
machines

Review

Traffic Scenarios for Automated Vehicle Testing: A Review of
Description Languages and Systems

Jing Ma 1,2 , Xiaobo Che 1 , Yanqiang Li 1,3,* and Edmund M-K Lai 2

����������
�������

Citation: Ma, J.; Che, X.; Li, Y.;

Lai, E.M.-K. Traffic Scenarios for

Automated Vehicle Testing: A Review

of Description Languages and

Systems. Machines 2021, 9, 342.

https://doi.org/10.3390/

machines9120342

Academic Editor: Domenico Mundo

Received: 14 November 2021

Accepted: 3 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Automation, Qilu University of Technology (Shandong Academy of Sciences),
Jinan 250014, China; jing.ma@aut.ac.nz (J.M.); chexb@sdas.org (X.C.)

2 School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology,
Auckland 1142, New Zealand; edmund.lai@aut.ac.nz

3 School of Control Science and Engineering (CSE) of Shandong University, Jinan 250014, China
* Correspondence: liyq@sdas.org

Abstract: Testing and validation of the functionalities and safety of automated vehicles shifted from
a distance-based to a scenario-based method in the past decade. A number of domain-specific
languages and systems were developed to support scenario-based testing. The aim of this paper is to
review and compare the features and characteristics of the major scenario description languages and
systems (SDLS). Each of them is designed for different purposes and with different goals; therefore,
they have their strengths and weaknesses. Their characteristics are highlighted with an example
nontrivial traffic scenario that we designed. We also discuss some directions for further development
and research of these SDLS.

Keywords: scenario description; SDL; domain specific language; DSL; automated vehicles;
scenario-based testing

1. Introduction

The development of automated vehicles (AV) progressed rapidly in the past few years.
Many companies were testing their AVs on roads and highways in the United States and
other nations around the world [1,2]. However, the roll-out of AVs on public roads took
longer than expected [3], and one of the main reasons is related to trust. Can the public
trust that these AVs are safe? The answer to this question is complicated by the fact that
an AV integrates both the mechanics of a vehicle and the ability of the driver into a single
entity. Any safety testing regime has to include both the mechanics of the car and its ability
to drive, which currently is handled by driver licensing.

One way to ensure the safety of AVs is to have it driven enough. How much distance an
AV has to be driven to adequately evaluate its safety was hotly debated. It was argued that
to make statistical safety comparisons with the performance of human drivers, hundreds
of millions of miles of driving is required [4]. However, doing so would take decades
and is obviously impractical. Therefore, the focus of AV testing shifted from a driving
distance-based approach to a scenario-based approach [5–7]. This later approach also
aligns well with the development process described in the 2016 version of the ISO-26262
standard [8] which is concerned with the development of safety-critical electrical and
electronic systems.

Scenario-based testing requires well-designed traffic scenarios that can sufficiently
test the capabilities of the automated driving systems [7]. A driving scenario is typically
made up of static, dynamic, and temporary elements. These include the environment such
as road widths, number of lanes, road curvature, road signs, pedestrian sidewalks, a set of
vehicles (automated or human-driven) and their initial states (position, orientation, speed,
etc.), pedestrians, traffic signals, and the ego automated vehicle (the AV under test) with its
initial state and ultimate goal. It can also be viewed as a time sequence of scenes [5,9]. Such

Machines 2021, 9, 342. https://doi.org/10.3390/machines9120342 https://www.mdpi.com/journal/machines

https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0002-5128-2445
https://orcid.org/0000-0002-3190-1851
https://orcid.org/0000-0001-8992-2009
https://orcid.org/0000-0001-9159-3718
https://doi.org/10.3390/machines9120342
https://doi.org/10.3390/machines9120342
https://doi.org/10.3390/machines9120342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines9120342
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines9120342?type=check_update&version=1


Machines 2021, 9, 342 2 of 16

scenarios need to be described and specified, either textually or graphically or both. There
are now a variety of scenario description languages and systems (SDLS) which are either
simulation platform dependent or independent. Choosing the right SDLS is important to
researchers and developers of AVs, as well as regulatory authorities who are concerned
with safety testing.

In this paper, we provide a review of the characteristics and capabilities of a wide
range of SDLS. Firstly, Section 2 briefly describes what a driving scenario constitutes. This
is followed by descriptions of various SDLS in Section 3. We make use of a specific scenario
to illustrate their capabilities and characteristics. A discussion on the relative merits of these
SDLS is presented in Section 4. Finally, Section 5 concludes with some recommendations.

2. Driving Scenarios

In the context of AV testing, there is no single agreed-upon definition of a traffic sce-
nario. Several different definitions could be found in the literature. In [10], Go et al.consider
a scenario as a description that contains actors, background of actors, environment and
sequences of actions. Along the same line, Geyer et al. [11] think that a scenario should
include both the scenery and the dynamic elements of a scene. The definition in [12] focuses
on the temporal development in a sequence of scenes. With this approach, each scenario
starts with an initial scene. Action and events as well as goals and values may be specified
to characterize the temporal evolution of the scenario.

Elrofai et al. [13] considers time duration an important element of a scenario specifica-
tion. They describe a scenario as a typical maneuvre on the road with a complete set of
relevant conditions and trajectories of other traffic participants that interacts with the ego
vehicle over a specified duration, typically in the order of seconds. To Gelder et al. [14],
the focus of the scenario should be on the ego vehicle. Thus, a scenario is a quantitative
description of the relevant characteristics of the ego vehicle, its activities and/or goals, its
static environment, and its dynamic environment. In addition, a scenario also contains all
events that are relevant to the ego vehicle.

Given the variety of details that could be included in a scenario description, it may be
necessary to organize the information in a way that promotes clarity and efficiency. A two-
level approach is proposed in [15]. Level 1 is a higher-level functional description which is
text-based, suitable for use by developers and regulators. Level 2 is in a machine-readable
form that can be imported by simulators and other test systems.

There are also suggestions to divide the vast amount of details into groups. A five-
layer model was proposed in [16,17]. It is later further extended to include a sixth layer [18].
In this scheme, the first layer describes the road layout, including the basic geometry of
the streets with surface boundaries. Traffic signs and barriers are in the second layer. Any
temporal aspects of the first two layers are described in the third layer. This is followed by
information on the moving and stationary objects in layer 4, and environmental information
such as weather in layer 5. The final layer is for all aspects of data connectivity and
communications.

3. Scenario Description Languages and Systems

A number of SDLS were developed by academia and by industry. Some are tightly
integrated with their development frameworks, while others are open and can be exported
to various simulators. Some of them are text-based and others are graphical. They are
designed for different kinds of end-users with different requirements.

3.1. Example Scenario

To compare and illustrate the capabilities and characteristics of various SDLS in
subsequent sections, we shall make use of a nontrivial scenario that is illustrated in Figure 1.
This example scenario is as follows: it is a daytime scenario with the ego AV on a minor
road. The road surface is dry and the weather is fine without high winds. The goal is for
the ego AV to turn left at the T-junction onto the main road. There is a “Give Way” sign at



Machines 2021, 9, 342 3 of 16

the corner of the minor road. The minor road has one lane in each direction while the main
road has two lanes in each direction; all lanes are four meters wide. On the main road,
there are five vehicles, V1, V2, V3, V4, and V5, moving in the directions shown. There are
also three parked vehicles, V6, V7, and V8, on the main road.

Figure 1. Test scenario for comparison.

This scenario is more complex than most of the highway, round-about, and lane-
changing scenarios used in a lot of research publications. It consists of more than one lane
on the main road in each direction. This could be used as an edge scenario for testing
as the parked cars V7 and V8 may prevent the sensors on the AV to “see” V5. There is
also a traffic sign that the AV need to observe. These elements are used to illustrate the
capabilities or the deficiencies of the SDLS reviewed.

3.2. stiEF

The description of the scenario given in Section 3.1 is probably how a scenario designer
would have written as a first step. The main concerns with natural language descriptions
are ambiguity and contradiction. These concerns will need to be removed so that the
scenario to be formalized and be able to be exported to other computer tools. Also, all
specific details have to be specified [15]. For example, an obvious detail that is missing in
our example is the speed and any acceleration or deceleration of the moving vehicles.

There are attempts to use natural language for such descriptions. For example, RE-
CAA [19] is introduced as an automated requirements engineering process which exten-
sively uses natural language parsing technologies to analyze plain textual requirements
and remove ambiguities and errors. It is generally assumed that the requirements are
described in English. The above process will need to be repeated for every translation of
the English text.

The domain-specific description language stiEF is designed to prevent misunderstand-
ings in a multilingual setting. It defines a formal grammar for specifying scenarios based on
multiple languages. stiEF stands for scenario-accompanied, text-based, iterative evaluation
of automated driving function. It was developed by the Car.Software Organization, now
renamed as CARIAD, in 2019 [20].

The most significant feature of the language defined by stiEF is that it resembles natural
languages. Hence, the descriptions can be understood by humans easily. Furthermore, it
eliminates the chance of having translation errors between the natural languages that it
supports. At the moment, it supports English and German. The idea is that, over time,
more natural languages will be added, for instance Chinese. Figure 2 shows a small part of
a scenario described in both English and German. It illustrates how a description can be
expressed both languages. Lines 2 and 3 are equivalent to each other.

stiEF also provides tools to import scenarios written in free-form natural languages.
The imported descriptions are parsed and iteratively refined until they are fully translated



Machines 2021, 9, 342 4 of 16

into the stiEF language. In addition, development tools support the instant visualization
of the scenarios as they are being written in the language of stiEF. Scenario descriptions
can also be exported in JSON and XML formats. The later format allows openSCENARIO
and openDRIVE (to be discussed in the Section 3.3) to import the scenario descriptions and
provide integration with simulation tools such as Vires VTD2 [21].

Another advantage of stiEF is that scenario descriptions are based on the 5-layer
model, as described in Section 2. Figure 3 shows a 5-layer description using the constrained
natural language of stiEF.

While the language defined by stiEF resembles natural languages, it is very restricted.
Therefore, the quality of the scenario descriptions depends very much on the quality of
the language. Additionally, stiEF scenarios are currently only limited to freeways and
highways. Hence, it is unable to express our example scenario in Section 3.1.

1 

Figure 2. Bilingual characteristics of stiEF.

Figure 3. Example of scenario description using stiEF. From [20].

3.3. OpenSCENARIO

OpenSCENARIO [22] aims to be an open standard for the description of the dynamic
aspects of driving scenarios. It was initially developed by VIRES Simulationstechnologie
GmbH, a German company that provides transportation simulation solutions. In 2018, the
ownership and future development of OpenSCENARIO was transferred to the Association
for Standardization of Automation and Measuring Systems (ASAM) which is a standard-
ization organization formed by some of the major European car manufacturers in 1998. It
defines an open file format for the description of a scenario and is part of a suite of three
open standards that includes OpenDRIVE and OpenCRG.

In OpenSCENARIO, every scenario is completely described by the Storyboard. It
contains the timeline of events that occur within that scenario. This includes all the actions
and maneuvers and the conditions that trigger them. It describes entities such as vehicles
and pedestrians. It can also reference entities that are described in other file formats.
For example, a “RoadNetwork” contains a reference to the static driving infrastructure



Machines 2021, 9, 342 5 of 16

described in the openDRIVE format. This allows openSCENARIO to refer to entities such
as lanes. The road network description could also include reference to external files that
describe the environment and may contain 3D models.

The OpenSCENARIO data model is defined by the Unified Modeling Language
(UML) [23]. UML enhances readability by graphical data model diagrams, and was widely
adopted by the software engineering industry for object-oriented modeling and design.
While UML supports use-case diagrams, class diagrams, and activity diagrams, only class
diagrams are used for data modeling in OpenSCENARIO. XML schemes can be derived
from these data models and used for the verification of the XML data files.

Figure 4 shows part of the openSCENARIO XML file that describes the example
scenario of Section 3.1. It shows one of the stories in the Storyboard that involves a
maneuver of the ego vehicle to turn left.

Figure 4. OpenSCENARIO description of part of example scenario.

While openDRIVE describes the road network including its geometry, lanes and other
objects such as traffic signals, openCRG [24] is used to describe the 3D geometries such
as inclination, pitch, and yaw angles of the roads. These three open-source standards–
OpenSCENARIO, OpenDRIVE, and OpenCRG complement each other to cover all the
static and dynamic contents required for scenario description and simulation. The XML
files can be imported by different simulation platforms such as ViresVTD2 [21], Matlab [25],
CARLA [26] and PreScan [27].

3.4. Hesperia

Hesperia is a software framework that was designed for a research and development
project on AV testing called “CarOLO” in 2007 [28,29]. This project was carried out at the
University of California, Berkeley in collaboration with RWTH Aachen University. In this
project, the autonomous vehicle named “Caroline” was developed for the 2007 DARPA Ur-
ban Challenge. Hesperia is a component-based framework for scenario-based development.
A scenario is described by a story card that includes the title, date and location. It can also
include an image depicting the road layout and surrounding environment. More details
of the functional requirements are provided in tabular form at the bottom of the card. An
example of a story card is shown in Figure 5a.



Machines 2021, 9, 342 6 of 16

Based on the story card, precise description of a scenario is entered using a graphical
editor. This graphical editor is based on the Eclipse Rich Client Framework and reuses the
Java sources from the MontiCore framework. The information of the scenario is encoded
by a domain specific language (DSL), which allows a hierarchical representation. The
description could include abstract elements and complex models in 3D. A bird’s eye view
of the scenario layout is shown in Figure 5b. Elements can be added to the scenarios by
simply using drag-and-drop.

A part of our example T-junction scenario is coded using the Hesperia DSL and shown
in Figure 6. This is a description at the highest level. Lower levels of descriptions contained
in other files are referenced.

(a) (b)

Figure 5. Hesperia framework scenario description [29]. (a) Story Card by project CarOLO. (b) Graph-
ical Editor for using DSL.

Figure 6. Hesperia description of T-junction scenario.

3.5. SceML

SceML is a graph-based scenario modeling language that was developed by FZI
Research Center for Information Technology [30]. The goal of this hierarchical graphical
scenario language is to help engineers encode scenarios in a machine readable data struc-
ture. It follows the UML class diagram conventions and supports different abstraction
levels of scenario description. The main feature of SceML is that the graph-based structure
provides modularity and reusable subscenarios.

It is also able to generate and extract scenarios from recorded data sets with machine
learning algorithms or created by experts. The modeling language allows different depth



Machines 2021, 9, 342 7 of 16

of information modeling to support different abstraction level during the development
process. SceML utilized sequential and parallel executions policies.

Each scenario in SceML is defined by a behavior tree. The tree starts with a root
node that contains its name, action lists, and other parameters. The children nodes are
comprised of maneuver and condition nodes, join nodes, and modules. Maneuver nodes
show movements while condition nodes help to synchronize maneuvers. Join nodes
symbolize the parallel execution of nodes or sequences. Modules allow to summarize
maneuvers and conditions, which can be save in a library and reused in further scenarios.
Finally, each scenario terminates at an end node where all maneuver paths converge.

Figure 7 illustrates the turn left onto main road maneuver in our T-junction example
scenario in this graph notation. As discussed above, each scenario has one root node that
contains a list of all the actors in the scenario, which are the ego AV, and other vehicles V1
to V8. The top “InLocationRadius” node in the figure depicts Ego AV reaching junction. As
the Ego AV approaches the junction, it detects the distances to V3 and V4, depicted by the
bottom “InLocationRadius” node. When the ego AV has enough distance between V3 and
V4, it turns left onto the main road. The middle “InLocationRadius” node depicts the state
after the AV has entered the main road. The white nodes are synchronization condition
nodes. Ultimately, all maneuver paths converge to the end node.

Figure 7. Turn left onto main road maneuver of example scenario using SceML Representation.

The graph structure in SceML can be parsed into an OpenSCENARIO XML file for
model checking. The scenario may then be imported into a simulator such as CARLA [30].
Thus SceML can be used to design concrete scenarios which could then be validated. One
characteristic of SceML that makes it different from other SDLS is that the scenario outcome
does not need to be defined before execution. Therefore, many variations of the basic
scenarios could potentially be combined. It could also be used to inspect and modify
automatically generated and extracted scenarios from recorded data sets.

3.6. OAS

Open Autonomous Safety (OAS) [31], developed by Cruise LLC, is a scenario de-
scription framework where the scenario is divided into behavioral stages. Each stage
of a scenario consists of a combination of a 2D view of the layout, a natural language
description of the scenario, and the expected result. The layout includes the states of all
actors in space and the actors’ behaviors in that stage. The expected result is needed to
determine if the ego AV achieves the objective. Only when the expected result is achieved
will the AV be allowed to proceed to the next stage.

In the OAS system, there is a unique ID for each scenario. Each ID has to follow a
strict format—“road segments-lanes-stop signs-scenario category-Ego action-other actors”.
So, our example scenario would be given an ID “2-2-NW-TL-L-CAR:Pa:02”. Following
the requirements of OAS, our example scenario could be divided into three behavioral
stages, as shown in Figure 8. Each stage represents a safety critical section of the scenarios



Machines 2021, 9, 342 8 of 16

that requires testing to ensure that ego vehicle AV can safely navigate its surrounding
environment.

Figure 8. Turn left onto main road using Open Autonomous Safety.

The complete OAS scenario consists of both textual and graphical descriptions. The
graphical image shows where the actors are placed in space and the textual description
using natural language describe how the actors behave. The stages clearly specify the
sequence of critical events in the scenario. The complexity of a scenario depends on the
number of stages. However, there is no unique way to determine the stages of a scenario.
Given the same scenario, different designers may come up with different stages for testing.
This makes OAS scenarios more difficult to reuse. Also, some important details such
as the exact position of each actor and their status are still missing from the description.
Furthermore, tools for exporting OAS scenarios to other test tools such as simulators are
still under development.

3.7. GeoScenario

GeoScenario is an open domain specific language for scenario description in testing
driving simulation [32]. Its development is managed by the Association for Standardization
of Automation and Measuring Systems (ASAM) and it is in its early stage of development.
The goal is to develop a language to capture test scenarios that cover the complexity of road
traffic situations and promote the reuse of test cases. The language is also simple enough
to be human readable, and can be easily extended with new features and specializations of
its standard components.

This language aims to describe dynamic contents that include driver behavior, traffic,
weather, environmental events and other features. The language is XML-based, and the
static content is built on top of the Open Street Map (OSM) standard [33,34]. OSM is a well-
known collaborative project to create and publish free maps using an open XML format.
Lanelets [35] is an open extension of the OSM format that specially supports road network
representation for both geometrical and topological aspects. GeoScenario therefore uses
Lanelets to represent the Road Network of a scenario. The road network is stored in a
separated XML file to make replacement easy.

Although GeoScenario and OpenScenario are managed by the same organization—
ASAM, with similar goals— they differ in their structure and level of abstraction. There
are two OSM primitive types in GeoScenario–Node and Way. A node is a core element of
GeoScenario, representing a specific point on Earth’s surface. Each node has an ID number
and a pair of coordinates. Vehicles and pedestrians can also be represented by nodes. A
way is an ordered list of nodes joined by straight lines. Such polyline structures can be
used to define paths and boundaries. The attributes of nodes and ways can be specified
using tags.



Machines 2021, 9, 342 9 of 16

A GeoScenario language is system independent. It can represent a diverse range of
traffic situations that could be manually designed by experts, extracted from real traffic
data, or imported from driving databases. Instead of defining actions and maneuvers for
the AV, GeoScenario only specifies initial conditions and goals. The ego AV always starts a
scenario in a parked position. Both static objects and dynamic elements are included in the
scenario. Trigger nodes can be added to activate different actions over dynamic elements.
Figure 9 shows both the graphical depiction of our example scenario and its corresponding
XML file describing some nodes and a way.

(a) (b)

Figure 9. Defining example scenario using GeoScenario. (a) Graphical representation of the scenario.
(b) Part of the corresponding GeoScenario XML File.

Java OpenStreetMap Editor (JOSM) [36] is commonly used to edit GeoScenarios files.
By adding a set of custom development tools, scenarios can easily be defined on top of
Lanelets and other map layers. Additional tools continue to be developed. One of them is
a GeoScenario Checker. There are currently over 130 scenario-based test cases available in
GeoScenarios for testing engineers.

3.8. CommonRoad

CommonRoad [37] is developed by a team from the Technical University of Munich in
Germany. It is a platform-independent format for specific road traffic scenarios for motion
planning on roads. CommonRoad scenarios are in the form of XML files, describing the the
road network, static and dynamic obstacles, and the planning problem of the ego vehicle.
Part of the description of our example scenario in CommonRoad XML format is shown in
Figure 10.

CommonRoad uses lanelets as a road description. This allows the road network to be
modeled as a directed graph. By definition, lanelets are “atomic, interconnected, drivable
road segments geometrically represented by their left and right bounds”, which may carry
additional data to describe the static environment. CommonRoad incorporates a small
subset of OSM attributes. Hence, these bounds are encoded by an array of OSM nodes
forming a polyline. Together, they compose the lanelets map. Lanelets can be used to
compose the road network of a scenario [32]. Not only is it able to compose complex road
situations, but it can also incorporate tactical information for maneuver generation. In
addition, the format of OpenDRIVE can be converted to lanelets in CommonRoad.

Motion planning involves specifying the initial state such as the position and velocity
of the vehicles, and one or more goal states. The simulation tool SUMO [38] can read
CommonRoad XML files and perform simulations. It is necessary to specify a time step
size so that snapshots of the scenario can be encoded in CommonRoad for viewing.



Machines 2021, 9, 342 10 of 16

Figure 10. CommonRoad Scenario Example.

There are now over 2000 traffic scenarios available to download in the CommonRoad
scenario database. These scenarios are generated by naturally occurring and handcrafted
dangerous situations.

Lanlets2 [39] is an improvement of Lanelet to incorporate a high-definition map
framework for highly automated driving. However, both Lanelets and Lanelets2 are not
able to support global route planning [40]. Development of large scale lane-level road
network descriptions are still in the early stages. Much further work is needed to support
AV development and testing.

3.9. SCENIC

SCENIC is an imperative, object-oriented probabilistic programming language for
describing driving scenarios. It was developed by a research team from the University
of California, Berkeley in 2019 [41]. Although SCENIC is well suited for the domain of
generating data for perception systems, the syntax of the language is designed to simplify
the task of writing complex scenarios, and to enable the use of specialized sampling
techniques. Its main goal is to design a scene system that can capture corner case scenarios
based on machine learning data sets.

Probabilistic programming languages are used to describe probabilistic models and
perform inference based on these models. Other such languages include PROB [42] and
Church [43]. The syntax of SCENIC is largely devoted to expressing geometric relation-
ships between objects in a concise yet readable manner. The biggest advantage of using
SCENIC is to generate specialized test sets, and to improve the effectiveness of training
sets by emphasizing difficult cases. There are classes, objects, geometry, distributions
and coordinate systems. SCENIC has provided a small library which defines the types of



Machines 2021, 9, 342 11 of 16

objects supported by simulators, and an interface which converts SCENIC into the input
format required by such simulators. SCENIC is also able to work with simulators such
as open-source VERIFAI toolkit [44], Webots [45], LGSVL [46], and CARLA [26] with 3D
scenes and encoding dynamics to enable generation of videos instead of static scenes. Each
individual simulator has a specialized SCENIC interface which requires additional setup.
There are many SCENIC scenarios specifically tailored for these simulators. OpenDrive
and OAS can be utilized to describe road networks in SCENIC.

There are also many cross-platform scenarios written in SCENIC’s abstract application
driving domains. These scenarios can be visualized without the need for a simulator.
Figure 11 shows a small section of the description of our example scenario. It is generated
by using the Webots simulator.

Figure 11. Example scenario in SCENIC.

3.10. M-SDL

In 2019, the scenario description language M-SDL was released by Foretellix Ltd., a
start-up company based in Israel [47]. The aim is to provide nonproprietary scenarios with
a good combination of power, readability, and composability based on an open language.
Foretellix was founded by a team with expertise in measurable verification and validation
in the semiconductor industry. Their stated mission is to enable measurable safety of
advanced driver assistance systems (ADAS) and AVs. Being an open language, M-SDL
could be adopted by different testing platforms with dual interpretation (both active and
passive). It supports several levels of abstractions and morphed for new Operational
Design Domains (ODDs). Over 500 engineers from 250 different entities have already
downloaded the M-SDL specification.

The syntax of M-SDL is python-like and it is mainly a declarative programming
language. It is used in the OpenSCENARIO 2.0 concept document. Using M-SDL, it is easy
to specify any mix of scenarios and operating conditions to identify previously unknown
hazardous core or edge cases. M-SDL is very friendly to both test-writers and scenario
developers. The former does not have to learn the full M-SDL, they only need to generate
multiple tests building on developed scenarios. While the latter can leverage existing
libraries to create more abstract scenarios. The same scenario for both left- and right-hand
side traffic flow to avoid duplicating scenario creation and maintenance efforts.

There is a graphical user interface (GUI) which is named Foretify to select a map
and draw a scenario in [48]. The scenario can be extended by using specifying different
combinations of parameter via a spreadsheet as shown in Figure 12. A large number of
meaningful core and edge cases can be generated from a single basic scenario.



Machines 2021, 9, 342 12 of 16

Figure 12. Using spreadsheets to try combination by M-SDL [48].

The building blocks of M-SDL are statements, structures, actors, scenarios members,
scenario invocations and expressions. Since M-SDL has a python-like syntax and lexical
conventions, generic abstract scenarios can be easily defined. Part of the M-SDL description
of our example scenario is shown in Figure 13.

Figure 13. Example scenario in M-SDL.

4. Discussion

A number of competing and complimentary scenario description languages and
systems were discussed in the previous section. Their characteristics can be summarized in
Table 1. For each SDL, this table lists their primary data format for scenario description, and
whether they are open-source. Most of them make use of an external standard or system
for describing the road network and its conditions. Furthermore, we listed the simulation
platforms which support each SDLS. This is important, as scenario descriptions are mostly
used for simulation studies. If a researcher, developer, or organization is committed to
a particular simulation software, then their choice of SDL is restricted. The simulator
CARLA, which is an open-sourced software itself, supports the most SDLS.

Each SDLS is designed with different goals in mind. For example, openSCENARIO
aims to be an open standard scenario description language that will be accepted by many
users and simulation tools. On the other hand, M-SDL makes it easy for many test cases
to be generated from a basic scenario. This feature will be useful and convenient for
testing and validation purposes. But regardless of the design goals of the SDLS, tools
must be available to allow their scenario descriptions to be imported by simulation tools
and platforms to allow the AV to be tested in those situations. Although traditionally,
simulations are carried out in 2D, several photorealistic 3D simulators are now available,
for instance [22,26,27,46,47,49]. Thus, the trend is to enable the description of scenarios in
3D by incorporating photorealistic 3D models.



Machines 2021, 9, 342 13 of 16

Table 1. Comparison of listed scenario description language.

SDL Data Open Road Simulation
Format Source Description Platform

stiEF XML Yes OpenDRIVE ViresVTD2

Hesperia Programming Unknown 3D CxxTest
language Prescan

OAS HTML Yes 2D OAS

SceML XML Yes OpenDRIVE CARLA

OpenSCENARIO XML Yes OpenDRIVE Prescan
CARLA

ViresVTD2

GeoScenario XML Yes Lanlets Unreal
Engine

CommonRoad XML Yes Lanlets SUMO

SCENIC Probabilistic Yes OpenDRIVE VERIFAI
programming OSM CARLA

language Webots
LGSVL

M-DSL Python-like Yes OpenDRIVE CARLA
Syntax SUMO

Not only do 3D models look more realistic, the scenarios are more realistic in the sense
that not all information are available to the ego AV at any given time. For instance, in our
example scenario, the oncoming car V5 on the main road is obscured by the parked cars V7
and V8. It would were much easier for the ego AV to decide on its action if the position
and speed of V5 is made available. However, if the sensor on the ego AV cannot pick out
V5 until V5 appears in its line-of-sight, then the situation will become much more realistic.
In fact, this can become one of the edge or corner cases for testing purposes.

Using text or graphics alone may be sufficient describe simple scenarios. However, as
pointed out earlier, simple scenarios are unlikely to be sufficient for testing and verification
of safety purposes. Therefore, a combination of textual and graphical representations will
be needed, especially when real-world maps and weather data are to be incorporated.

Currently, scenarios are almost entirely designed by human experts. This approach
greatly limits the number of test scenarios that can be generated. Combing data-driven
and knowledge-driven approaches is a logical next-step in the process. By making use
of artificial intelligence (AI) techniques, edge and corner cases could be identified auto-
matically. These cases are expected to help identify failures or strange behaviors of AVs,
and consequently increase the assurance of safety of these vehicles. SDLS should therefore
facilitate this. In this sense, M-SDL is currently the leading language in this direction.

Different scenarios are typically treated as being independent of each other and are
not characterized by their relative level of complexity. Such characterization will become
more important for test engineers and regulators to identify edge and corner cases properly.
At the same time, an agreed-upon measure of complexity will aid scenario designers to
classify the difficulty of their scenarios in the same way the automation level of a vehicle
is classified into one of six levels [50]. The level of difficulty could be included in each
scenario in the SDLS.

Many different countries will be developing their own AV regulations and policies,
so a common understanding of the terminologies used in different languages is critical
to the car manufacturers. Currently, stiEF is the only multilingual SDL that is designed
to overcome this problem. More SDLS that takes the issues involved in multilingual
documents will be beneficial.



Machines 2021, 9, 342 14 of 16

5. Conclusions

In the past decade, the direction for testing and validation of the functionalities of
AVs shifted from a distance-based to a scenario-based approach. A number of SDLS were
developed to support this. In this paper, we reviewed and compared their features. Since
they are designed to fulfill different goals, their characteristics are different. Their design
philosophy and approaches are also different. While some make use of a hierarchical
structure to describe a scene and the actors, others use other de facto standards such as
openDRIVE for road description. The full scenario is composed of all such descriptions. In
terms of data format, XML is the most commonly used among the SDLS reviewed. Three
of them, Hisperia, SCENIC and M-DSL, make use of a programming language format that
potentially enable them to describe dynamic scenes more easily.

An important trend is that these software are open sourced (except Hisperia). This
is important, as it allows these tools to be easily acquired and utilized by industry and
academia. Open source also allows users to modify and tailor the software to their needs.
In this way, the longevity of these tools are ensured.

A scenario that is precisely specified will be of little use by itself. It is important
to note which simulators are able to import scenarios from which SDLS. At this time,
most simulation software can only import scenarios described by one or two SDLS. The
exception is CARLA which is itself an open-source simulation platform. Ultimately, the
choice of SDL may be determined by the choice of simulator, since most simulators are not
open-sourced.

Author Contributions: J.M. made contributions to original draft preparation and paper writing. X.C.
made efforts to collect data and funding acquisition; Y.L. is the corresponding author and provided
the conceptualization for the paper; E.M.-K.L. supervised the project, and reviewed and edited the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the China National Key R&D Plan Award 2018YFE0197700,
2019 Shandong Province Key R&D Plan Awards 2019JZZY010126, 2019JZZY010443, and the National
Natural Science Foundation of China (Item Number: 52072212).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available from the corresponding author upon reasonable
request.

Acknowledgments: Xiaobo Che acknowledges support from the National Natural Science Founda-
tion of China (Grant No. 52072214). Yanqiang Li acknowledges Taishan Scholar Specially Recruited
Experts who provided valuable information. The authors gratefully acknowledge the support of
the Institute of Automation in Shandong Academy of Sciences for the use of their infrastructure to
conduct this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hancock, P.A.; Nourbakhsh, I.; Stewart, J. On the future of transportation in an era of automated and autonomous vehicles. Proc.

Natl. Acad. Sci. USA 2019, 116, 7684–7691.
2. Hawkins, A. Waymo’s Driverless Car: Ghost-Riding in the Back Seat of a Robot Taxi. 2019. Available online: https://www.

theverge.com/2019/12/9/21000085/waymo-fully-driverless-car-self-driving-ride-hail-service-phoenix-arizona (accessed on 1
April 2021).

3. Piper, K. It’s 2020. Where Are Our Self-Driving Cars? 2020. Available online: https://www.vox.com/future-perfect/2020/2/14/
21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber (accessed on 1 April 2021).

4. Kalra, N.; Paddock, S.M. Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle
reliability. Transp. Res. Part A 2016, 94, 182–193.

5. Menzel, T.; Bagschik, G.; Maurer, M. Scenarios for development, test and validation of automated vehicles. In Proceedings of the
2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1821–1827.

https://www.theverge.com/2019/12/9/21000085/waymo-fully-driverless-car-self-driving-ride-hail-service-phoenix-arizona
https://www.theverge.com/2019/12/9/21000085/waymo-fully-driverless-car-self-driving-ride-hail-service-phoenix-arizona
https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber
https://www.vox.com/future-perfect/2020/2/14/21063487/self-driving-cars-autonomous-vehicles-waymo-cruise-uber


Machines 2021, 9, 342 15 of 16

6. Menzel, T.; Bagschik, G.; Isensee, L.; Schomburg, A.; Maurer, M. From functional to logical scenarios: Detailing a keyword-based
scenario description for execution in a simulation environment. In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium
(IV), Paris, France, 9–12 June 2019; pp. 2383–2390.

7. Neurohr, C.; Westhofen, L.; Henning, T.; de Graaff, T.; Möhlmann, E.; Böde, E. Fundamental Considerations around Scenario-
Based Testing for Automated Driving. arXiv 2020, arXiv:2005.04045.

8. ISO-26262. Road Vehicles–Functional Safety; Standard, International Organization for Standardization: Geneva, Switzerland, 2016.
9. Andreotti, E.; Boyraz, P.; Selpi, S. Mathematical Definitions of Scene and Scenario for Analysis of Automated Driving Systems in

Mixed-Traffic Simulations. IEEE Trans. Intell. Veh. 2021, 6, 366–375, doi:10.1109/TIV.2020.3031981.
10. Go, K.; Carroll, J.M. The blind men and the elephant: Views of scenario-based system design. Interactions 2004, 11, 44–53.
11. Geyer, S.; Baltzer, M.; Franz, B.; Hakuli, S.; Kauer, M.; Kienle, M.; Meier, S.; Weißgerber, T.; Bengler, K.; Bruder, R.; et al. Concept

and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance.
IET Intell. Transp. Syst. 2013, 8, 183–189.

12. Ulbrich, S.; Menzel, T.; Reschka, A.; Schuldt, F.; Maurer, M. Defining and substantiating the terms scene, situation, and scenario
for automated driving. In Proceedings of the 18th IEEE International Conference on Intelligent Transportation Systems, Gran
Canaria, Spain, 15–18 September 2015; pp. 982–988.

13. Elrofai, H.; Paardekooper, J.P.; de Gelder, E.; Kalisvaart, S.; den Camp, O.O. Scenario-based safety validation of connected and au-
tomated driving. In Technical Report; Netherlands Organization for Applied Scientific Research: Hague, The Newtherlands, 2018.

14. De Gelder, E.; Paardekooper, J.P.; Saberi, A.K.; Elrofai, H.; Ploeg, J.; Friedmann, L.; De Schutter, B. Ontology for scenarios for the
assessment of automated vehicles. arXiv 2020, arXiv:2001.11507.

15. Zhang, X.; Khastgir, S.; Jennings, P. Scenario Description Language for Automated Driving Systems: A Two Level Abstraction
Approach. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON,
Canada, 11–14 October 2020; pp. 973–980.

16. Bagschik, G.; Menzel, T.; Maurer, M. Ontology based scene creation for the development of automated vehicles. In Proceedings
of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1813–1820.

17. Reschka, A.; Böhmer, J.R.; Gacnik, J.; Köster, F.; Wille, J.M.; Maurer, M. Development of software for open autonomous automotive
systems in the Stadtpilot-project. In Proceedings of the WIT 2011 8th International Workshop on Intelligent Transportation,
Hamburg, Germany, 22–23 March 2016.

18. Bock, J.; Krajewski, R.; Eckstein, L.; Klimke, J.; Sauerbier, J.; Zlocki, A. Data basis for scenario-based validation of HAD
on highways. In Proceedings of the 27th Aachen Colloquium Automobile and Engine Technology, Aachen, Germany, 8–10
October 2018.

19. Körner, S.J. RECAA-Werkzeugunterstützung in der Anforderungserhebung; KIT Scientific Publishing, Karlsruhe, Germany, 2014.
20. Bock, F.; Sippl, C.; Heinzz, A.; Lauerz, C.; German, R. Advantageous usage of textual domain-specific languages for scenario-

driven development of automated driving functions. In Proceedings of the 2019 IEEE International Systems Conference (SysCon),
Orlando, FL, USA, 8–11 April 2019; pp. 1–8.

21. Franke, K. Volkswagen Group: Leveraging VIRES VTD to Design a Cooperative Driver Assistance System. In Engineering Reality
Magazine, Winter 2018; Volkswagen AG: Wolfsburg, Germany, 2048; Volume VIII, pp. 10–14.

22. ASAM. OpenSCENARIO. 2021. Available online: https://www.asam.net/standards/detail/openscenario/ (accessed on 1
December 2021).

23. Hause, M. The SysML modeling language. In Proceedings of the 15th European Systems Engineering Conference, Edinburgh,
UK, 18–20 September 2006; Volume 9, pp. 1–12.

24. ASAM. ASAM OpenCRG. 2021. Available online: https://www.asam.net/standards/detail/opencrg/ (accessed on 1 December
2021).

25. Natick, Massachusetts. MATLAB Version(R2021a). 2021. Available online: https://www.mathworks.com/ (accessed on 1
December 2021).

26. CARLA Team. CARLA Simulator. 2021. Available online: https://carla.org (accessed on 1 December 2021).
27. Siemens. Simcenter Prescan. 2021. Available online: https://tass.plm.automation.siemens.com/prescan-overview (accessed on 1

December 2021).
28. Berger, C. Automating Acceptance Tests for Sensor-and Actuator-Based Systems on the Example of Autonomous Vehicles; Technical

Report AIB-2010-16; Department of Computer Science, RWTH Aachen University: Shaker, Germany, 2010.
29. Berger, C.; Rumpe, B. Engineering autonomous driving software. arXiv 2014 arXiv:1409.6579.
30. Schütt, B.; Braun, T.; Otten, S.; Sax, E. SceML: a graphical modeling framework for scenario-based testing of autonomous vehicles.

In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, Virtual,
16–23 October 2020; pp. 114–120.

31. OAS. Open Autonomous Safety. 2021. Available online: https://oas.voyage.auto/scenarios/ (accessed on 1 April 2021).
32. Queiroz, R.; Berger, T.; Czarnecki, K. GeoScenario: An open DSL for autonomous driving scenario representation. In Proceedings

of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 287–294.
33. OSM. Open Street Map (OSM). 2021. Available online: https://www.openstreetmap.org/ (accessed on 1 December 2021).
34. Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18.

https://doi.org/10.1109/TIV.2020.3031981
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/opencrg/
https://www.mathworks.com/
https://carla.org
https://tass.plm.automation.siemens.com/prescan-overview
https://oas.voyage.auto/scenarios/
https://www.openstreetmap.org/


Machines 2021, 9, 342 16 of 16

35. Bender, P.; Ziegler, J.; Stiller, C. Lanelets: Efficient map representation for autonomous driving. In Proceedings of the 2014 IEEE
Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June 2014; pp. 420–425.

36. OSM. Java Open Street Map Editor. 2021. Available online: https://josm.openstreetmap.de/(accessed on 1 December 2021).
37. Althoff, M.; Koschi, M.; Manzinger, S. CommonRoad: Composable benchmarks for motion planning on roads. In Proceedings of

the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 719–726.
38. Klischat, M.; Dragoi, O.; Eissa, M.; Althoff, M. Coupling sumo with a motion planning framework for automated vehicles. In

Proceedings of the SUMO User Conference, Berlin/Adlershof, Germany, 13–15 May 2019.
39. Poggenhans, F.; Pauls, J.H.; Janosovits, J.; Orf, S.; Naumann, M.; Kuhnt, F.; Mayr, M. Lanelet2: A high-definition map framework

for the future of automated driving. In Proceedings of the 21st International Conference on Intelligent Transportation Systems
(ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1672–1679.

40. Zheng, L.; Li, B.; Yang, B.; Song, H.; Lu, Z. Lane-level road network generation techniques for lane-level maps of autonomous
vehicles: A survey. Sustainability 2019, 11, 4511.

41. Fremont, D.J.; Dreossi, T.; Ghosh, S.; Yue, X.; Sangiovanni-Vincentelli, A.L.; Seshia, S.A. Scenic: A language for scenario
specification and scene generation. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, Phoenix, AZ, USA, 22–26 June 2019; pp. 63–78.

42. Gordon, A.D.; Henzinger, T.A.; Nori, A.V.; Rajamani, S.K. Probabilistic programming. In Future of Software Engineering Proceedings;
Association for Computing Machinery: New York, NY, USA, 2014; pp. 167–181, https://doi.org/10.1145/2593882.2593900.

43. Goodman, N.; Mansinghka, V.; Roy, D.M.; Bonawitz, K.; Tenenbaum, J.B. Church: a language for generative models. arXiv 2012,
arXiv:1206.3255.

44. Dreossi, T.; Fremont, D.J.; Ghosh, S.; Kim, E.; Ravanbakhsh, H.; Vazquez-Chanlatte, M.; Seshia, S.A. Verifai: A toolkit for
the formal design and analysis of artificial intelligence-based systems. In Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2019; Volume 11561, https://doi.org/10.1007/978-3-030-25540-4_25.

45. Michel, O. Cyberbotics Ltd. Webots™: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 2004, 1, 5.
46. Advanced Platform Team, LG Electronics America R&D Lab. LGSVL Simulator. 2021. Available online: https://www.

lgsvlsimulator.com (accessed on 1 December 2021).
47. Foretellix, Inc. Measurable Scenario Description Language. 2021. Available online: https://www.foretellix.com/open-language/

(accessed on 1 December 2021).
48. Foretellix, Inc. M-SDL Seminar. 2020. Available online: https://www.youtube.com/watch?v=puM8v8KIK2k (accessed on 1

December 2021).
49. Baidu Cloud. Apollo: Autonomous Driving Solution. 2021. Available online: https://apollo.auto (accessed on 1 December 2021).
50. U.S. Department of Transportation. SAE International’s Levels of Automation for Defining Driving Automation in On-Road

Motor Vehicles. 2016. Available online: https://www.sae.org/news/3544/ (accessed on 1 December 2021).

https://josm.openstreetmap.de/
https://www.lgsvlsimulator.com
https://www.lgsvlsimulator.com
https://www.foretellix.com/open-language/
https://www.youtube.com/watch?v=puM8v8KIK2k
https://apollo.auto
https://www.sae.org/news/3544/

	Introduction
	Driving Scenarios
	Scenario Description Languages and Systems
	Example Scenario
	stiEF
	OpenSCENARIO
	Hesperia
	SceML
	OAS
	GeoScenario
	CommonRoad
	SCENIC
	M-SDL

	Discussion
	Conclusions
	References

