,r,
of the known external loads applied to the isostatic structure, y = (y1, . . . ,ys)T is an s-tuple
collecting all the scalar components, yj for j = 1, . . . ,s, of links’ internal loads, and A is an s×
r rectangular matrix of coefficients whose entries depend on the manipulator configuration.

The linearity of system (1) allows demonstrating that (superposition principle) if x is
writable as follows

x = ∑
p=1,n

λpup (2)
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where λp, for p = 1, . . . ,n, are n scalar coefficients and up = (δ1p, . . . ,δrp)T (where δip is the
Kronecker delta defined as follows: δip = 0 for i 6=p and δip = 1 for i = p), for p = 1, . . . ,n,
are n unit r-tuple, then

y = ∑
p=1,n

λpvp (3)

with vp = Aup for p = 1, . . . ,n. Hereafter, vp will be named p-th influence-coefficient vector.
During the design of a manipulator, once the dimensional synthesis has been com-

pleted, Equation (3) can be exploited for the determination of the maximum internal loads
of the links by implementing the following steps:

(i). according to the type of motion [30] the end effector can perform, up to three inde-
pendent unit forces and up to three independent unit moments are identified for
characterizing the dynamic loads applied to the end effector during motion and the
other dynamic loads reduced to the end effector;

(ii). the unit forces/moments determined in the previous step are transformed into up
r-tuples to introduce into Equation (2) for computing the input data of Equation (1);

(iii). for each up determined in the previous step, the corresponding influence-coefficient
vector vp is computed for a discretized set of end-effector poses inside the useful
workspace of the manipulator;

(iv). the so-determined vp are analyzed for finding the maximum internal loads of each link
due to each unit load up together with the corresponding manipulator configurations;

(v). by exploiting Equation (3), the maximum internal loads of each link determined in
the previous step are combined to obtain the reference internal loads of each link to
use for sizing the link in terms of material choice and cross-section.

This procedure, over providing the input data for the machine-element design, is able
to highlight critical conditions due to unbalanced variable loads acting on the links, since
it is a static calculus referred to dynamic loads, thus providing pieces of information that
orientate the next steps of the manipulator design.

Next section exemplifies the procedure by applying it to the partially decoupled 3T1R
PM shown in Figure 1.
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3. Results

Figure 1 shows a single-loop PM in which the end effector (platform) is simultaneously
connected to the frame (base) through two kinematic chains (limbs), one of type CRS1 and
the other of type RRC, that is, it is a PM of type CRS-RRC. The axes of the R and C pairs are
all parallel. The actuated C pair of the CRS limb is obtained by means of a PR chain with
the sliding direction of the P pair parallel to the axis of the R pair. Such a PM architecture
has four degrees of freedom [31] and constrains the platform to perform spatial translations
(3T) plus rotations around axes with one fixed direction (1R), that is, the platform can
perform only motions of 3T1R type, named Scara or Schoenflies motions [30]. This Scara
PM has been ideated [20,31] at the Laboratory of Mechatronics and Virtual Prototyping
(LaMaViP) of the University of Ferrara and, hereafter, for the sake of brevity, it will be
named “LaMaViP’s CRS-RRC”. In the context of the Scara PMs, LaMaViP’s CRS-RRC is
interesting because it can be actuated by keeping all the motors on the base and using
commercial components, and it has the platform translation decoupled from the platform
rotation [20,31].

The following notations/definitions are introduced (see Figure 1):

- Obxbybzb is a Cartesian reference fixed to the base with the direction of the zb-
coordinate axis parallel to the R and C pair axes;

- Op is a point fixed to the platform whose coordinates, (xp, yp, zp)T, measured in
Obxbybzb, locate the position of the platform;

- B2 is a point that lies on the axis of the actuated C-pair of the CRS limb and is fixed to
the output link of the C-pair;

- d is the signed distance of B2 from Ob chosen as linear joint-variable of the actuated
C-pair;

- D2, Ap, and A2 are the intersection points between the plane parallel to the xbyb plane
that passes through B2 and, respectively, the axis of the passive R-pair, the axis of the
passive C-pair, and the line parallel to the zb axis that passes through the center of the
S-pair;

- h is a geometric constant of the platform equal to the length of the segment ApOp;
- ap is a geometric constant of the platform that is equal to the length of the segment

ApA2;
- ϕ is the angle between the segment ApA2 and the line parallel to xb and passing

through Ap (the angle ϕ uniquely determines the platform orientation);
- a3 and a4 are the lengths of the segments B2D2 and D2A2, respectively;
- θ3 and θ4 are the angular joint-variables of the actuated C-pair and of the passive

R-pair, respectively;
- θ1 and θ2 are the angular joint-variables of the two actuated R-pairs of the RRC limb;
- B1, D1, and A1 are the intersection points between the xbyb coordinate plane and,

respectively, the axis of the actuated R-pair adjacent to the base, the axis of the
intermediate R-pair of the RRC limb and the axis of the passive C-pair;

- a0, a1 and a2 are the lengths of the segments ObB1, B1D1 and D1A1, respectively.

From a kinematics point of view, the RRC limb constrains the platform to perform
Schoenflies motions with rotation axis parallel to the zb-coordinate axis and controls
only the xp and yp coordinates of Op (i.e., the platform translations parallel to the xbyb
coordinate-plane). Moreover, the CRS limb controls the coordinate zp of point Op (i.e.,
the platform translation parallel to the zb-coordinate axis) through its linear joint-variable,
d, and, independently, the platform orientation (i.e., the angle ϕ) through its angular
joint-variable, θ3.

1 Hereafter, R, P, U, S, and C stand for revolute pair, prismatic pair, universal joint, spherical pair, and cylindrical pair respectively. With reference to a
PM, which features the frame (base) and the end effector (platform) connected to each other by a number of kinematic chains (limbs), a string of
capital letters denotes the sequence of joint types that are encountered by moving from the base to the platform on a limb. The hyphen separates the
strings of the limbs and the underlining indicates the actuated joints. A serial architecture has only one limb and is denoted by only one string.



Machines 2021, 9, 27 5 of 15

The dimensional synthesis of LaMaViP’s CRS-RRC was addressed in [19]. In [19], a
useful workspace assigned as a right circular cylinder with a radius, ruw, of 300 mm and a
height of 200 mm, whose axis is coincident with the zb-coordinate axis, brought to choose
the following values of the geometric constants (see Figure 1): a0 = 800 mm, a1 = 950 mm,
a2 = 600 mm, a3 = 400 mm, a4 = 400 mm, and ap = 400 mm. Figure 2 shows the scaled
top view of a LaMaViP’s CRS-RRC sized according to this geometric data together with
the position of the chosen useful workspace (the green circle in Figure 2). The analysis of
Figure 2 reveals that the translation of the platform along the direction of the zb-coordinate
axis is fully decoupled from the remaining platform motion. Indeed, the motion due to the
prismatic pair does not appear in the top view (Figure 2) where the PM becomes a planar
six-bar mechanism controlled by the actuated-joint variables θ1, θ2, and θ3. In addition, in
this six-bar, θ1 and θ2 just control the position of the platform (i.e., the position of point
A1), whereas θ3 fully controls the platform orientation (i.e., the angle ϕ) through a four-bar
transmission.
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3.1. Implementation of Steps (i) and (ii)

According to the introduced notations, the 4-tuples q = (θ1,θ2,θ3,d)T and κ= (xp,yp,zp,ϕ)T

collect the actuated-joint (input) variables and the platform-pose (output) variables, respec-
tively. The inspection of Figures 1 and 2 reveals that the entries of q and κ must satisfy the
following constraint equations

xp = a0 + a1cosθ1 + a2cos(θ1 + θ2), (4a)

yp = a1sinθ1 + a2sin(θ1 + θ2), (4b)

zp = d − h (4c)

(xp + ap cosϕ − a3 cosθ3)2 + (yp + ap sinϕ − a3 sinθ3)2 = a4
2, (4d)

which are holonomic and time-independent.
Equations (4a)–(4d) yield the following relationships between the virtual displace-

ments δq = (δθ1, δθ2, δθ3, δd)T and δκ = (δxp, δyp, δzp, δϕ)T

Jkδκ = Jqδq (5)
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with

Jk =


1 0 0 0
0 1 0 0
0 0 1 0

mx my 0 ap(mycϕ −mxsϕ
)
 (6a)

Jq =


−(a1sθ1 + a2s(θ1+θ2)

) −a2s(θ1+θ2)
0 0

(a1cθ1 + a2c(θ1+θ2)
) a2c(θ1+θ2)

0 0
0 0 0 1
0 0 a3(mycθ3 −mxsθ3) 0

 (6b)

where cw and sw stand for cos(w) and sin(w), respectively, whereas, (see Figure 2)

mx = xp + apcϕ − a3cθ3 = a4c(θ3+θ4)
; my = yp + apsϕ − a3sθ3 = a4s(θ3+θ4)

(7)

The active-force2 system applied to LaMaViP’s CRS-RRC consists of the active external
forces applied to the end effector and the generalized torques applied inside the actuated
joints. The active external forces are collected into the 4-tuple γ = −(Fe,x, Fe,y, Fe,z, Me,z)T,
where Fe,x, Fe,y, and Fe,z are the components, along xb, yb, and zb, respectively, of their
resultant force and Me,z is the component along zb of their resultant moment about Op.
In addition, the generalized torques are collected into the 4-tuple τ = (τθ1 , τθ2 , τθ3 , τd)

T

where the right subscripts indicate the actuated joint the generalized torque refers to. The
virtual work principle [32] makes it possible to write

− γTδκ+ τTδq = 0 ∀δq (8)

The elimination of δκ from Equation (8) by means of Equation (5) and the consideration
that the resulting expression must hold for any value of δq yield

τ = (J−1
k Jq)

T
γ (9)

where

(J−1
k Jq)

T
=



−(a1sθ1 + a2s(θ1+θ2)
) (a1cθ1 + a2c(θ1+θ2)

) 0
mx(a1sθ1+a2s(θ1+θ2)

)−my(a1cθ1+a2c(θ1+θ2)
)

ap(mycϕ−mxsϕ)

−a2s(θ1+θ2)
a2c(θ1+θ2)

0
a2(m xs(θ1+θ2)

−myc(θ1+θ2)
)

ap(mycϕ−mxsϕ)

0 0 0
a3(mycθ3−mxsθ3 )

ap(mycϕ−mxsϕ)
0 0 1 0


(10)

The analysis of Equation (9) and of Figures 1 and 2 reveals that, over the platform,

(a) Fe,x and Fe,y load only the RRC limb, their effects are coupled and do not depend on
ϕ (i.e., on the platform orientation);

(b) Fe,z loads the CRS limb through the S-pair and its static effect on links 3 and 4 (see
Figure 2) depends on the limb configuration. Moreover, the static equilibrium of
the platform reveals that, when Fe,z is applied at Op and the S-pair equilibrates it by
applying a force −Fe,z at A2, a torque, Mp, with magnitude |Fe,z ap| (see Figure 1)
and direction perpendicular to the platform plane (i.e., the plane located by the points
Op, Ap and A2) arises. Mp must be equilibrated by the reaction in the passive C-pair
of the RRC limb. As a consequence, Fe,z makes the RRC limb loaded, too, by the
torque Mp, whose static effects on links 1 and 2 depend on the platform pose and the
limb configuration;

(c) Me,z loads both the limbs and all the links.

2 Hereafter, the phrase “active force” indicates a force that does work when the mechanism changes its configuration.
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During motion, all the components of γ (=−(Fe,x, Fe,y, Fe,z, Me,z)T) are generated from
the inertia forces arising in the mechanism. Therefore, the static analysis must consider
all the above-mentioned cases. Regarding case (a), links’ internal loads, caused by a unit
force (Fe,x, Fe,y) = (cψ, sψ) N for ψ ∈ [0◦, 360◦], corresponding to u1 = (cψ, sψ, 0, 0)T N for
ψ ∈ [0◦, 360◦], applied to the RRC limb at A1 (see Figures 1 and 2), must be determined
for a discretized set of A1 positions inside the useful workspace. Regarding case (b), links’
internal loads, caused by a unit force Fe,z (= 1 N), corresponding to u2 = (0, 0, 1, 0)T N,
applied at Op (see Figures 1 and 2), must be determined for a discretized set of Op positions
inside the useful workspace. Regarding case (c), links’ internal loads, caused by an unit
moment Me,z (=1 Nm), corresponding to u3 = (0, 0, 0, 1)T Nm, applied to the platform at
Op (see Figures 1 and 2), must be determined for a discretized set of Op positions inside
the useful workspace.

3.2. Implementation of Steps (iii) and (iv)
3.2.1. Case (a): Links’ Internal Loads Due to u1

In this case, only links 1 and 2 (Figure 2) are loaded and the static problem is planar.
Indeed (Figures 2 and 3), it consists in computing the maximum internal loads, for each
admissible RRC limb configuration (i.e., for each position of A1 in the useful workspace),
in a RRC limb locked at the analyzed configuration with the planar force fe = (Fe,x, Fe,y)T =
(cψ, sψ)T N for ψ ∈ [0◦, 360◦] applied at A1.
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Figure 3. Static problem to solve in case (a).

This problem is quite simple. Indeed, due to the planarity of the problem the non-null
internal loads of the two links are only three: the bending moment (My), the shear force (Sz),
and the axial force (Ax)3. Regarding link 2, whatever be the limb configuration, the maximum
My and Sz always occur at D1 when fe is perpendicular to the link axis (i.e., when ψ = θ1 +
θ2 ± 90◦) and their values are My,2,max = ±|fe|a2 = ±0.6 Nm and Sz,2,max = ±|fe| = ±1 N,
respectively. Further, the maximum Ax occurs when fe is aligned with the link axis (i.e., when
ψ = θ1 + θ2 or ψ = θ1 + θ2 + 180◦) and its value is Ax,2,max = ±|fe| = ±1 N.

Regarding link 1, at any limb configuration, the maximum My occurs either at B1 when
the distance between fe’ s line of action and B1 is maximum (i.e., when fe is perpendicular
to the segment A1B1 (see Figure 3)), where its value is My,1 = ±|fe||(A1 − B1)|, or, for
|(A1 − B1)| < a2, at D1 where My,1 = My,2,max = ±|fe|a2 when ψ = θ1 + θ2 ± 90◦. Anyway,

3 Hereafter, the internal loads of a beam refer to a local Cartesian system chosen according to the convention 1 that is reported in [28]. This local system has
the x axis along the beam axis, the z axis contained in the motion plane (i.e., the xbyb coordinate-plane shown in Figure 2), and the y axis perpendicular
to the motion plane and pointing toward the reader (i.e., with the same direction of the zb-coordinate axis shown in Figure 1).
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the limb configuration with the maximum My,1 is the one where the point A1 coincides
with the point A’1 shown in Figure 3. In this configuration, the maximum My occurs at
B1 for ψ = ±90◦ and its value is My,1,max = ±|fe||(A’1 − B1)| = ±1.1 Nm. Moreover,
whatever be the limb configuration, the maximum Sz (Ax) occurs when fe is perpendicular
(parallel) to the link axis, that is, when ψ = θ1 ± 90◦ (when ψ = θ1 or ψ = θ1 + 180◦), and its
value is Sz,1,max = ±|fe| = ±1 N (Ax,2,max = ±|fe| = ±1 N). Table 1 summarizes the results
of case (a).

Table 1. Maximum non-null influence coefficients due to the unit force fe (Figure 3) of case (a).

i (Link Index) My,i,max [Nm] Sz,i,max [N] Ax,i,max [N]

1 ±1.1 ±1 ±1
2 ±0.6 ±1 ±1

3.2.2. Case (b): Links’ Internal Loads Due to u2

In this case (a unit force Fe,z (= 1 N) applied at Op (see Figures 1 and 2)), the equilibrium
of the platform shows that the CRS limb is loaded by the same Fe,z (=1 N) applied at the
S-pair center. Moreover, it shows that the RRC limb is loaded by a torque, Mb, lying on the
motion plane (i.e., the xbyb coordinate-plane) and applied at A1 (see Figure 2). In particular,
Mb has magnitude |Mb| = |Fe,z ap| = 0.4 Nm and direction (ϕ + 90◦) in the motion plane,
that is, Mb =|Fe,z ap|(c(ϕ+90◦), s(ϕ+90◦))T = 0.4(sϕ, −cϕ)T Nm for ϕ ∈ [0◦, 360◦].

Internal Loads in the CRS Limb

In the horizontal part of link 4 (i.e., the segment A2D2 (see Figures 1 and 2)), the unit
force Fe,z (= 1 N) applied at the S-pair center generates a constant shear force Sy,4= Fe,z =
1 N, and a bending moment, Mz,4, that linearly grows from 0, at A2, to Mz,4,max = Fe,za4 =
0.4 Nm, at D2. Of course, in the small vertical part of link 4, only a constant axial force equal
to Ax,4 = −Fe,z = −1 N is present. These values do not depend on the limb configuration.

The node equilibrium at D2 shows that link 3, at D2, is loaded by a shear force Sy,3 =
Sy,4 = 1 N, a torsional moment, Mx,3, whose analytic expression is

Mx,3 = Mz,4,max cos(θ4 − 90◦) = Fe,za4 sinθ4 = 0.4 sinθ4 Nm,

and a bending moment, Mz,3, whose analytic expression is

Mz,3 = Mz,4,max cosθ4 = Fe,za4 cosθ4 = 0.4 cosθ4 Nm.

As a consequence, in link 3, the shear force Sy,3 = 1 N is constant, and the torsional
moment Mx,3 (=Fe,za4 sinθ4 = 0.4 sinθ4 Nm) is constant, too, but depends on the limb
configurations and its maximum Mx,3,max = ±Fe,za4 = ±0.4 Nm occurs when θ4 = ±90◦. In
addition, the bending moment Mz,3 linearly varies from Fe,za4cosθ4, at D2, to (Fe,za4cosθ4 +
Sy,3a3), at B2, and its maximum values occurs at B2 when θ4 reaches its maximum value (see
Figure 4). In the studied case (Figures 2 and 4), Carnot’s theorem applied to the triangle
B2A2D2 makes it possible to write

cos(θ4 − 180
◦
) =

a2
3 + a2

4 − A2B2
2

2a3a4
with

(
A2B2

)
min = ap − ruw and

(
A2B2

)
max = ap + ruw (11)

which gives θ4,min = 194.36◦ and θ4,max = 302.09◦. As a consequence, the maximum bending
moment is Mz,3,max = Fe,za4cosθ4,max + Sy,3a3 = 0.6125 Nm.
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Internal Loads in the RRC Limb

In link 2, the torque Mb = |Fe,z ap| (sϕ, −cϕ)T, for ϕ ∈ [0◦,360◦], applied at A1,
generates a constant torsional moment Mx,2 and a constant bending moment Mz,2 whose
analytic expressions are (kb is the unit vector of the zb-coordinate axis (Figure 1))

Mx,2 = Mb ·
(A1 − D1)

a2
=
∣∣Fe,zap

∣∣(sϕc(θ1+θ2)
− cϕs(θ1+θ2)

) = −
∣∣Fe,zap

∣∣c(θ1+θ2−ϕ) = −0.4c(θ1+θ2−ϕ) Nm, (12a)

Mz,2 = Mb ·
[
(A1−D1)

a2
× kb

]
=
∣∣Fe,zap

∣∣(sϕc(θ1+θ2−90◦ ) − cϕs(θ1+θ2−90◦ )) =
∣∣Fe,zap

∣∣s(θ1+θ2−ϕ) = 0.4s(θ1+θ2−ϕ) Nm (12b)

and depend on the mechanism configuration. Accordingly, the maximum/minimum
values of Mx,2 (Mz,2) are Mx,2,max = ±|Fe,z ap| = ±0.4 Nm (Mz,2,max = ±|Fe,z ap| =
±0.4 Nm), occur at ϕ = θ1 + θ2 and at ϕ = θ1 + θ2 + 180◦ (at ϕ = θ1 + θ2 ± 90◦) and do not
depend on the mechanism configuration.

In link 1, the same torque Mb = |Fe,z ap| (sϕ, −cϕ)T, for ϕ ∈ [0◦,360◦], transmitted
through link 2, is applied at D1 and generates a constant torsional moment Mx,1 and a
constant bending moment Mz,1 whose analytic expressions are

Mx,1 = Mb ·
(D1 − B1)

a1
=
∣∣Fe,zap

∣∣(sϕcθ1 − cϕsθ1) = −
∣∣Fe,zap

∣∣c(θ1−ϕ) = −0.4c(θ1−ϕ) Nm, (13a)

Mz,1 = Mb ·
[
(D1 − B1)

a1
× kb

]
=
∣∣Fe,zap

∣∣(sϕc(θ1−90◦ ) − cϕs(θ1−90◦ )) =
∣∣Fe,zap

∣∣s(θ1−ϕ) = 0.4s(θ1−ϕ) Nm, (13b)

and depend on the mechanism configuration. Accordingly, the maximum/minimum
values of Mx,1 (Mz,1) are Mx,1,max = ±|Fe,z ap| = ±0.4 Nm (Mz,1,max = ±|Fe,z ap| =
±0.4 Nm), occur at ϕ = θ1 and at ϕ = θ1 + 180◦ (at ϕ = θ1 ± 90◦) and do not depend on the
mechanism configuration.

Table 2 summarizes the results of case (b).
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Table 2. Maximum non-null influence coefficients due to the unit force Fe,z (= 1 N) of case (b).

i (Link
Index)

Mx,i,max
[Nm]

My,i,max
[Nm]

Mz,i,max
[Nm] Sy,i,max [N] Sz,i,max [N] Ax,i,max

[N]

1 ±0.4 - ±0.4 - - -
2 ±0.4 - ±0.4 - - -
3 ±0.4 - 0.6125 1 - -
4 - - 0.4 1 - −1

3.2.3. Case (c): Links’ Internal Loads Due to u3

In this case (a unit moment Me,z (=1 Nm) applied at Op (see Figures 1 and 2)), the
equilibrium of the platform shows that the CRS limb is loaded by the force

fm = −Me,z

apsµ

(
c(θ3+θ4)

s(θ3+θ4)

)
= − Me,z

apa4sµ

(
mx
my

)
with µ = ϕ− θ3 − θ4, (14)

which is applied at the S-pair center and is aligned with link 4 (see Figure 5a), and that the
RRC limb is loaded by the force –fm applied at A1 through the C-pair (see Figure 5a).

The maximum and minimum magnitudes of fm occur when the angle µ reaches its
minimum, µmin (see Figure 5b), and maximum, µmax (see Figure 5c), values, respectively.
With reference to Figure 5b,c, in the studied case, the following relationships hold

µmin = 2arcsin
(

a3 − ruw

2a4

)
= 14.3615

◦
, µmax = 2arcsin

(
a3 + ruw

2a4

)
= 122.09

◦
(15)

which give

|fm|max =
Me,z

apsµmin

= 10.079 N, |fm|min =
Me,z

apsµmax

= 2.95084 N. (16)

Internal Loads in the CRS Limb

In link 4, the effect of the small vertical part (i.e., the one parallel to the zb-coordinate
axis (Figure 1)) is minor, depends on its length, which has not been defined during the
dimensional synthesis, and will be neglected in this static analysis. This assumption brings
to consider the force fm directly applied at A2 (see Figure 5a) along the horizontal part
of link 4. As a consequence, this load generates only an axial force Ax,4 = –|fm| whose
maximum (negative) value is Ax,4,max = −10.079 N (see Equation (15)).

The node equilibrium at D2 shows that link 3, at D2, is loaded by the axial force, Ax,3,
and the shear force, Sz,3, given by the relationships

Ax,3 = fm ·
(D2 − B2)

a3
= −Me,z

apsµ
(c(θ3+θ4)

cθ3 + s(θ3+θ4)
sθ3) = −

Me,z

apsµ
cθ4 = −2.5

cθ4

sµ
N (17a)

Sz,3 = fm ·
[
(D2 − B2)

a3
× kb

]
= −Me,z

apsµ
(c(θ3+θ4)

c(θ3−90◦ ) + s(θ3+θ4)
s(θ3−90◦ )) = −

Me,z

apsµ
c(θ4+90◦ ) = 2.5

sθ4

sµ
N (17b)

These loads, at D2, generate constant axial, Ax,3, and shear, Sz,3, forces along link
3 that only depend on the mechanism configuration, and a bending moment My,3 that
linearly varies from 0, at D2, to −Sz,3a3, at B2. Since the angles µ (see Equation (14))
and θ4 that appear in Equations (17a) and (17b) are not independent (see system (4) and
Equation (7)), the determination of the maximum/minimum values of Ax,3, Sz,3, and My,3
must be numerically evaluated for a sufficiently high number of mechanism configurations
uniformly distributed in the useful workspace and, then, compared. A mash of 3220
positions of A1(=(xp, yp)) uniformly distributed inside the useful-workspace circle have
been chosen and, at each A1 position, Equations (17a) and (17b) have been evaluated for
360 values of the angle ϕ spaced of 1◦. The comparison of the so-computed values yields
the diagrams of Figure 6 (The MatLab program that generates Figure 6 can be seen in
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Supplementary Materials). The analysis of these diagrams and the ranges spanned by the
angles θ4 and µ (see Equations (11) and (15)) bring to the conclusion that, in link 3, the
maximum values of the internal loads can be evaluated as follows

Ax,3,max = ±2.5
cθ4,max
sµmin

= ±5.3545 N, Sz,3,max = 2.5
s270

◦

sµmin
= −10.079 N,

My,3,max = −Sz,3,maxa3 = 4.0316 Nm
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Internal Loads in the RRC Limb

The comparison of Figures 3 and 5a together with Equation (14) reveals that this is
a special case of the above-discussed case (a). Consequently, the maximum values of the
internal loads of links 1 and 2 are the product of the influence coefficients of Table 1 by
|fm|max (see Equation (16)).

Table 3 summarizes the results of case (c).

Table 3. Maximum non-null influence coefficients due to the unit moment Me,z (= 1 Nm) of case (c).

i (Link
Index)

Mx,i,max
[Nm]

My,i,max
[Nm]

Mz,i,max
[Nm] Sy,i,max [N] Sz,i,max [N] Ax,i,max

[N]

1 - ±11.087 - - ±10.079 ±10.079
2 - ±6.0474 - - ±10.079 ±10.079
3 - 4.0316 - - −10.079 ±5.3545
4 - - - - - −10.079
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3.3. Implementation of Step (v)

The influence coefficients reported in Tables 1–3 must be combined by means of
Equation (3) to determine the reference internal loads to use for sizing the links. In order to
do this, the values of the coefficients λp appearing in Equation (3) must be deduced from the
task requirements the machine has to satisfy. Assuming that the design requirements are

- mass of the payload: mp = 1 kg,
- gyration radius of the payload: ρ = 0.2 m,
- maximum linear accelerations:

..
a = 100 m/s2,

- maximum angular acceleration:
..
ϕ = 1000 rad/s2,

- global safety coefficient4: γ = 2.5,

the reference values of the external loads become Fe,x = Fe,y = Fe,z = γmp
..
a = 250 N

and Me,z = γmpρ
2 ..
ϕ = 100 Nm. Accordingly, the influence coefficients of Tables 1 and 2

must be all multiplied by λp = 250 and those of Table 3 by λp = 100; then, the resulting
values must be summed. Table 4 reports the reference internal loads resulting from this
computation.

Table 4. Reference internal loads to use for sizing the links.

i (Link
Index)

Mx,i,max
[Nm]

My,i,max
[Nm]

Mz,i,max
[Nm] Sy,i,max [N] Sz,i,max [N] Ax,i,max

[N]

1 ±100 ±1383.7 ±100 - ±1257.9 ±1257.9
2 ±100 ±754.74 ±100 - ±1257.9 ±1257.9
3 ±100 403.16 153.125 250 −1007.9 ±535.45
4 - - 100 250 - −1257.9

4. Discussion

The implementation reported in the previous section shows that the proposed method
is simple and direct to apply and only in a few cases it really requires numerical evaluations.
In particular, it only needs the results of the dimensional synthesis and, differently from
the techniques based on global performance indices, it is able to relate directly the task
requirements to the links’ internal loads.

The analysis of Table 2 reveals that the existence of decoupled motions does not
imply a static decoupling between the active forces that cause those motions. Indeed, the
unit force Fe,z (see Table 2) has a static effect on links 1 and 2 that belong to a limb, the
RRC, that has no effect on the platform translation along the zb-coordinate axis direction.
This happens without considering non-ideal phenomena (e.g., the friction in the joints).
Furthermore, the found effects are difficult to compensate since the generated torsional,
Mx,(1,2), and bending, Mz,(1,2), moments lie on the RRC-limb motion plane and tend to cause
elastic displacements (which, in practice, are vibrations, since all the real external loads are
dynamic loads that vary their magnitudes during motion) perpendicular to that plane.

Recognizing static couplings at an early stage of the design procedure with a clear
identification of the causes is a peculiarity of the proposed method and is a desirable
feature that can orientate the successive design choices. Other design techniques based on
the extensive use of multi-body simulation software, together with a trial-and-error sizing
procedure, would have found the limb vibration without giving an immediate explanation.

These results prove that the proposed algorithm integrates the design methodologies
based on performance indices and/or on extended multibody simulations by solving
their lacks.

4 The global safety coefficient roughly takes into account the loads different from the payload that have not been considered. The designer according
to his experience assigns its value.
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5. Conclusions

A general technique based on influence coefficients and static analyses has been
presented which allows the determination of the input data of the machine-element design
(i.e., reference external loads and machine configurations that give the maximum internal
load of each component) for non-overconstrained manipulators.

Differently from other techniques, the presented one uses only the results of the
dimensional synthesis and does not need any tentative choice, about the materials, the
links are made of, and links’ cross-sections, to be adjusted during the design procedure.

The proposed technique directly relates task requirements to links’ internal loads and
is able to reveals dynamic phenomena (e.g., vibrations) that have a negative impact on the
machine behavior.

The effectiveness of the proposed technique has been proved by implementing it on a
3T1R parallel manipulator.

Supplementary Materials: The MatLab program that generates Figure 6 is available at https://www.
mdpi.com/2075-1702/9/2/27/s1.

Author Contributions: Conceptualization, R.D.G.; methodology, R.D.G.; software, E.Y.; validation,
R.D.G. and E.Y.; formal analysis, R.D.G. and E.Y.; project administration, R.D.G.; funding acquisition,
R.D.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was developed at the Laboratory of Mechatronics and Virtual Prototyping
(LaMaViP) of Ferrara Technopole and funded by the University of Ferrara (UNIFE), grant number
FAR2019.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Hartenburg, R.S.; Denavit, J. Kinematic Synthesis of Linkages; McGraw-Hill: New York, NY, USA, 1964; ISBN 9780070269101.
2. Tsai, L.W. Mechanism Design: Enumeration of Kinematic Structures According to Function; CRC Press LLC: Boca Raton, FL, USA, 2001.
3. Kong, X.; Gosselin, C.M. Type Synthesis of Parallel Mechanisms; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-642-09118-6.
4. McCarthy, J.M.; Soh, G.S. Geometric Design of Linkages; Springer: Berlin/Heidelberg, Germany, 2011.
5. Bhandari, V.B. Design of Machine Elements, 3rd ed.; Tata McGraw-Hill: New Delhi, India, 2010.
6. Jiang, W. Analysis and Design of Machine Elements; Wiley: Singapore, 2019.
7. Ashby, M.F. Materials Selection in Mechanical Design, 5th ed.; Butterworth-Heinemann: Burlington, MA, USA, 2016.
8. Gosselin, C.; Angeles, J. Singularity analysis of closed-loop kinematic chains. IEEE Trans. Robot. Autom. 1990, 6, 281–290.

[CrossRef]
9. Zlatanov, D.; Fenton, R.G.; Benhabib, B. A Unifying Framework for Classification and Interpretation of Mechanism Singularities.

J. Mech. Des. 1995, 117, 566–572. [CrossRef]
10. Di Gregorio, R. A Review of the Literature on the Lower-Mobility Parallel Manipulators of 3-UPU or 3-URU Type. Robotics 2020,

9, 5. [CrossRef]
11. Yoshikawa, T. Manipulability of Robotic Mechanisms. Int. J. of Rob. Res. 1985, 4, 3–9. [CrossRef]
12. Klein, C.A.; Blaho, B.E. Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators. Int. J. Robot.

Res. 1987, 6, 72–83. [CrossRef]
13. Gosselin, C.; Angeles, J. A Global Performance Index for the Kinematic Optimization of Robotic Manipulators. J. Mech. Des. 1991,

113, 220–226. [CrossRef]
14. Tanev, T.; Stoyanov, B. On the performance indexes for robot manipulators. Probl. Eng. Cybern. Robot. 2000, 49, 64–71.
15. Merlet, J.P. Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots. J. Mech. Des. 2006, 128, 199–206.

[CrossRef]
16. Moreno, H.A.; Saltaren, R.; Carrera, I.; Puglisi, L.J.; Aracil, R. Ìndices de Desempeño de Robots Manipuladores: Una revisión del

Estado del Arte. Rev. Iberoam. Automática Inf. Ind. 2012, 9, 111–122. [CrossRef]

https://www.mdpi.com/2075-1702/9/2/27/s1
https://www.mdpi.com/2075-1702/9/2/27/s1
http://doi.org/10.1109/70.56660
http://doi.org/10.1115/1.2826720
http://doi.org/10.3390/robotics9010005
http://doi.org/10.1177/027836498500400201
http://doi.org/10.1177/027836498700600206
http://doi.org/10.1115/1.2912772
http://doi.org/10.1115/1.2121740
http://doi.org/10.1016/j.riai.2012.02.005


Machines 2021, 9, 27 15 of 15

17. Patel, S.H.; Sobh, T. Manipulator Performance Measures—A Comprehensive Literature Survey. J. Intell. Robot. Syst. 2014, 77,
547–570. [CrossRef]

18. Rosyid, A.; El-Khasawneh, B.; Alazzam, A. Review article: Performance measures of parallel kinematics manipulators. Mech. Sci.
2020, 11, 49–73. [CrossRef]

19. Di Gregorio, R.; Cattai, M.; Simas, H. Performance-Based Design of the CRS-RRC Schoenflies-Motion Generator. Robotics 2018, 7,
55. [CrossRef]

20. Simas, H.; Di Gregorio, R. Position analysis, singularity loci and workspace of a novel 2PRPU Schoenflies-motion generator.
Robotics 2018, 37, 141–160. [CrossRef]

21. Asada, H. A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design. J. Dyn. Syst. Meas. Control.
1983, 105, 131–142. [CrossRef]

22. Yoshikawa, T. Dynamic manipulability of robot manipulators. J. Rob. Sys. 1985, 2, 113–124.
23. Wiens, G.J.; Scott, R.A.; Zarrugh, M.Y. The Role of Inertia Sensitivity in the Evaluation of Manipulator Performance. J. Dyn. Syst.

Meas. Control. 1989, 111, 194–199. [CrossRef]
24. Chiaacchio, P.; Concilio, M. The dynamic manipulability ellipsoid for redundant manipulators. In Proceeding of the 1998 IEEE

International Conference on Robotics and Automation (ICRA), Leuven, BE, 20 May 1998; IEEE: Piscataway, NJ, USA, 1998; pp. 95–100.
[CrossRef]

25. Di Gregorio, R.; Parenti-Castelli, V. Dynamic performance indices for 3-dof parallel manipulators. In Advances in Robot Kine-Matics;
Lenarcic, J., Thomas, F., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 11–20.

26. Mo, J.; Shao, Z.; Guan, L.; Xie, F.; Tang, X. Dynamic performance analysis of the X4 high-speed pick-and-place parallel robot.
Robot. Comput. Manuf. 2017, 46, 48–57. [CrossRef]

27. Angeles, J. Fundamentals of Robotic Mechanical Systems, 4th ed.; Springer: New York, NY, USA, 2014.
28. Wunderlich, W.; Pilkey, W.D. Mechanics of Structures: Variational and Computational Methods, 2nd ed.; CRC Press: Boca Raton, FL,

USA, 2002.
29. Uicker, J.J.; Pennock, G.R.; Shigley, J.E.; McCarthy, J.M. Theory of Machines and Mechanisms, 5th ed.; Oxford University Press: New

York, NY, USA, 2016.
30. Hervé, J.M. The mathematical group structure of the set of displacements. Mech. Mach. Theory 1994, 29, 73–81. [CrossRef]
31. Di Gregorio, R. A Novel Single-Loop Decoupled Schoenflies-Motion Generator: Concept and Kinematics Analysis. In Advances in

Service and Industrial Robotics; Ferraresi, C., Quaglia, G., Eds.; Mechanisms and Machine Science Series; Springer: New York, NY,
USA, 2018; Volume 49, pp. 11–18. ISBN 978-3-319-61275-1. [CrossRef]

32. Salençon, J. Virtual Work Approach to Mechanical Modeling; Wiley: Hoboken, NJ, USA, 2018.

http://doi.org/10.1007/s10846-014-0024-y
http://doi.org/10.5194/ms-11-49-2020
http://doi.org/10.3390/robotics7030055
http://doi.org/10.1017/S0263574718000899
http://doi.org/10.1115/1.3140644
http://doi.org/10.1115/1.3153036
http://doi.org/10.1109/ROBOT.1998.676321
http://doi.org/10.1016/j.rcim.2016.11.003
http://doi.org/10.1016/0094-114X(94)90021-3
http://doi.org/10.1007/978-3-319-61276-8_2

	Introduction 
	Materials and Methods 
	Results 
	Implementation of Steps (i) and (ii) 
	Implementation of Steps (iii) and (iv) 
	Case (a): Links’ Internal Loads Due to u1 
	Case (b): Links’ Internal Loads Due to u2 
	Case (c): Links’ Internal Loads Due to u3 

	Implementation of Step (v) 

	Discussion 
	Conclusions 
	References

