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Abstract: The flexible job shop scheduling problem has always been the focus of research in the
manufacturing field. However, most of the previous studies focused more on efficiency and ignored
energy consumption. Energy, especially non-renewable energy, is an essential factor affecting the
sustainable development of a country. To this end, this paper designs a flexible job shop scheduling
problem model with energy consideration more in line with the production field. Except for the
processing stage, the energy consumption of the transport, set up, unload, and idle stage are also
included in our model. The weight property of jobs is also considered in our model. The heavier the
job, the more energy it consumes during the transport, set up, and unload stage. Meanwhile, this
paper invents an adaptive population non-dominated sorting genetic algorithm III (APNSGA-III) that
combines the dual control strategy with the non-dominated sorting genetic algorithm III (NSGA-III)
to solve our flexible job shop scheduling problem model. Four flexible job shop scheduling problem
instances are formulated to examine the performance of our algorithm. The results achieved by
the APNSGA-III method are compared with five classic multi-objective optimization algorithms.
The results show that our proposed algorithm is efficient and powerful when dealing with the
multi-objective flexible job shop scheduling problem model that includes energy consumption.

Keywords: flexible job shop scheduling problem; energy consumption; makespan; NSGA-III; dual
control strategy

1. Introduction

Facing the global competition of the integration of the world economy, if the manufac-
turing industry wants to stand out from the cruel survival of the fittest, it must accelerate
its response to external changes, improve product quality and performance, reduce various
costs in the process, and provide customer-based personalized service on-demand [1,2].
At the same time, affected by the deterioration of the climate and the greenhouse effect,
society and the country have also put forward higher and higher requirements for the
green production of enterprises [3,4]. The manufacturing industry, which accounts for half
of the total carbon emissions, has also attracted the attention of society and governments at
all levels [5,6]. Therefore, ensuring a high-efficiency production rhythm in production and
processing while seeking to improve energy efficiency and reduce total carbon emissions
has become the direction of the study efforts of experts and scholars [7,8].
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The manufacturing industry plays an indispensable role in the economic development
and social construction of a country [9,10]. At the same time, the manufacturing industry is
also an area where a country invests a tremendous amount of energy consumption [11,12].
According to the international energy outlook 2021 reference case, after a period of de-
cline in coal consumption through 2030, consumption of all major fuels will grow from
2030 to 2050. Renewable energy consumption will more than double between 2020 and
2050, and renewable energy consumption will nearly equal liquid fuels consumption by
2050 [13]. In China, manufacturing companies consumed more than 50% of the national
electrical energy and generated at least 26% of the total carbon dioxide emission. As the
primary industry of the national economy, the manufacturing industry plays a crucial
role in developing the national economy [14,15]. Still, it is also the main body of energy
consumption and environmental pollution [16,17]. Promoting energy conservation and
emission reduction in the manufacturing industry is of great significance to the global
implementation of green manufacturing and actively responding to challenges such as
global warming [18].

With the development of science and technology, the production scale and complexity
of the manufacturing industry are getting higher and higher [19,20]. As a necessary
means to solve the resource arrangement, flexible job shop scheduling problem (FJSP)
plays an increasingly important position in the production and operation activities of
the manufacturing industry [21,22]. FJSP refers to the process of making full use of the
limited resources of the enterprise through reasonable allocation to meet or optimize one or
more goals [23,24]. The FJSP is an essential part of the manufacturing process of the entire
production job shop and controls the entire manufacturing system [25–27]. A reasonable
scheduling plan can reduce the production cost of the enterprise, shorten the production
cycle, improve the enterprise’s competitiveness, and bring significant economic benefits to
the enterprise [1,28]. With the advancement of green manufacturing, FJSP that considers
energy saving and consumption reduction goals are essential for companies to achieve
low-carbon development models [29,30].

Mouzon et al. devised a mathematical programming model for optimizing the schedul-
ing problem of a single computerized numerical control (CNC) machine that considered
the energy consumption and total completion time [31]. Afterward, Lei et al. deemed an
energy-related objective should be considered thoroughly in FJSP with the advent of green
manufacturing and proposed an FJSP with the consideration of energy consumption [32].
Additionally, to minimize makespan and total tardiness under the constraint that total
energy consumption does not exceed a given threshold, a multi-objective FJSP with an
energy consumption threshold is formulated by Wang et al. [29]. Jiang et al. established the
mathematical model of the low-carbon FJSP with the objective of minimizing the sum of
the energy consumption cost, and the earliness/tardiness cost. In another work, Meng et al.
modeled the mixed integer linear programming (MILP) models for FJSP with the objective
of minimizing total energy consumption [23].

However, research on reducing the energy consumption of manufacturing processes
has concentrated chiefly on the machine, product, and production management levels [29].
There is much necessary energy consumption that has not been considered in previous
studies [33]. Especially for small and medium-sized enterprises with small processing
scales, improving processing efficiency is their first focus. With the continuous progress
of the industrialization process, establishing an efficient scheduling model that contains
more detailed energy consumption is an inevitable trend of development [2]. In this case,
some minor energy consumption considerations become particularly important for saving
costs and preventing environmental pollution [34]. For this reason, this paper considers
various energy consumption components in the manufacturing industry that have not
been considered in many previous studies but cannot be ignored, and designs the multi-
objective FJSP considering the energy consumption of the transport, set up, processing,
unload, and idle phase. Meanwhile, this paper also considers the weight property of the
bars. The heavier the bar, the more energy will be consumed.
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A variety of multi-objective optimization algorithms have been proposed in many
studies [35]. For multi-objective FJSP, Gao et al. combined the particle swarm algorithm
and tabu search algorithm and proposed an effective hybrid algorithm to solve multi-
objective FJSP with several conflicting and incommensurable objectives [36]. In another
study, Gao et al. proposed a discrete harmony search algorithm for FJSP with minimization
of multiple objective functions of the maximum of the completion time and the mean of
earliness and tardiness [37]. Moreover, Li et al. proposed an effective hybrid tabu search
algorithm (HTSA) to solve the FJSP with three minimization objectives of the maximum
completion time (makespan), the total workload of machines, and the workload of the
critical machine [38]. Lu et al. formulated the FJSP mathematical model with the objectives
of minimizing both the makespan and the total additional resource consumption [39].

Most of the research has achieved excellent results for their issue. However, for FJSP
as an NP-hard problem, the solution space will exponentially increase with jobs and
operations [40–42]. Meanwhile, FJSP is a discrete problem; many algorithms that are
good at dealing with continuous problems are not suitable for solving FJSP [43,44]. Many
algorithms and improvement strategies are challenging to achieve a satisfactory effect for
it [45,46]. The genetic algorithm (GA) is a very suitable tool for solving combinatorial
optimization problems, such as FJSP. The non-dominated sorting genetic algorithm III
(NSGA-III) algorithm is an extension of the GA in multi-objective optimization, which has
been applied to various practical fields, so this paper adopts NSGA-III as a basic algorithm
when solving FJSP. In order to further improve the solution ability of NSGA-III to prevent
it from falling into the local optimum, and to enhance the diversity of the population,
this paper proposes a dual control strategy (DCS) for multi-objective optimization and
combines it with NSGA-III to avoid precocity and enhance the optimization capability of
NSGA-III on solving combinatorial optimization problems such as FJSP. The highlights of
this paper are as follows:

(1) The FJSP model considering energy consumption that covers the transport of AGV
and set up, processing, unload, and idle of the machine is designed.

(2) The weight attribute of the bars is also taken into account. The heavier the bar,
the more energy it consumes.

(3) The DCS for multi-objective optimization is formulated to enhance the solving
ability of NSGA-III.

The rest of this work is arranged as follows. Firstly, the details of FJSP are elaborated
in Section 2. Then, the procedure of the adaptive population non-dominated sorting
genetic algorithm III (APNSGA-III) is described in Section 3. Followed by the extensive
experiments that are conducted in Section 4. Finally, we summarize the paper in Section 5.

2. Problem Description

Classic FJSP can be described as: there are n jobs J = (J1, J2, . . . , Jn) that are processed
on m machines M = (M1, M2, . . . , Mm) in a production job shop. Each job Ji consists of ni
operation, Oi,j denotes the jth operation of the ith job. Each operation can be processed
on any machine that belongs to machine set Mi,j. There are the following assumptions
(constraints) about the FJSP [47].

(1) The completion time of the jth operation of the ith job is the sum of its start time
and processing time.

Cijk = Sijk + Tijk (1)

where Cijk, Sijk, Tijk implies the completion time, the starting time, and the processing time
of the jth operation of the ith job on machine Mk, respectively.

(2) The start time of the jth operation of the ith job on the machine Mk is determined
by the completion time of the previous operation q on the machine and the completion
time of the previous operation of the job.

Sijk = max{S(i−1)qk + T(i−1)qk, Ci(j−1)(k−1)} (2)
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(3) The downtime of machine Mk is the completion time of the last operation on the
machine.

CTk = Clk (3)

where l represents the last job on machine Mk, Clk indicates the completion time of the last
job on machine Mk.

(4) There are constraints on the machine required for the processing operation.

Cgk − Cik + M(1− xigk) ≥ Tgk,

i, g = 1, 2, . . . , n; k = 1, 2, . . . , m
(4)

where n and m denotes the number of jobs and machines, respectively. Cgk, Tgk indicates
the completion time and processing time of job Jg on machine Mk, M means a sufficiently
large positive number. xigk represents the processing priority of job Ji and job Jg on machine
Mk. If the job Ji is processed first, then xigk is 1, otherwise it is zero.

(5) Operation Oij and Ogz cannot be processed on any machine on machine set
Mij ∩Mgz at the same time.

Sijk ≥ Cgzk − Zijgzk ∗M, ∀k ∈ Mij ∩Mgz (5)

Sgzk ≥ Cijk − (1− Zijgzk) ∗M, ∀k ∈ Mij ∩Mgz (6)

where Zijgzk represents that operation Oij is processed before operation Ogz on machine
Mk, 1 if yes, 0 otherwise. Mij ∩Mgz denotes the machine set that can process operation Oij
and operation Ogz at the same time.

(6) There is a priority relationship between the various operations of the same job.

Sijk ≥ Ci(j−1)k, k ∈ Mij,

∀i = 1, 2, ..., n, ∀j = 2, ..., Ki
(7)

where Ki represents the number of operation of job Ji.
(7) All jobs can be processed and all machines are optional when a task starts.

Sijk ≥ 0 (8)

Cijk ≥ 0 (9)

(8) Only one machine can be selected for each operation.

m

∑
k=1

Rijk = 1 (10)

where Rijk denotes whether the machine Mk processes operation Oij, 1 means processed, 0
means unprocessed.

This paper considers two optimization objectives in the FJSP model that include the
maximum completion time and the total energy consumption.

2.1. Maximum Completion Time (Makespan)

f1 = min(Makespan) = min max
16k6m

{
max

16i6n
CTk

}
(11)

where Makespan represents the maximum completion time of all machines, it is the main
indicator to measure the completion time of all jobs. CTk is expressed as:

CTk =
n

∑
i=1

Ki

∑
j=1

(SijkRijk + RijkTijk) (12)
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where Rijk denotes whether the machine Mk processes operation Oij, 1 means processed, 0
means unprocessed.

2.2. Total Energy Consumption (TEC)

The total energy consumption considered in this paper is mainly composed of the
following five parts.

(a): The transporting energy consumption (TTEC)
TTEC is the energy consumed by the AGV transporting the job between machines.

TTEC is related to the time AGV takes to transport the job and the weight of the job. It can
be calculated by the following equation.

TTEC =
n

∑
i=1

Ki

∑
j=1

TijWiP (13)

where Tij implies the time spent in transporting the job Ji at the jth operation, Wi means the
weight of the job Ji. P represents the energy consumed to transport a kilogram of objects
per second.

(b): Total set up energy consumption (TSEC)
TSEC is the energy consumed by the machine to grab the job and set it on the process-

ing table. Different operations of different jobs have different set up energy consumptions
on different machines. Moreover, TSEC is positively related to the weight of the bar;
the heavier the bar, the more energy it consumes. It can be calculated by the following
equation.

TSEC =
n

∑
i=1

Ki

∑
j=1

m

∑
k=1

SijkRijkWi (14)

where Sijk represents the energy consumption per unit weight for machine Mk to set up
Oij, Wi denotes the weight of the job Ji.

(c): Total processing energy consumption (TPEC)
TPEC is the main energy consumption that is used to perform operations such as

punching, cutting, laser printing, spray painting, etc. Different operations of different jobs
have different processing energy consumptions on different machines. The calculation of
TPEC is not given in Equation (15).

TPEC =
n

∑
i=1

Ki

∑
j=1

m

∑
k=1

EijkRijk (15)

where Eijk means the energy consumed by machine Mk processing operation Oij, Rijk
indicate whether the jth operation of the ith job is processed on machine Mk, 1 if yes, 0
otherwise.

(d): Total unloading energy consumption (TUEC)
Corresponding to TSEC, TUEC is the energy consumed by the unloading job by

machine. Different operations of different jobs have different unload energy consumptions
on different machines. Moreover, TUEC is positively related to the weight of the bar;
the heavier the bar, the more energy it consumes. It can be calculated by the following
equation.

TUEC =
n

∑
i=1

Ki

∑
j=1

m

∑
k=1

UijkRijkWi (16)

where Uijk represents the energy consumption per unit weight for machine Mk to unload
processing operation Oij, Wi denotes the weight of the job Ji.

(e): Total idling energy consumption (TIEC)
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The machine in the job shop still consumes energy when it is not working, TIEC is the
energy consumed when the machine is idle. Different machines consume different energy
in standby state. It is given by following Equation (17).

TIEC =
m

∑
i=1

NiCi (17)

where Ni denotes the total idle time of machine Mi, Ci represents the energy consumption
per minute when the machine is idle, m implies the number of machines.

Therefore, the second optimization objective TEC can be formulated as follows:

f2 = min(TEC)

= min(TPEC + TTEC + TSEC + TUEC + TIEC)

= min(
n

∑
i=1

Ki

∑
j=1

TijWiP +
n

∑
i=1

Ki

∑
j=1

m

∑
k=1

SijkRijkWi +
n

∑
i=1

Ki

∑
j=1

m

∑
k=1

EijkRijk +
n

∑
i=1

Ki

∑
j=1

m

∑
k=1

UijkRijkWi +
m

∑
i=1

NiCi)

(18)

Figure 1 shows the main structure of our FJSP model. Each job needs to go through
I–IV statuses from raw material to finished product, namely, origin, set up, processing,
and unload. Each machine has A–D functions, namely, set up, processing, unload, and
idle. Automatic guided vehicle (AGV) has only one E function, which is to transport jobs.
Status I to status II of the jobs need to be driven by AGV, and the energy consumed by
this part will also be recorded in the total energy consumption, which is the transportation
consumption. Status II–IV of one job needs to be implemented by one machine’s A–C
functions. Notably, the weight attribute of jobs is considered in the transport, set up,
and unload stages. The heavier the bars, the more energy is consumed in these three stages.
The processing stage of the job does not consider the weight attribute because in our model,
we assume that the job is placed on the processing table at this stage, and there is no need
to overcome gravity to do work. The machine is idle when it is not processing any jobs.
Therefore, the total energy consumption of the workshop can be attributed to the sum of
the energy consumption of the AGV transporting the job and the energy consumption of
the four functions of the machine.

Origin

I II III IV

Set up Processing Unload Idle

A B C D

Jobs

Machines

Set up Processing Unload

Transport

AGV

E

Drive

+ + +

Weight Weight

Figure 1. Main structure of our FJSP model.

To more vividly illustrate the details of energy consumption information mentioned
before, we place the Gantt chart of the 3× 3 scale FJSP into Figure 2. At the beginning of
the task, the time for the job to reach the machine through transport will also be recorded in
the scheduling. The job must go through the set up stage before being processed. After the
operation of the job is processed, it must go through the unload stage. A machine can



Machines 2021, 9, 344 7 of 24

only perform one of the set up, process, and unload stages on operations simultaneously.
The transporting has nothing to do with any operation of the machine and it is related
to AGV that is robot dedicated to transporting workpieces. As long as the job is finished
performing the unload operation, it will be boxed and transported off the production line.
Moreover, the job can be queued to be processed, as long as the unloading of the previous
job on the machine is completed, and the setup stage can be carried out immediately.

O1,1M1

M2 O3,1

M3 O1,2

O2,1

O3,2 O2,2

O1,3

O3,3

O2,3

Set up

Unload

Idle

Processing

Transport

Makespan

Time

Figure 2. The Gantt chart of the instance mentioned before.

We can find that the idle time of the machine occupies a large proportion of the schedul-
ing. It once again highlights the importance of investigating the energy consumption of the
machine without a load.

An instance of the FJSP is given in Table 1. As it can be observed, there are three jobs to
be processed on three machines. Job J1, J2, J3, all have three operations. The information of
(set up time/ set up energy consumption), (processing time/process energy consumption),
(unload time/unload energy consumption) are shown in Table 1. For instance, the available
machines of the O11 are machine M2 and machine M3. The processing time of O11 on
machine M2 and machine M3 is 40 min and 46 min, respectively, while the set up energy
consumption of O11 on machine M2 and machine M3 is 46 kWh and 65 kWh, respectively.
The set up time of O11 on machine M2 and machine M3 is 9 min and 7 min, respectively,
while the set up energy consumption of O11 on machine M2 and machine M3 both are
21 kWh. The unload time of O11 on machine M2 and machine M3 is 2 min and 8 min,
respectively, while the set up energy consumption of O11 on machine M2 and machine M3
is 11 kWh and 16 kWh, respectively. After completing the preceding operation of a job on a
machine tool, the AGV will convey the job from the current machine to another machine.
The transportation time between different machines is shown in Table 2.



Machines 2021, 9, 344 8 of 24

Table 1. The processing information of the instance mentioned before (unit: min/kWh).

Job Operation Machine (Processing Time/Energy, Set Up Time/Energy, Unload
Time/Energy)

O11 M2, M3 (40/46,9/21,2/11) (46/65,7/21,8/16)
J1 O12 M3, M1 (53/46,7/9,7/6)(55/55,13/14,5/7)

O13 M2, M1 (55/64,8/18,6/4)(55/59,9/10,2/11)

O21 M1, M2 (56/79,7/11,2/11) (53/77,10/48,8/7)
J2 O22 M2, M3 (62/76,4/17,5/7)(54/77,4/26,5/16)

O23 M2, M3 (62/59,6/21,8/2)(52/59,12/17,7/10)

O31 M3, M2 (50/50,10/21,5/4) (32/52,7/21,7/4)
J3 O32 M3, M1 (35/71,7/20,6/13)(41/83,8/23,9/15)

O33 M3, M1 (49/89,5/18,6/16)(63/76,12/16,9/14)

Table 2. The transportation times of AGV between machines (unit: s).

Machine Number Machine 1 (M1) Machine 2 (M2) Machine 3 (M3)

Machine 1 (M1) 0 15 18
Machine 2 (M2) 15 0 12
Machine 3 (M3) 18 12 0

3. Improved NSGA-III

NSGA-III is the extension of the NSGA-II. NSGA-III and NSGA-II have a similar
framework. The difference between the two is mainly the change in the selection mecha-
nism. NSGA-II primarily relies on the crowding degree for sorting, and its role in high-
dimensional target space is not prominent, while NSGA-III has drastically adapted the
crowding degree sorting. Maintain the diversity of the population by introducing widely
distributed reference points. The individual selection mechanism of NSGA-III is shown
as follows.

3.1. Non-Dominated Sorting

Suppose the individual number of the current population Pt is N, that is |Pt| = N.
Generate Qt through genetic operator, that is |Qt| = N. The parent and child populations
are combined as Rt = Pt ∪ Qt. Sort Rt non-dominated and divide it into multiple non-
dominated levels (F1, F2, . . .). Put the population members of the non-dominated level 1
to l into |St| in turn. If |St| = N, Pt+1 = St. If |St| > N, then part of the next generation
is Pt+1 = ∪l−1

i=1 Fi, the remaining individuals are selected in Fl . The detailed selection
procedure will be expanded in the following subsection.

3.2. Determination of Reference Points on a Hyperplane

The reference points of NSGA-III can be generated by a structured manner or supplied
preferentially by the user. There are a variety of popular reference point preset methods;
we introduce two popular methods.

Das and Dennis’s systematic approach: The reference point is on a (M− 1)-dimensional
hyperplane, and M is the dimension of the target space. If we divide each target into H
parts, then the number of reference points is:

P =

(
m + H − 1

H

)
(19)

For a three-objective problem with H = 4, the reference points form a triangle and 15
reference points are generated according to formula (20).

The coordinates of each reference point are generated by the following rules:
(1): Let X be all the (M-1) combinations of

{ 0
H , 0

H , . . . , H+M−2
H

}
;

(2): For each xij ∈ X, xij = xij −
j−1
H ;
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(3): Let S be the reference point set, for each sij ∈ S and xij ∈ X,
sij = xij − 0, j = 1

sij = xij − xi(j−1), 1 < j < M
sij = 1− xi(j−1) j = M

(20)

Deb and Jain’s method: It is suggested to use two layers of reference points, which are
generated as follows [48]:

(1): Generate S1 by Das and Dennis’s method as the point set on the boundary layer;
(2): Let S2 be the point set on the inside layer, for each S′ii ∈ S2 and sij ∈ S1,

S′ii =
1
2

sij +
1

2M
; (21)

(3): The reference point set S = S1 ∪ S2.

3.3. Adaptive Normalization of Population Individuals

First, the ideal point of the population St is determined by identifying the minimum
value zmin

i for each objective function i = 1, 2, . . . , M by constructing the ideal point z̄ =
(zmin

1 , zmin
2 , . . . , zmin

M ). Compute each dimension of the ideal point by zmin
j = mins∈St f j(s),

and translate the objective by f ′j (s) = f j(s)− zmin
j . Then, find the extra points correspond-

ing to each coordinate axis using (22) and (23).

ASF = (x, w) = maxM
i=1 f ′i (x)/wi, x ∈ St (22)

zi,max = s : argmins∈St ASF(s, wi), wi = (τ, . . . . , τ), τ = 10−6, wi
j = 1 (23)

For the ith translate objective f ′i , generate an additional objective vector zi,max. M
additional objective vectors will form an M-dimensional linear hyperplane. Find the
intercept ai, i = 1, 2, . . . , M. Then, the objective function can be normalized to:

f n
i (x) = f ′i (x)/(ai − zmin

i ) = ( f ′i (x)− zmin
i )/(ai − zmin

i ), i = 1, 2, . . . , M (24)

where the function value of the intersection of the normalized plane and the coordinate
axis f ′i = 1, the points on this normalized hyperplane satisfy ∑M

i=1 f n
i = 1.

3.4. Link the Individuals to the Reference Points

After normalizing each objective adaptively based on the extent of members of St
in the objective space, it needs to associate each population member with a reference
point. For this purpose, NSGA-III defines a reference line corresponding to each reference
point on the hyperplane by joining the reference point with the origin. Then, calculate
the perpendicular distance of each population member of St from each of the reference
lines. The reference point whose reference line is closest to a population member in the
normalized objective space is considered to be associated with the population member.

3.5. Select Individuals

It is worth noting that a reference point may have one or more population members
associated with it or need not have any population member associated with it. NSGA-III
counts the number of population members from Pt+1 = St/Fl that are associated with
each reference point. Denote this niche count as ρj for the jth reference point. NSGA-III
devises a new niche-preserving operation as follows. First, identify the reference point set
Jmin = {j : argminjρj} having minimum ρj. In the case of multiple such reference points,
one ( j̄ ∈ Jmin) is chosen at random.

If ρ j̄ = 0 (meaning that there is no associated Pt+1 member to the reference point
j̄), there can be two scenarios with j̄ in set Fl . First, there exists one or more members
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in front Fl that are associated with the reference point j̄. In this case, the one having the
shortest perpendicular distance from the reference line is added to Pt+1. The count ρ j̄
for reference point j̄ is then incremented by one. Second, the front Fl does not have any
member associated with the reference point j̄. In this case, the reference point is excluded
from further consideration for the current generation.

In the event of ρ j̄ ≥ 0 (meaning that one member associated with the reference point
already exists in St/Fl), a randomly2 chosen member, if it exists, from front Fl that is
associated with the reference point j̄ is added to Pt+1. The count ρ j̄ is then incremented by
one. After niche counts are updated, the procedure is repeated for a total of K times to fill
all of the vacant population slots of Pt+1.

3.6. The Framework of APNSGA-III

In the selection operator of ordinary GA, solutions with lower fitness will always be
eliminated. Sometimes inferior individuals also have a probability of becoming a superior
solution. Frequent elimination of them will not only waste resources but also reduce
randomness and reduce global search capabilities. To this end, this paper designs a DCS
for multi-objective optimization to enhance the performance of the NSGA-III.

The details of the APNSGA-III are shown in Algorithm 1 and Figure 3. First, pop that
represents the entire population, best that is the best solution found so far, Best_notEnhance
that records how many iterations best has not enhanced, and NotEnhancei that records
how many iterations the solution xi has not enhanced are initialized in lines 1 to 5. In every
iteration, N needs to be saved in Ntmp before the main for loop because the N will change
in the loop (pop_inc in line 16). The new solution mi is generated and evaluated after the
genetic operator, including the mutation operator and crossover operator (in line 9). If mi is
better than its predecessor vector xi, mi will replace the old xi, and NotEnhancei will be reset
to zero in line 12; otherwise, NotEnhancei will increase by one because no better solution is
found, and we still give a chance for the mi entering the population. Therefore, if the best
solution during the iteration has not been updated for a long time (Best_notEnhance ≥ T),
and the current population size N is smaller than Nmax, then the pop_inc strategy will
be used. After this, the best solution xbest in the current generation (in line 17), the worst
solution in the current generation xworst (in line 18), the best solution found so far best,
and Best_notEnhance (in lines 19 to 23) are updated, respectively. After the generation of
the whole population, the pop_dec strategy is used to delete some pessimistic individuals
in line 24. Then, the iteration until the terminal condition is satisfied. The pop_inc and
pop_dec strategies are introduced in the following sections.

3.6.1. The pop_inc Strategy

The population size of most meta-heuristic algorithms is fixed, but this will limit the
diversity of the population to a certain extent and lead to a local optimum. When the
algorithm has not improved the optimal solution for many consecutive generations or
has little improvement, it is important to increase the population size and introduce new
individuals to enhance diversity and escape from the optimal. Vectors mi, generated by
the genetic operation, will be helpful to increase the population diversity and may become
promising solutions in the later evolution. Therefore, the pop_inc strategy is designed
to give these worse vectors mi the opportunity to be added into the population, shown
as Algorithm 2. The pop_inc strategy will be triggered if the solution best has been not
changed for T iterations and N is smaller than Nmax in line 15 of Algorithm 1.
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Figure 3. The flowchart of APNSGA-III.

If the best is not improved for a long time, the algorithm may stagnate and fall into a
local optimum. Then, adding some worse vectors may help perturb the population and
jump out of the local optimum, increasing the population’s diversity.
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Algorithm 1: APNSGA-III

1 Initialize pop and set other parameters;
2 Select the best individual as best;
3 Best_notEnhance← 0;
4 for i=1,i++,i<=N do
5 NotEnhancei ← 0;

6 while Iter<Max_iteration do
7 Ntmp ← N;
8 for i = 1, i ++, i <= Ntmp do
9 Generate mi by the genetic operator;

10 if f (mi) < f (xi) then
11 xi ← mi;
12 NotEnhancei ← 0;
13 else
14 NotEnhancei := NotEnhancei + 1;
15 if Best_notEnhance ≥ T and N < Nmax then
16 Implement the pop_inc(mi,pop);

17 Update xbest in the current iteration;
18 Update xworst in the current iteration;
19 if f (xi) < f (xbest) then
20 best← xi, f (best)← f (xi);
21 Best_notEnhance← 0;
22 else
23 Best_notEnhance := Best_notEnhance + 1;

24 pop_dec(pop);
25 Iter = Iter + 1;

Algorithm 2: pop_inc(mi,pop)

1 Add mi into pop popNP+1 ← mi;
2 N := N + 1;
3 NotEnhanceN ← 0;

3.6.2. The pop_dec Strategy

Although the pop_inc strategy will increase the diversity of the population to help the
algorithm escape from the local optimum, if there is no population size, only increasing
it will waste computer memory and delay the algorithm convergence speed. To this end,
the pop_dec strategy is proposed to delete some inefficient individuals from the current
population and ensure that N is smaller than Nmax. As shown in line 24 of Algorithm 1,
the pop_dec strategy procedure is executed after an iteration of the evolution. To decide
which individuals are to be deleted, a factor named “exacerbation value” (the ex value) of
solutions is designed as:

ex(xi) =
∑n

i=1( f (xi)− f (best)) + 1.0
∑n

i=1( f (xworst)− f (best)) + 1.0
(25)

where n denotes the number of optimization objectives. The addition of the constant “1.0”
is to avoid the divisor of zero. If ex(xi) is large, it represents that f (xi) is worse and close
to f (xworst), or the solution xi has not changed for a long time. Then, this solution xi may
be hopeless and will be deleted from the population.

The details of the pop_dec strategy are shown in Algorithm 3. If N is bigger than
Nmin, some inefficient solutions should be deleted from the population. For each solution
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xi, the exacerbation value ex(xi) is calculated as (25). If ex(xi) is bigger than exmax , and xi
ranks after 30% in population, this solution will be deleted in line 6 of Algorithm 3, and N
will reduce by one. After deletion, if N reduces to Nmin, the loop among lines 3 to 9 will
end. Therefore, the population size N can be clamped in a certain range between Nmin
and Nmax.

Algorithm 3: pop_dec(pop)

1 if N > Nmin then
2 Ntmp ← N;
3 for i = 1, i ++, i <= Ntmp do
4 Calculate ex(xi);
5 if ex(xi) > exmax and xi ranked after 30% then
6 Delete xi from pop;
7 N := N − 1;
8 if N < Nmin then
9 break;

The pop_dec strategy simultaneously considers fitness values and the update fre-
quency of solutions, which greatly increases the fault tolerance rate that only considers
fitness. Besides, there is no need to sort solutions by the fitness values in the pop_dec
strategy, which helps save time.

Gao et al. designed an efficient chromosome representation to reduce decoding
costs [49]. Due to its structure and coding rules, it does not require a repair mechanism
and is very suitable for the integer optimization characteristics of NSGA-III. Therefore,
this paper introduces this method to encode and decode our FJSP model, which helps the
algorithm to solve the problem we put forward.

4. Experiment and Analysis

Since most of the previous studies take completion time as their main research goal,
finding a benchmark containing time and energy consumption information is not easy.
This paper learns from the Brandimarte rule and devises FJSP instances generation rules
considering energy consumption and time, which can be described in Table 3.

Table 3. The FJSP instances generation rules.

Objective Stage aproc mot

Time Process 40–60 [− 10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Set up 5–10 [− 2,−1, 0, 1, 2, 3]

Unload 3–6 [− 3,−2,−1, 0, 1, 2, 3]
Energy Process 50-80 [− 10,−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Set up 10–20 [− 6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6]
Unload 5–10 [− 4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6]

aproc: time or energy consumption per operation; mot: offset time or energy consumption boundaries on per machine.

Without loss of generality, this paper randomly designs four FJSP instances according
to the above rules to verify the effectiveness of the APNSGA-III. The general information of
these four instances is shown in Table 4. The weight information of each job in each instance
is placed in Table 5. The transport time between machines that are generated by arbitrary
rules is placed in Table 6. In addition, the detailed information of above four instances is
displayed in Tables 7–10. According to the suggestion of literature [50], the parameters CR
(crossover rate) and MR (mutation rate) in APNSGA-III is set as 0.8 and 0.1, respectively.
Referring to the recommendation of literature [51], T and exmax in DCS is set as 15 and 50,
respectively. As p in TTEC is just a positive proportionality coefficient and will not have



Machines 2021, 9, 344 14 of 24

any effect on our experiments and models, we set it as 1. NSGA-II [52], NSGA-III [48],
MOEA/D [53], MOWAS [54], and DEMO [55] are regarded as the comparison algorithm of
APNSGA-III. The parameter settings of this algorithm refer to the suggested values of the
original paper. The N (population size) and Max_iteration (maximum iteration) of all of
the algorithms are set to 100 and 100. The Nmax, Nmin of APNSGA-III is set as 150 and 100,
respectively. The algorithm automatically stops when iterated 100 times. Each algorithm is
executed 10 counts independently on each instance.

Table 4. The general information of four instances.

Instance njob nmac nop meq

Instance 1 6 10 [1,2,3,4,5] [1,2,3,4,5]
Instance 2 10 10 [2,3,4,5,6] [1,2,3,4,5]
Instance 3 12 10 [2,3,4,5] [1,2,3,4,5]
Instance 4 15 10 [2,3,4,5,6] [1,2,3,4,5]

njob: number of jobs; nmac: number of machines; nop: minimum and maximum number of operation per job;
meq: maximum number of available machine per operation.

Table 5. The weight information of the job in each instance (unit: kg).

Instance Name
Jobs

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15

Instance 1 8 5 9 6 2 10 3 - - - - - - - -
Instance 2 1 10 4 2 7 7 2 3 9 3 - - - - -
Instance 3 5 3 1 3 2 1 1 7 3 9 8 8 - - -
Instance 4 10 7 3 6 7 10 3 8 7 8 8 4 6 3 9

Table 6. The transport time between machines (unit: s).

Machine Origin M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Origing 0 144 134 185 165 194 172 116 146 149 150
M1 144 0 152 170 193 100 112 173 165 142 133
M2 134 152 0 131 138 152 169 120 170 162 143
M3 185 170 131 0 160 151 140 132 171 122 140
M4 165 193 138 160 0 140 140 165 170 140 198
M5 194 100 152 151 140 0 103 102 170 180 192
M6 172 112 169 140 140 103 0 142 140 148 150
M7 116 173 120 132 165 102 142 0 150 162 160
M8 146 165 170 171 170 170 140 150 0 141 120
M9 149 142 162 122 140 180 148 162 141 0 153
M10 150 133 143 140 198 192 150 160 120 153 0
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Table 7. The job shop information of Instance 1.

Job Operation Machine Set Up Time
(min)

Set Up Energy
Consumption (kWh)

Processing Time
(min)

Processing Energy
Consumption (kWh)

Unload Time
(min)

Unlaod Energy
Consumption (kWh)

O11 [6,1,7,8,4] [10,4,4,5,10] [8,13,15,5,6] [43,48,47,36,53] [62,70,71,58,71] [5,3,7,7,3] [14,11,13,7,5]
O12 [4,7,9,1] [11,8,8,11] [19,10,18,17] [69,55,58,51] [64,58,54,64] [7,3,5,4] [5,9,5,12]
O13 [6,8,1] [6,9,9] [12,19,21] [43,52,46] [48,60,58] [8,3,8] [8,16,16]
O14 [3] [7] [12] [54] [74] [6] [9]

J1

O15 [6,2,1,7] [4,6,3,5] [11,19,23,21] [55,37,49,48] [66,55,64,67] [6,8,3,5] [8,8,4,9]
O21 [4] [11] [10] [45] [54] [9] [6]
O22 [4,1,3] [7,12,12] [23,15,24] [56,44,56] []80,89,71] [6,6,8] [11,7,4]J2
O23 [9,7,3] [7,9,5] [13,18,16] [52,57,55] [52,52,59] [4,4,4] [11,13,6]

J3 O31 [7,4,10] [17,15,17] [15,18,17,12,16] [42,55,40] [77,79,70] [2,2,5] [9,12,10]
O41 [6,4] [8,7] [16,24] [44,58] [70,82] [4,5] [2,12]J4 O42 [5,6,4,9,1] [8,9,4,5,9] [10,6,13,7,18] [52,66,63,56,51] [54,64,51,63,49] [5,4,8,2,6] [7,11,13,13,11]

J5 O51 [4,6,3,8] [5,3,9,3] [18,22,19,22] [59,61,63,55] [64,48,53,62] [5,2,2,7] [7,10,4,6]
O61 [5] [9] [15] [48] [65] [3] [14]
O62 [3,6] [8,10] [10,19] [40,42] [65,56] [7,7] [14,10]J6
O63 [1,10,7,3,8] [5,10,11,8,6] [17,16,7,10,7] [43,45,52,42,46] [72,70,80,77,71] [8,7,8,4,5] [14,9,12,10,13]
O71 [9,5] [8,10] [17,15] [34,33] [53,49] [5,5] [12,11]
O72 [1,5] [12,6] [11,18] [44,33] [62,66] [5,3] [13,12]J7
O73 [9,1] [10,9] [21,17] [54,41] [74,63] [7,4] [9,10]

Table 8. The job shop information of Instance 2.

Job Operation Machine Set Up Time
(min)

Set Up Energy
Consumption (kWh)

Processing Time
(min)

Processing Energy
Consumption (kWh)

Unload Time
(min)

Unlaod Energy
Consumption (kWh)

O11 [7,2,6] [7,6,11] [15,11,21] [45,54,55] [59,76,58] [2,8,7] [10,6,12]
O12 [7,5] [6,7] [12,11] [61,49] [67,59] [7,8] [11,5]
O13 [1] [7] [8] [44] [51] [5] [12]
O14 [5,1,3,10] [5,9,7,8] [9,18,8,10] [53,52,63,56] [79,69,83,87] [4,4,4,3] [2,11,12,9]
O15 [3,2,6] [10,13,7] [19,22,21] [43,42,44] [54,49,49] [1,7,3] [3,9,8]

J1

O16 [1,7] [9,11] [15,11] [40,48] [47,48] [6,9] [5,2]
O21 [2,3,9,10,7] [8,11,7,10,8] [19,21,22,23,17] [53,43,43,54,47] [59,52,62,68,63] [2,1,4,2,1] [4,10,2,3,11]J1 O22 [8,4] [13,8] [14,22] [56,47] [74,59] [6,4] [5,9]
O31 [10,8] [6,3] [14,18] [37,46] [64,50] [3,7] [9,7]
O32 [9,6,8,10,2] [7,9,9,9,12] [12,14,10,22,13] [52,45,56,48,51] [68,63,52,51,56] [8,8,8,6,6] [14,2,14,13,7]
O33 [2] [7] [14] [57] [50] [6] [3]J3

O34 [6] [8] [18] [54] [76] [9] [7]
O41 [2] [6] [14] [45] [88] [14] [11]J4 O42 [1,10,5,8,4] [10,6,7,8,8] [12,10,19,20,21] [59,57,53,44,40] [51,70,69,50,54] [12,10,19,20,21] [14,10,4,3,11]
O51 [5,9,1,8] [9,7,6,10] [15,9,10,6] [47,49,49,52] [84,84,70,77] [3,2,3,3] [16,9,7,14]
O52 [7,3,4,9,5] [6,8,3,9,4] [24,24,22,13,13] [31,45,37,40,35] [73,65,80,79,80] [8,4,4,7,3] [5,11,2,5,9]
O53 [3,8] [11,6] [18,13] [49,52] [71,62] [5,9] [8,13]
O54 [10,1] [8,9] [9,15] [44,32] [83,69] [1,5] [6,12]

J5

O55 [9,2] [11,8] [14,25] [48,48] [62,52] [2,7] [8,3]
O61 [2,9,8,3,7] [6,6,11,6,9] [12,18,11,18,7] [52,39,45,49,34] [75,65,68,75,66] [5,8,3,4,5] [7,10,8,8,10]
O62 [2,1,7,3,10] [11,13,11,7,10] [19,16,16,12,18] [50,53,53,54,59] [75,77,75,64,70] [9,7,3,7,7] [14,9,4,14,4]
O63 [1,7] [7,7] [14,16] [46,59] [57,56] [1,2] [5,10]J6

O64 [10,7,4] [6,10,9] [23,24,25] [55,47,51] [48,46,45] [6,9,6] [7,9,5]
O71 [7,10,5,6,4] [12,8,7,10,11] [5,7,15,13,6] [45,33,52,38,47] [80,82,63,72,80] [9,8,5,6,8] [4,4,7,1,9]
O72 [2,4,8,3,6] [4,9,5,9,6] [11,11,11,12,11] [38,45,45,51,53] [61,64,52,59,56] [1,4,4,5,5] [10,15,15,10,12]
O73 [6,10,8,2,4] [10,11,7,9,10] [13,11,15,13,18] [41,37,39,39,44] [52,63,63,59,46] [3,2,2,2,5] [8,2,9,5,5]
O74 [8,4,6] [5,9,8] [12,6,12] [52,38,35] [57,64,59] [3,3,5] [13,11,6]

J7

O75 [7,5] [4,3] [7,7] [40,48] [60,43] [4,6] [7,15]
O81 [9,10] [9,10] [23,21] [53,63] [79,89] [5,3] [4,7]
O82 [1,4,5,7,8] [4,4,6,9,7] [17,16,9,7,14] [54,70,62,52,52] [53,54,57,56,49] [4,3,5,4,4] [14,6,9,9,15]
O83 [6,4,8,1,7] [12,12,8,7,8] [15,8,14,17,12] [59,65,50,60,50] [56,57,61,64,45] [2,6,1,3,1] [12,10,8,14,13]
O84 [4,5,7,2,3] [3,6,5,5,3] [11,17,22,13,17] [59,50,43,47,45] [66,55,62,55,57] [4,5,5,4,4] [9,7,7,4,10]

J8

O85 [6] [6] [18] [31] [74] [7] [9]
O91 [6] [6] [13] [49] [77] [4] [12]
O92 [1,8,3] [6,8,10] [13,21,15] [53,54,51] [61,64,51] [7,7,4] [13,2,7]
O93 [6] [6] [16] [60] [63] [6] [4]
O94 [1,4,9,7] [8,6,8,7] [8,14,12,9] [46,48,61,49] [68,69,58,71] [8,3,6,2] [15,6,5,14]

J9

O95 [7,8,1,10] [9,7,9,10] [7,17,16,11] [66,53,58,64] [65,73,72,61] [6,4,6,3] [5,10,12,10]
O101 [9,10] [12,8] [9,16] [48,41] [67,62] [6,4] [14,8]
O102 [7,1] [6,11] [26,20] [34,52] [55,61] [3,7] [9,2]
O103 [2,5,7,10,6] [7,7,10,9,6] [21,18,17,16,16] [40,50,38,42,53] [65,78,64,70,76] [6,4,5,4,1] [7,5,12,13,4]
O104 [9,6,8] [5,9,6] [13,9,9] [55,45,56] [65,73,70] [8,5,6] [10,4,12]
O105 [3,5] [7,10] [19,20] [37,50] [63,68] [4,6] [7,4]

J10

O106 [2,8,9,1,4] [11,10,8,11,10] [16,16,17,17,10] [66,59,53,51,53] [72,77,69,79,75] [8,4,6,6,5] [4,3,1,3,11]
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Table 9. The job shop information of Instance 3.

Job Operation Machine Set Up Time
(min)

Set Up Energy
Consumption (kWh)

Processing Time
(min)

Processing Energy
Consumption (kWh)

Unload Time
(min)

Unlaod Energy
Consumption (kWh)

J1

O11 [10] [9] [9] [52] [69] [7] [15]
O12 [8,3,4,9] [9,6,4,8] [12,15,13,13] [46,48,46,44] [71,68,78,69] [3,6,3,4] [4,9,12,9]
O13 [6,1,5] [10,12,12] [17,11,8] [42,56,38] [58,52,57] [3,6,7] [11,11,11]
O14 [6] [6] [8] [53] [64] [7] [13]

J2

O21 [6,5] [6,6] [15,9] [45,41] [78,68] [8,3] [4,3]
O22 [1] [4] [18] [46] [50] [9] [10]
O23 [8,4,9,6] [7,8,8,9] [15,16,19,18] [56,42,51,52] [52,68,59,56] [3,5,7,8] [10,7,6,10]
O24 [3] [9] [12] [46] [71] [7] [3]

J3

O31 [7,10,8,9] [10,9,8,10] [15,12,20,21] [51,56,58,44] [68,56,50,61] [4,7,3,6] [8,13,3,13]
O32 [2,1,7,9] [6,8,5,9] [11,11,21,16] [60,68,49,58] [68,79,75,85] [8,5,7,7] [9,11,12,8]
O33 [4] [7] [12] [50] [68] [7] [3]
O34 [7] [7] [16] [69] [59] [7] [11]
O35 [5,3,6,1,7] [9,6,10,11,6] [8,13,15,9,11] [43,42,52,42,48] [87,82,75,89,76] [5,5,9,8,4] [6,4,5,8,2]

J4
O41 [10,7,8,5,1] [6,4,4,7,8] [20,12,19,20,19] [41,49,37,50,44] [54,65,50,45,54] [5,6,6,4,4] [6,8,4,0,6]
O42 [5,8,4,6] [6,10,10,11] [15,19,12,10] [39,49,40,49] [69,76,65,71] [5,5,4,6] [11,6,12,11]

J5

O51 [10,9,2,7] [10,9,9,5] [16,12,12,9] [41,36,42,44] [60,55,61,58] [7,3,8,8] [12,6,4,5]
O52 [8] [7] [14] [43] [83] [6] [11]
O53 [8,2] [10,8] [14,13] [58,65] [88,86] [3,5] [5,1]

J6

O61 [8,9,2] [10,11,11] [18,19,18] [57,53,61] [59,60,71] [7,1,7] [14,12,4]
O62 [3,5,10,1] [7,9,7,6] [8,13,15,16] [42,51,57,41] [50,60,64,48] [2,4,2,2] [8,1,8,7]
O63 [5,1,6,9] [13,12,9,9] [15,23,13,18] [36,47,37,48] [52,52,65,72] [5,6,9,5] [6,6,14,11]
O64 [3,5,2,6] [9,10,5,6] [16,17,17,17] [42,42,40,60] [83,72,86,74] [4,1,1,1] [10,3,8,3]

J7
O71 [4,9,10,7,1] [6,3,3,8,8] [10,17,11,11,19] [51,57,61,59,60] [78,79,79,66,76] [5,3,3,3,4] [13,9,13,11,15]
O72 [3] [7] [22] [42] [70] [2] [2]

J8

O81 [5,2,6] [7,5,5] [14,24,22] [46,45,38] [80,76,65] [3,4,4] [8,9,9]
O82 [10,2,5,4,3] [6,5,3,5,6] [10,16,13,17,15] [53,49,40,48,49] [62,59,56,51,54] [2,2,5,2,6] [2,13,13,12,5]
O83 [8,9,2] [8,9,9] [14,7,11] [57,52,40] [79,62,63] [3,5,8] [10,2,10]

J9
O91 [1,9,10,3,2] [7,9,9,10,6] [20,16,17,15,11] [50,50,40,43,47] [80,82,85,69,80] [2,5,6,5,1] [6,9,12,16,9]
O92 [4,7] [3,9] [18,23] [51,51] [46,43] [8,8] [9,11]

J10

O101 [2] [3] [13] [59] [80] [4] [3]
O102 [6,4,2] [10,10,13] [19,21,17] [50,55,64] [62,60,55] [5,3,6] [10,13,3]
O103 [2,5,4,1,10] [11,13,7,8,13] [13,7,12,16,11] [49,62,49,48,55] [67,78,80,69,71] [6,3,3,6,8] [4,2,11,9,12]
O104 [4,9,3,5] [9,6,3,7] [17,25,21,13] [51,60,60,59] [77,74,86,79] [6,7,5,7] [9,5,4,5]

J11

O111 [1,3] [11,11] [22,19] [64,51] [58,66] [4,3] [10,1]
O112 [1,10,5,4,2] [11,12,10,8,9] [8,15,17,14,18] [53,41,53,46,39] [74,78,69,74,72] [7,7,7,6,6] [3,2,10,8,8]
O113 [4] [4] [18] [64] [69] [6] [10]
O114 [10,9,3,2] [12,9,11,13] [16,10,18,15] [46,52,51,50] [72,71,64,69] [6,6,4,4] [8,13,8,11]

J12
O121 [4,10,2,7,5] [10,7,10,5,8] [15,18,12,13,19] [53,55,59,50,62] [56,65,62,60,74] [5,5,3,6,9] [4,8,1,1,6]
O122 [6,8,5,7] [11,9,10,9] [20,21,20,18] [54,53,56,66] [64,55,56,61] [5,8,3,5] [14,13,13,14]

Table 10. The job shop information of Instance 4.

Job Operation Machine Set Up Time
(min)

Set Up Energy
Consumption (kWh)

Processing Time
(min)

Processing Energy
Consumption (kWh)

Unload Time
(min)

Unlaod Energy
Consumption (kWh)

J1

O11 [6] [11] [12] [49] [69] [8] [14]
O12 [4,3] [7,8] [21,13] [55,65] [79,59] [2,5] [10,2]
O13 [3,8,1] [13,11,8] [22,22,25] [46,37,50] [63,61,59] [8,5,6] [10,11,8]
O14 [7,8,5,6] [9,5,8,5] [13,7,8,10] [45,46,56,45] [56,70,61,60] [5,9,3,8] [2,1,11,10]
O15 [2,5] [7,7] [12,18] [35,46] [66,79] [5,5] [1,9]

J2

O21 [8,5,3] [10,8,9] [23,21,17] [50,57,56] [65,60,58] [8,2,7] [7,10,9]
O22 [2,9,4] [7,10,9] [16,16,14] [49,59,53] [73,66,82] [3,6,1] [0,6,9]
O23 [1,3] [7,10] [23,12] [65,61] [81,67] [6,2] [9,13]
O24 [10,2,3] [12,9,13] [8,13,9] [38,44,38] [60,58,45] [8,2,7] [0,5,8]
O25 [7,6,8,5] [5,8,7,7] [21,18,22,22] [44,46,46,59] [65,53,51,56] [2,4,2,3] [4,13,5,11]
O26 [10] [9] [10] [49] [70] [3] [15]

J3
O31 [4] [6] [17] [59] [66] [8] [3]
O32 [8] [6] [5] [65] [65] [3] [10]

J4
O41 [5,9,8] [5,5,9] [22,22,17] [52,42,54] [52,63,45] [7,7,5] [10,9,8]
O42 [5,1,3] [7,12,6] [21,23,11] [63,49,62] [66,64,65] [2,3,6] [7,6,5]

J5

O51 [5,4,8,6] [9,7,6,5] [14,8,7,13] [58,54,51,42] [64,73,61,75] [5,7,2,5] [12,4,1,10]
O52 [2,4] [5,11] [22,17] [43,54] [63,71] [7,4] [6,6]
O53 [10,2] [8,13] [19,11] [41,58] [54,52] [1,6] [9,12]
O54 [2,9] [6,10] [23,15] [51,36] [62,64] [5,5] [15,5]

J6
O61 [10,3] [4,6] [12,18] [51,48] [59,54] [3,9] [14,15]
O62 [5] [5] [9] [42] [74] [2] [7]



Machines 2021, 9, 344 17 of 24

Table 10. Cont.

Job Operation Machine Set Up Time
(min)

Set Up Energy
Consumption (kWh)

Processing Time
(min)

Processing Energy
Consumption (kWh)

Unload Time
(min)

Unlaod Energy
Consumption (kWh)

J7

O71 [1] [12] [10] [40] [63] [6] [5]
O71 [1,8,10,4,7] [11,8,9,11,11] [14,19,22,12,19] [53,68,50,56,65] [70,71,64,61,71] [4,4,4,2,6] [5,14,10,14,3]
O73 [10,9,7,4] [5,6,11,6] [13,22,13,11] [39,35,32,48] [57,62,67,59] [3,9,5,3] [5,3,3,6]
O74 [9,1,10,8] [7,3,7,8] [11,12,9,9] [43,45,50,54] [72,61,63,58] [6,8,5,6] [2,12,4,6]
O75 [5,1,10,4,3] [10,6,8,6,12] [17,11,20,14,9] [56,48,51,59,60] [61,66,58,46,60] [8,4,7,9,6] [11,10,11,5,10]
O76 [3,5,1,8] [10,6,8,4] [10,15,8,16] [63,54,49,53] [72,79,79,65] [6,3,1,5] [9,6,6,7]

J8

O81 [9,4,10] [11,12,11] [18,18,7] [58,59,67] [62,77,76] [4,3,6] [10,9,13]
O82 [1,8,2,5] [8,4,8,9] [12,15,14,14] [36,37,53,53] [60,42,45,51] [6,2,5,3] [4,2,4,13]
O83 [4,9] [4,7] [9,11] [50,50] [62,69] [5,3] [11,15]

J9
O91 [9,2,1] [11,6,6] [19,19,21] [51,43,55] [65,59,57] [4,2,2] [7,15,10]
O92 [8,7,9,10] [5,8,9,4] [7,12,7,17] [63,49,55,61] [68,75,71,67] [6,8,5,3] [7,7,7,15]

J10

O101 [9,3,5,6] [10,5,10,5] [7,13,15,16] [41,46,47,45] [72,78,68,76] [3,4,3,7] [5,11,14,16]
O102 [1] [12] [16] [51] [76] [5] [9]
O103 [3,9] [6,7] [11,19] [45,44] [67,59] [4,4] [9,12]
O104 [5,1,7,6] [6,11,7,6] [18,15,16,23] [50,50,61,51] [63,49,51,48] [3,6,6,6] [10,3,2,9]

J11

O111 [7,2,1,6,5] [12,12,9,11,12] [22,14,15,22,10] [48,52,56,44,53] [64,54,55,67,47] [6,2,7,8,2] [13,5,8,10,3]
O112 [4] [8] [16] [51] [70] [3] [5]
O113 [1,6,5] [5,3,6] [17,23,15] [52,50,55] [73,76,86] [2,4,3] [13,13,11]
O114 [4,1,3,2,10] [8,4,4,7,8] [21,14,18,22,21] [47,62,53,54,54] [52,50,53,45,57] [9,8,7,3,8] [3,4,3,4,8]

J12

O121 [9,10,6] [7,6,9] [19,12,16] [48,59,53] [77,75,69] [4,2,2] [11,14,3]
O122 [4,9] [13,10] [24,14] [40,46] [70,64] [2,2] [3,9]
O123 [1,3,5] [8,8,13] [21,13,14] [57,54,64] [52,54,44] [4,7,5] [3,12,5]
O124 [6,8] [8,11] [13,16] [49,43] [65,57] [3,5] [12,10]
O125 [9,3,7,10,8] [12,6,6,12,11] [18,19,13,9,10] [38,55,48,54,39] [44,43,43,56,44] [6,7,8,8,3] [13,6,12,2,8]
O126 [5,8] [8,13] [16,18] [60,60] [72,67] [7,4] [10,3]

J13

O131 [10,1,4,2,7] [4,9,6,4,9] [5,11,5,8,8] [53,54,48,35,42] [60,58,56,65,65] [4,6,4,7,7] [12,3,11,4,6]
O132 [3,8,1,10,9] [8,9,9,6,5] [18,13,10,15,15] [51,55,54,60,59] [64,50,51,65,53] [4,5,5,7,7] [2,9,1,1,0]
O133 [10,5,9] [8,4,5] [22,16,23] [58,57,61] [67,79,78] [3,8,4] [5,6,7]
O134 [7,1,2] [8,10,10] [20,12,13] [38,47,39] [77,77,78] [7,5,6] [8,10,8]
O135 [9,6,3,2,10] [9,11,7,10,10] [13,18,12,11,10] [35,47,41,37,52] [64,45,58,63,60] [4,1,4,7,6] [3,13,12,12,10]
O136 [5,7,3] [6,7,11] [17,19,9] [46,42,52] [63,64,65] [8,2,6] [14,6,9]

J14

O141 [1] [9] [15] [34] [81] [3] [15]
O142 [10] [9] [13] [54] [65] [7] [6]
O143 [8,5,1,3,7] [4,5,4,5,8] [9,12,9,17,15] [51,59,53,61,50] [59,68,72,70,58] [7,3,5,8,5] [4,6,4,4,1]
O144 [1,3,10] [8,12,11] [14,23,23] [60,51,43] [76,65,80] [8,4,9] [3,0,10]
O145 [10,8,7] [5,6,9] [17,18,19] [50,50,41] [69,81,71] [9,7,3] [11,8,9]

J15

O151 [9,8,5,10,1] [10,7,10,11,11] [10,7,15,13,12] [38,37,38,42,54] [64,71,61,61,54] [2,5,3,2,2] [13,3,8,2,12]
O152 [5,1,3] [10,9,9] [23,25,17] [41,39,35] [55,60,69] [7,6,3] [11,6,2]
O153 [7,9,5,6] [9,9,5,7] [8,10,14,15] [62,56,55,48] [86,87,80,86] [5,3,9,8] [14,4,12,13]
O154 [1,5,8] [8,8,9] [18,13,21] [53,48,46] [75,56,59] [2,4,1] [13,4,6]
O155 [9,7,10,8,4] [8,8,9,8,9] [15,18,9,8,15] [47,42,41,48,48] [55,63,59,63,59] [8,4,4,6,7] [1,10,0,10,5]
O156 [4] [7] [9] [44] [69] [4] [11]

4.1. Result Show and Analysis

The final comparison results of Instance 1, 2 are placed in Table 11, while the final
comparison results of Instance 3, 4 are placed in Table 12. BT and BE denotes the minimum
completion time and minimum processing energy consumption, respectively. AT and AE
implies the average completion time and average processing energy consumption, respec-
tively. For Instance 1, APNSGA-III obtains the optima on BE and AE, while APNSGA-III
can get the optima on BT, BE, and AE for Instance 3. Better, APNSGA-III can obtain the op-
tima on BT, AT, BE, and AE for Instance 2 and Instance 4. The performance of APNSGA-III
far exceeds the other five comparison algorithms. In order to show the comparison of the
algorithms in each goal more clearly, we rank the data in Tables 11 and 12 on a level of 1–20
from big to small and visually show them in Figure 4. The area from 0− π/2, π/2− π,
π− 3π/2, 3π/2− 2π represents the ranking situation in BT, AT, BE, and AE, respectively.
The Arabic numerals 1–4 around the circle represent Instance 1–4. We can see that the area
enclosed by the thick red line representing APNSGA-III is the smallest. Comprehensively,
we can conclude that the DCS is valid and APNSGA-III is fit to solve the actual question
we designed.
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Figure 4. Ranking of six algorithm.

Table 11. The results of Instance 1 and Instance 2 (* represents the optimal result).

Algorithm
Instance 1 Instance 2

Best num
BT AT BE AE BT AT BE AE

APNSGA-III 323.8 323.3 9255.0 * 9271.8 * 423.6 * 424.4 * 12,663.0 * 12,701.9 * 6 *
NSGA-III 323.2 324.0 9297.7 9272.4 438.5 439.9 12,894.6 12,921.6 0
NSGA-II 323.4 323.3 9285.2 9296.4 441.2 446.4 13,109.6 13,223.1 0

MOEA/D 322.7 * 322.9 * 9305.6 9299.2 429.2 432.7 12,886.7 12,909.5 2
MOWAS 323.7 324.1 9326.7 9352.0 464.6 464.7 13,516.3 13,558.8 0
DEMO 322.9 323.2 9340.2 9312.2 441.2 448.0 13,022.4 13,167.0 0

Table 12. The results of Instance 3 and Instance 4 (* represents the optimal result).

Algorithm
Instance 3 Instance 4

Best num
BT AT BE AE BT AT BE AE

APNSGA-III 361.2 * 368.1 10,275.5 * 10,300.2 * 536.9 * 537.7 * 20,202.1 * 20,236.3 * 7 *
NSGA-III 368.1 361.2 * 10,552.3 10,552.3 552.9 573.4 20,717.6 21,080.8 1
NSGA-II 364.5 364.7 10,574.3 10,626.3 557.8 561.5 20,731.2 20,794.4 0

MOEA/D 361.9 363.1 10,536.1 10,520.3 550.7 559.6 20,624.7 20,772.8 0
MOWAS 379.4 381.4 11,038.8 11,084.0 582.9 583.2 21,534.8 21,584.9 0
DEMO 375.3 385.0 10,776.2 10,962.8 575.5 611.4 21,388.7 22,095.5 0

4.2. Two Independent Sample T-Tests

Due to the small sample size included in our experiment, we need to use two indepen-
dent sample t-tests to test whether there is an accidental similarity between APNSGA-III
and other comparison algorithms. We set 0.05 as the level of significance. The hypothesis
is accepted when p > 0.05, thus the test results indicate no significant difference between
the two compared algorithms. The hypothesis is rejected when p <= 0.05, thus the test
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results indicate significant differences between the APNSGA-III and contrasted algorithms.
We will use the results of ten rounds of experiments that have been used to generate
the average results in Tables 11 and 12 as the test sample. The test results are shown in
Tables 13 and 14. We denote the value of p more than 0.05 as “+” and denote the value of p
less than 0.05 as ‘‘−”. ‘Same’ denotes the total number of APNSGA-III has no significant
difference with other algorithms, while ’Better’ represents the total number of APNSGA-III
that has significant differences with other algorithms.

From Tables 13 and 14, we find that APNSGA-III and other algorithms are significantly
different in almost all instances. Among the compared algorithms, NSGA-III is the closest
to APNSGA-III, but there are still many differences between both. In general, we can
conclude that APNSGA-III is significantly more excellent than the other algorithms.

Table 13. The p values of APNSGA-III and other algorithms on Instance 1 and Instance 2.

Algorithm
Instance 1 Instance 2

Same Better
BT AT BE AE BT AT BE AE

NSGA-III + − − − − + − − 2 6
NSGA-II − − − − − − − − 0 8

MOEA/D + − − − − − − − 1 7
MOWAS − − − − − + − − 1 7
DEMO − − − + − − − − 1 7

Table 14. The p values of APNSGA-III and other algorithms on Instance 3 and Instance 4.

Algorithm
Instance 3 Instance 4

Same Better
BT AT BE AE BT AT BE AE

NSGA-III + − − − − + − − 2 6
NSGA-II − − − − − + − − 1 7

MOEA/D − + − − − − − − 1 7
MOWAS − − − − − − − − 0 8
DEMO − − − − − − − − 0 8

4.3. Convergence Analysis

This subsection shows the convergence of BT, ET for Instance 1–4 in Figures 5 and 6,
respectively, and discusses the algorithm’s performance in the generation. The red line
representing APNSGA-III always converges to the lowest position in the end except for
part (a) of Figure 5. Moreover, the red line is almost below the other color lines in parts
(b), (c), and (d) of Figures 5 and 6. It means the performance of each stage of the entire
optimization process of APNSGA-III is better than other comparison algorithms. It once
again confirms the improvement of DCS and the excellent applicability of APNSGA-III.

4.4. Gantt Chart Display and Analysis

The Gantt chart of Instance 1–4 with the smallest energy consumption is shown in
Figure 7. For Instance 1, the Makespan and TEC is 324.45 min and 9230.75 kWh, respec-
tively. For Instance 2, the Makespan and TEC is 423.75 min and 12,340.45 kWh, respectively.
For Instance 3, the Makespan and TEC is 358.05 min and 10,069.35 kWh, respectively.
For Instance 4, the Makespan and TEC is 504.85 min and 19,803.75 kWh, respectively.
There are few gaps for Instance 2–4. It means that our method is effective, and the final
scheduling plan has considerable advantages. In addition to the processing stage, the other
three stages, set up, unload, and idle, also occupy a large proportion in the Gantt chart,
especially in part (a); a large number of gaps means that the machine is at no load many
times. This is also a large part of the energy consumption. If this part of energy consump-
tion is not counted as the total energy consumption, it is impossible to make an accurate
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energy consumption analysis based on the existing scheduling situation, and thus it is
impossible to achieve effective energy conservation.
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Figure 5. The convergence curve of BT and BE for Instance 1 and Instance 2. (a) BT of Instance 1;
(b) BE of Instance 1; (c) BT of Instance 2; (d) BE of Instance 2.
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Figure 6. Cont.
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Figure 6. The convergence curve of BT and BE for Instance 3 and Instance 4. (a) BT of Instance 3;
(b) BE of Instance 3; (c) BT of Instance 4; (d) BE of Instance 4.
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Figure 7. The Gantt chart of Instance 1–4 with the smallest energy consumption. (a) The Gantt chart of Instance 1; (b) the
Gantt chart of Instance 2; (c) the Gantt chart of Instance 3; (d) the Gantt chart of Instance 4.
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5. Conclusions

Considering the previous research which mostly concentrates more on efficiency and
ignores energy consumption, this paper designs the FJSP model with consideration of
energy consumption. Meanwhile, the work includes non-negligible energy consump-
tion, including the transport, set up, unload, and idle stage. The weight property of the
job is also considered in our model. Besides, a dual control strategy for multi-objective
optimization is designed to enhance the performance of NSGA-III when faced with multi-
objective FJSP. Four FJSP instances are formulated to examine the metrics of our algorithm.
The results obtained by APNSGA-III are compared with another five classic multi-objective
optimization algorithms. All of the results reply that Diagonal Orthant Latent Dirichlet
Allocation (DOLDA) owns a competitive superiority in solving the global optimization of
these FJSP instances.

In conclusion, the proposed algorithm shows a performance improvement compared
with other multi-objective optimization algorithms, but further studies on the model
accuracy and computation time are required through investigating more energy-efficient
scheduling problem. On the other hand, unexpected events, such as machine failure,
rush orders, and job cancellation, which may occur in the practical applications of a
manufacturing system, should be considered in our FJSP. Reducing the energy consumption
in a dynamic scheduling problem should also be studied in the future.
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