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Abstract: Permanent magnet machines (PMs) equipped with fractional slot concentrated windings
(FSCWs) have been preferably proposed for electric vehicle (EV) applications. Moreover, integrated
on-board battery chargers (OBCs), which employ the powertrain elements in the charging process,
promote the zero-emission future envisaged for transportation through the transition to EVs. Based
on the available literature, the employed machine, as well as the adopted winding configuration,
highly affects the performance of the integrated OBC. However, the optimal design of the FSCW-
based PM machine in the charging mode of operation has not been conceived thus far. In this paper,
the design and multi-objective optimization of an asymmetrical 12-slot/10-pole integrated OBC
based on the efficient magnetic equivalent circuit (MEC) approach are presented, shedding light on
machine performance during charging mode. An ‘initial’ surface-mounted PM (SPM) machine is
first designed based on the magnetic equivalent circuit (MEC) model. Afterwards, a multi-objective
genetic algorithm is utilized to define the optimal machine parameters. Finally, the optimal machine is
compared to the ‘initial’ design using finite element (FE) simulations in order to validate the proposed
optimization approach and to highlight the performance superiority of the optimal machine over its
initial counterpart.

Keywords: battery chargers; electric vehicles; integrated on-board chargers; finite element analysis
(FEA); magnetic equivalent circuit (MEC); analytical modeling

1. Introduction

Battery chargers can either be installed at charging stations, known as off-board charg-
ers, or mounted on electric vehicles (EVs), known as on-board chargers. Although off-board
chargers offer high power transfer capability, their installation cost is substantially high.
On the other hand, on-board battery chargers (OBCs) are cost-effective units that can be
directly connected to the grid; however, their power transfer capability is restricted because
of weight, space, and cost constraints. To alleviate the problems associated with OBCs and
the lack of charging points, integrated OBCs have been the topic of a significant body of
recent literature [1]. The proposed charging topology integrates the drivetrain elements
into the charging process, thus facilitating the deployment of fast three-phase charging [2].

Various electric machines can be used in EVs, namely the induction motor (IM), per-
manent magnet synchronous machine (PMSM), and switched-reluctance motor (SRM) [3].
IMs have been utilized in several Tesla Models (e.g., Model S, Model X, and Roadster).
Meanwhile, the electric traction machine used in the Volkswagen e-Golf is a PMSM [4].
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Despite being cost effective and providing good traction performance [5], practical em-
ployment of SRMs in commercial EVs is very limited due to the machine’s high torque
ripple. It is worth mentioning that PMSMs have the highest efficiency among all other
EV drivelines, both three-phase and multiphase configurations. The prime motivation to
employ multiphase-based machines in EV applications, besides fault tolerance capability
and decreased converter per phase current rating, is the higher degrees of freedom that
ensure zero average torque production during the charging process [6].

Performance wise, PM machines equipped with a fractional slot concentrated winding
(FSCW) have shown promise in EV applications, as they correspond to a substantial
improvement in torque/power densities [7]. Among all possible winding layouts, e.g., the
six-phase asymmetrical, six-phase symmetrical, dual three-phase layouts, the six-phase
asymmetrical configuration gives better rotor loss index when compared to the dual three-
phase one under both the propulsion and charging modes of operation owing to its superior
MMF spectra [2]. Recently, the optimal design of FSCW-based PM machines has been
investigated in the literature [8,9]. From the perspectives of torque components and core
losses, the asymmetrical six-phase winding configuration is superior when compared to
the dual three-phase one in the motoring mode. Meanwhile, the forces during charging for
the dual three-phase machine are much higher than those for the asymmetrical winding
machine [8]. Therefore, the six-phase asymmetrical machine is selected for this study.

Machine design optimization can broadly be categorized into single-objective opti-
mization and multi-objective optimization. The former can easily optimize a single variable
at a time; however, it may have a negative impact on the EV drivetrain performance. On the
other hand, the latter can meet multiple design requirements while considering the interac-
tion between variables [10]. In [11], Wang et al. illustrated that magnet width can highly
reduce torque ripple on the basis of single-objective optimization. Zhu et al. proposed an
efficient multi-objective optimization strategy for a less-rare-earth PM machine [12]. In
this work, the selected objectives constitute the output torque, PM cost, cogging torque,
torque ripple, and efficiency. As a result, lower PM cost has been achieved. In [9], Zhu et al.
introduced an emerging multi-level optimization design of a less-rare-earth hybrid PM
machine, i.e., motor level optimization, followed by control-level optimization. The aver-
age torque, torque ripple, and demagnetization have been selected as the objectives in the
motor design level. Based on the resonance compensation strategy, the torque ripple and
speed vibration level have been effectively adjusted in the motor control level.

Although most of the previous multi-objective optimization strategies were mainly
based on numerical techniques such as 2D and 3D finite element (FE) models, recent
literature has proposed some alternatives based on parametric magnetic equivalent circuit
(MEC) models [13], which is a notable contribution of this analysis. FE techniques are the
most accurate; however, owing to the heavy computational burden and the cumbersome
operations, MEC-based models are highly preferred because of their low computational
costs during the initial design stages [14,15]. The main drawback of the MEC modeling
approach is that the flux leakage cannot be captured. Conversely, taking the spatial
harmonic contents into consideration, the accuracy of the MEC model in combination with
the meshing method is highly improved [16]. Moreover, Fourier-based MEC modeling
efficiently considers the eddy current effects [17].

Design optimization of PM machines using both FE and MEC models has been thor-
oughly discussed in the literature under the propulsion mode of operation [18]; however,
this paper proposes the design and optimization of an integrated OBC using an asym-
metrical six-phase 12-slot/10-pole SPM machine based on the efficient parametric MEC
approach. In [8], the influence of various design parameters, namely the slot-opening
width and PM width to pole pitch ratio, on the torque ripple and core losses under both
modes of operation was thoroughly addressed, and the optimal solution was selected
based on the Pareto optimization technique. The main contributions of this study over the
one presented in [8] are summarized in the following bullets:



Machines 2021, 9, 329 3 of 17

• Multi-objective genetic algorithm (MOGA) optimization of the employed integrated
OBC considering average output torque, torque ripple under propulsion, core losses
under propulsion, torque ripple under charging, and core losses under charging.

• Sensitivity analysis to identify the influence of each design parameter on the various
optimization performances of the SPM machine.

• Response surface (RS) methodology to illustrate the relationship between the opti-
mization objectives and high-sensitive design parameters.

• Improved electromagnetic performances, namely, torque profile and core losses,
under both operational modes were obtained and validated using finite element
analysis (FEA).

2. Design Requirements and Integrated EV Charging Application

During charging mode, a low peak-to-peak torque ripple is required to reduce vibra-
tions and noise in SPM machines. Core losses are also important, since they may lead
to thermal demagnetization. Typically, application requirements are utilized as input to
the machine design process. Design specifications for a scaled SPM machine are given
in Table 1. In this paper, an asymmetrical six-phase integrated OBC is presented and de-
signed, as depicted in Figure 1. It comprises a six-phase machine, an inverter, and a battery
connected to a DC-DC converter to control the DC link voltage. The DC link voltage is
maintained at 600 V through the boost DC-DC converter [19]. This study investigates the
asymmetrical six-phase winding topology under propulsion (δ = 30

◦
), as well as charging

(δ = 210
◦
), where δ is the spatial phase angle between the two three-phase winding groups.

Table 1. SPM machines design specifications.

e-Golf Requirements

Rated power (kW) 5
Rated speed (rpm) 1200

Maximum speed (rpm) 10,500
Rated torque (Nm) 39.8

Line current peak value (A) 5.9
DC link voltage (V) 600

The proposed charger offers zero average torque production in the charging process
when switch S1 is on and switches S2–S5 are off. In that case, after synchronization,
the grid line currents ia

g, ib
g, and ic

g are divided between the first three-phase winding
set with to the phase sequence ia1

s , ib1
s , and ic1

s and the second three-phase winding set
with the phase sequence of ib2

s , ic2
s , and ia2

s . Thus, the resultant magnetic fields of the
fundamental subspace from the two winding groups oppose each other, yielding a zero-
torque-producing magnetizing flux component [20]. Moreover, the reference charging
phase currents are derived based on the direct component of the grid line currents, while
the quadrature current component is set to zero. Unity power factor operation at the grid
side is, therefore, guaranteed. The six-phase windings are utilized as grid-side filters [21].

Under propulsion, switch S1 is off, and switches S2–S5 are on, the two three-phase
winding sets are connected in series forming a single neutral point topology, while each
three-phase winding group is fed from a separate three-phase inverter. As a result, it can be
noted that the proposed integrated OBC entails simple hardware reconfiguration between
the propulsion and charging modes using switches S1–S5.
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Figure 1. Asymmetrical six-phase integrated battery charger schematic and phasor diagrams: (a) con-
figuration; (b) phasor diagram under propulsion; (c) phasor diagram under charging.

3. Parametric MEC Model

The MEC model proposed in [18] was developed for axial flux permanent magnet syn-
chronous machines. The model is adjusted for radial flux permanent magnet synchronous
machines (RFPMSMs) and is employed in the optimization process.

Figure 2 shows a one-tooth pitch defining all parts of the machine. The machine
is divided into the rotor, the permanent magnets, the air gap, the tooth, and the yoke.
Each tooth is divided into three parts consisting of the tooth tips and the tooth main part.
Modeling of each part is performed using the MEC model. The saturation of the iron is
included in the model by defining the non-linear reluctance elements. The connection
between all elements is achieved using the loop matrices [18].
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Figure 2. MEC subdivision principle for RFPMSM.

The model is divided into several nodes. The values of nr0 = 2, nr1 = 3, nr2 = 2, nr3 = 10,
and nr4 = 2 define the amount of discretization in the radial direction of the rotor yoke, PMs,
air gap, stator tooth, and stator yoke, respectively. The discretization in the circumferential
direction is defined by nθ1, nθ2, nθ3, and nθ4, where the value of nθ1, nθ2, nθ3, and nθ4
used in this study are 8, 18, 13, and 13, respectively. This allows a detailed discretization in
a certain part of the machine.

The system matrix consists of the reluctance elements and the magnetomotive force of
the windings and the PMs.

Modeling of the PMs is performed by defining the magnetomotive force sources
of the PMs as a Fourier series expansion in the circumferential direction for the PMs.
Rotation of the PMs is performed by including the time in the Fourier series. The av-
erage magnetomotive force between two points can be easily obtained by an analytical
formula. The details of obtaining the magnetomotive force of the PMs can be found in [18].
Therefore, the stator and rotor reluctance matrices are kept constant and the only moving
elements are the magnetomotive forces. This allows a fast and accurate solution for all
electromagnetic parameters.

The reluctances of the machine consist of linear and non-linear elements. Therefore, a
Jacobian matrix is defined to solve the machine by using the Newton–Raphson technique.
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The procedure and the equations can be found in [18]. As shown in Figure 2, the model
considers the variation of the reluctances in the radial direction.

After obtaining the flux density distribution in all stator and rotor iron parts, the iron
losses can easily be obtained using the concept of the iron losses separation technique [22].
Finally, all electromagnetic parameters can be obtained. This includes the flux linkage for
each phase, the full-load voltages, the mean torque, the torque ripple, the cogging torque,
and the iron losses. All electromagnetic properties are verified by means of finite element
(FE) analysis at the end of the article.

During the iterative design process, the model is fully parameterized in terms of the
geometrical machine parameters, the number of slots, the number of poles, and the number
of phases. The same model can be used for propulsion and charging modes.

4. Motor Topology and Optimization Model
4.1. Motor Topology

Among the various available PM machine topologies, the SPM machine equipped
with an FSCW is adopted in this study. Figure 3a depicts the model of the employed
asymmetrical six-phase 12-slot/10-pole PM machine, while the parametric model that
highlights the selected design variable is shown in Figure 3b. The application of FSCW-
based SPM machines in EVs is of particular interest, not only for its shorter end turns and
high slot fill factor, but also for the higher torque density and inherent fault-tolerance capa-
bility [23]. The corresponding MMF harmonic spectra per unit current in the propulsion
and charging modes are shown in Figure 4a,b, respectively. Where, under propulsion,
the torque-producing component (h = 5), as well as the inevitable slot harmonic (h = 7),
is highlighted. Meanwhile, the torque-producing component is canceled under charging,
which yields zero average torque production during the charging process.
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Based on the machine design requirements listed in Table 1, the initial machine design
can be obtained, as revealed in Table 2. For an SPM machine, the electromagnetic torque
and the peak-to-peak torque ripple are given by (1) and (2), respectively:

Tem =
3
2

pψPM Irated (1)

Tripple =
Tmax − Tmin

Tmean
∗ 100% (2)

where Irated is the rated rms current, ψPM is the PM flux linkage, p is the number of pole
pairs, and Tmean is the average torque. Tmax and Tmin are the maximum and minimum
values of the developed output torque, respectively.

Table 2. SPM machine parameters.

Parameter Symbol Value

Stator outer diameter (mm) Dso 231.4
Stator inner diameter (mm) Dsi 155

Stack length (mm) Le f f 84
Air gap length (mm) g 1

Depth of stator slot (mm) dss 22.5
Slot-opening width (mm) tso 9.06

Rotor outer diameter (mm) Dro 153
Shaft diameter (mm) Dsha f t 111.8

Rotor disc thickness (mm) Yr 15.4
Gap between magnets (mm) dpm 5.59

No. of turns per coil Nt 80
Rated RMS current (A) Ia 4.1676

Phase resistance (Ω) R 0.03988

4.2. Optimization Model

From an EV perspective, the output torque, peak-to-peak torque ripple and core losses
can be considered as the optimization objectives in the propulsion mode of operation.
Conversely, torque ripple and core losses constitute the major optimization objectives
during the charging process. It is worth noting that the above-mentioned optimization
objectives cannot be accomplished simultaneously. Therefore, the optimization model
to achieve the optimum trade-off between the various objectives is proposed to find an
operating point that satisfies the operational constraints while being optimum with respect
to the five objectives.
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In this paper, the objective function (3) is minimized according to various decision
variables Xi such as magnet thickness Ym, tooth-tang depth d1, core back width Ysb, tooth
width Wt, slot-opening ratio tso/τso, and PM width to pole pitch ratio αPM. This work,
however, mainly focuses on the charging performance. For simplicity, thermal demagneti-
zation is discarded in the formulation. Moreover, the optimization problem also contains
several types of inequality constraints. For instance, the current density J is determined
according to the cooling method used. Meanwhile, the copper fill factor Kcu is selected
to maximize the effective machine winding turns and, therefore, enhance torque density.
Furthermore, the design variables have lower and upper bounds (Xmin

i and Xmax
i ), as listed

in Table 3.

Table 3. Design parameters initial value and variation range.

Parameter Symbol Initial Range

Magnet thickness (mm) Ym 4 2.5–5.5
Tooth-tang depth (mm) d1 6.7 5.5–7.9
Core back width (mm) Ysb 14.3 13–16

Tooth width (mm) Wt 26.51 21.17–31.78
Slot-opening ratio tso/τso 0.15 0.05–0.44

PM width to pole pitch ratio αPM 0.95 0.5–0.95

The considered optimization model is formulated as follows:

minimize

Ym, d1, Ysb, Wt, tso
τso

, αPM F(Xi)

F(xi) = λ1
T′mean

Tmean(Xi)
+ λ2

Tprop
ripple(Xi)

T′prop
ripple

+ λ3
Pprop

core (Xi)

P′prop
core

+λ4
Tcharg

ripple(Xi)

T′charg
ripple

+ λ5
Pcharg

core (Xi)

P′charg
core

(3)

Subject to J ≤ 5 A/mm2

Kcu ≤ 0.5%
Tmean ≥ 40 Nm

Tripple ≤ 8%
Xmin

i ≤ Xi ≤ Xmax
i

(4)

where Tmean(Xi), Tprop
ripple(Xi), Pprop

core (Xi), Tcharg
ripple(Xi), and Pcharg

core (Xi) are the optimized values
of average output torque, torque ripple under propulsion, core losses under propulsion,
torque ripple under charging, and core losses under charging, respectively. Meanwhile,
the corresponding initial values are T′mean, T′prop

ripple, T′prop
core , T′charg

ripple , and T′charg
core , respectively.

Moreover, λ1, λ2, λ3, λ4, and λ5 are the weight factors of the five optimization objectives,
respectively, whereas λ1+ λ2 + λ3+ λ4+ λ5 = 1.

The determination of the weighting factors is crucial to the optimization approach;
however, there is no specific standard to define these factors [24]. Based on the proposed
integrated EV charging application, it is assumed that the five selected objectives have
the same priority. Thus, the weighting factors are considered equal (λ1 = λ2 = λ3 = λ4 =
λ5 = 0.2). Obviously, the average torque production is the most important target when
designing the SPM machine for EVs since it enables the EVs to meet the requirements of
high starting, frequent acceleration, and overload climbing. Nevertheless, the torque ripple
and core losses significantly affect the performance of the SPM machine under the charging
process, the main contribution of this study. Therefore, they are considered as important as
the machine performances under propulsion.
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5. Overview of the Overall Design Optimization Process

This section describes the proposed design and optimization approach for obtaining
the optimal SPM machine that can be used as the drivetrain element for EV on-board
integrated chargers. First, the comprehensive sensitivity analysis technique is introduced,
followed by a detailed description of the proposed approach’s main steps.

5.1. Comprehensive Sensitivity Analysis

Sensitivity analysis can effectively identify the influence of each design parameter on
the various optimization performances of the SPM machine [13,25]. Sensitivity analysis
based on functional decomposition of variance is adopted in this paper to show the effect
of each design variable on the optimization objectives [10]. The variance-based sensitivity
indices are obtained as in (5):

H(Xi) =
Var[E(Y/Xi)]

Var(Y)
(5)

where the optimization output is defined as Y, the design parameters are defined as Xi,
and the average value of Y when Xi is constant is defined as E(Y/Xi). Var [E(Y/Xi)] and
Var(Y) are the variances of E(Y/Xi) and Y, respectively.

These indices express the share of variance of the optimization objective that is due to
a given input (Xi) so that the positive index means to increase the output and vice versa
for the negative one. Moreover, the comprehensive sensitivity function with respect to the
above-mentioned optimization goals can be achieved using (6):

G(Xi) = λ1|Hmean(Xi)|+λ2|H
prop
ripple(Xi)|+λ3|H

prop
core (Xi)|+λ4|H

charg
ripple(Xi)|+λ5|H

charg
core (Xi)| (6)

where Hmean(Xi), Hprop
ripple(Xi), Hprop

core (Xi), Hcharg
ripple(Xi), and Hcharg

core (Xi) are the sensitivity
indices of the output torque, torque ripple in the propulsion, core losses in the propulsion,
torque ripple in the charging, and core losses in the charging, respectively. The sensitivity
indices, as well as the corresponding value of the comprehensive sensitivity function, are
listed in Table 4. In Figure 5, the bar chart shows the comparison of all design variable in-
dices on the five optimization goals. Therefore, the design parameters can be classified into
high-sensitive parameters (HSP), which are bold in Table 4, and low-sensitive parameters
(LSP) based on their significant effects. In that case, Ym, tso/τso, and αPM constitute the
HSP [G(Xi) > 0.3], and the other design variables d1, Ysb, and Wt are considered as the
LSP [G(Xi) < 0.3]. Then, the significant design parameters will be optimized first.

Table 4. Comprehensive sensitivity analysis indices.

Item Hmean Hprop
ripple Hprop

core Hcharg
ripple Hcharg

core G(Xi)

Ym 0.1627 0.0372 0.1003 0.0134 0.6168 0.3269

d1 0.0160 −0.0046 −0.0044 0.0072 0.0259 0.0207

Ysb 0.0183 −0.0020 0.0171 0.0145 0.0284 0.0280

Wt 0.0107 −0.0040 0.0916 0.0052 0.0263 0.0440

tso/τso −0.1932 0.2932 0.2636 0.1579 0.0409 0.3139

αPM 0.7379 0.4595 0.5943 0.0364 0.1651 0.6818
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5.2. Flowchart of the Design Optimization Approach

The flowchart of the design, together with the multi-objective optimization process, is
shown in Figure 6. First, the initial machine design is obtained based on the MEC model,
previously explained in Section 2. Then, according to the initial design, the optimiza-
tion objectives, design variables, and boundary constraints are defined. After that, the
selected design variables are categorized into HSP and LSP based on the comprehensive
sensitivity analysis.
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Furthermore, the response surface (RS) methodology is applied to HSP to illustrate
the relationship between the optimization objectives and high-sensitive design parameters.
The variation range of HSP is, therefore, refined. In addition, the multi-objective genetic
algorithm (MOGA) is utilized to determine the optimal design point. Finally, a finite
element (FE) model of the optimally-designed SPM machine is developed to validate the
proposed optimization approach.

6. Multi-Objective Optimization Approach

In this paper, a multi-objective optimization approach is realized on the basis of a
multi-objective genetic algorithm (MOGA) [26] to efficiently determine the optimal design
point. The response surface (RS) methodology has been shown before to enhance the
optimization efficiency [9].

6.1. Box–Behnken Response Surface Method

The RS methodology was shown to give considerable insight into how the optimiza-
tion objectives vary with respect to the variation in key design variables [27]. Consequently,
the RS method is adopted in this study to improve the variation range of HSP, which
yields a reduction in the computational burden of the following MOGA-based optimiza-
tion. In that case, Box–Behnken designs for RS methodology were developed with only
15 sampling points of the three high-sensitive variables. Accordingly, the three levels of
the Box–Behnken designs need to be determined, which are −1, 0, and 1. From Table 3, the
initial values of the key design parameters are adjusted as the central points (0), while the
corner points (−1) and (1) are set based on the variation ranges.

The interacting influences of the five optimization performances with respect to the
variation in the design variables Ym, tso/τso and αPM are illustrated in Figures 7 and 8. It can
be noted that the optimization objectives cannot be achieved simultaneously. Taking the
optimization objectives under charging (namely the peak-to-peak torque ripple and core
losses) as an illustrative example, the reduction in the core losses is accompanied by a rise
in the torque ripple, as shown in Figure 7e,f. Moreover, Figure 8e depicts the considerable
reduction in the core losses with the increase in the PM thickness in the charging mode.
Meanwhile, under propulsion, the higher the PM ratio, the higher the average torque
production; however, the torque ripple also increases. In addition, the increase in the PM
thickness yields a substantial rise in the average torque. In that case, the torque ripple is
increased as well. Thus, an optimum trade-off between the various optimization targets
needs to be defined.

6.2. Multi-Objective Genetic Algorithm (MOGA)

To avoid the inherent conflict between the optimization objectives, a MOGA-based
optimization approach was utilized to define the optimal operating point, at which the
optimum trade-off between the five objectives was realized. Not only the high-sensitive
parameters but also the low-sensitive ones were optimized using the MOGA algorithm. It
is worth mentioning that the corresponding parameters of the MOGA constitute objectives
are: space dimension, 5; individuals for the population, 50; number of divisions for each
dimension, 50; mutation probability, 0.2; and parameter used for crossover, 0.25. Moreover,
the stopping criteria are either maximum number of generations, 100, or function tolerance,
1e−4. Figure 9 depicts the optimization results under both the propulsion and charging
modes of operation. Thus, various design candidates were obtained. According to the
design requirements of the EV charging application, the optimal design of the employed
SPM machine, highlighted in green, can be determined, as shown in Figure 9.
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Moreover, the optimal values of the selected optimization objectives, as well as the key
design parameters, are listed in Table 5 and are quantitatively compared with the initial
machine design obtained from the MEC model. Although both machines offer almost the
same average torque production under propulsion, the peak-to-peak torque ripple and
core losses are significantly curtailed when the optimal machine design is employed under
various operational modes.

Table 5. Optimal SPM machine results.

Variable/Objective Initial Optimal

Ym 4 5.2

d1 6.7 6.8

Ysb 14.3 15.7

Wt 26.51 29.23

tso/τso 0.15 0.21

αPM 0.95 0.88

Tmean 42.7 Nm 42.73 Nm

Tprop
ripple 10.9 Nm 1.59 Nm

Pprop
core 64.77 W 56 W

Tcharg
ripple

2.56 Nm 0.78 Nm

Pcharg
core 2.53 W 1.99 W

7. Finite Element Validation

In order to validate the results of the proposed MEC-based design optimization
approach of an SPM machine in the charging process of EVs, FE simulations of both the
optimal and initial designs were developed using the JMAGTM Designer 2D transient
module. The two machines were assessed under both motoring and charging operational
modes using the design parameters outlined in Table 2 considering the optimized values
of the key design parameters listed in Table 5. Moreover, the results of the FE model were
compared to the results obtained from the MEC model. Simulations of the two motors
were carried out at the same speed of 1200 rpm.

Table 6 reveals the differences between the analytical and FE models with respect to
the average torque production, the peak-to-peak torque ripple, RMS phase voltage, and
core losses.



Machines 2021, 9, 329 14 of 17

Table 6. Comparison of FE and analytical models.

Initial Machine Optimal Machine

Output
Propulsion Charging

Output
Propulsion Charging

JMAG MEC JMAG MEC JMAG MEC JMAG MEC

Tavg (Nm) 43 42.7 0 0 Tavg (Nm) 42.77 42.73 0 0

Tripple (Nm) 12.2 10.9 2.64 2.56 Tripple (Nm) 1.89 1.59 1 0.78

rms Vph (V) 219.5 218 11.57 12.62 rms Vph (V) 223 222 10.95 11.64

Pcore (W) 65.3 64.77 2.31 2.53 Pcore (W) 54.5 56 2.35 1.99

Figure 10 shows the torque profiles of the two machines under both operational modes.
Under charging, the average torque production is nullified, which is the basic premise of
the integrated OBC for EVs, as shown in Figure 10b. Despite the fact that the initial and
optimal machines offer the same average torque under propulsion and zero average torque
under charging, the peak-to-peak torque ripple is considerably reduced when the optimal
machine is employed under both operational modes.
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For example, the torque ripple notably decreases from 10.9 to 1.59 Nm when the initial
and optimal machines are employed, respectively, in the motoring mode. During charging,
the torque ripple reaches 0.78 Nm for the optimal machine, compared to 2.56 Nm obtained
when the initial design is utilized.

Moreover, Figure 11 shows that both the initial and optimal machines have the same
phase voltage profiles, i.e., same magnitude and frequency. Thus, similar average torque
can be developed by the two motors at the same stator current in the propulsion mode, as
shown in Figure 10a. The air-gap flux density of the two machines under both propulsion
and charging operational modes is shown in Figure 12. Appropriate utilization of the PMs
can be observed, since the value of the air-gap flux density approaches 1.0 T under both
modes. Finally, good agreement between the FE and MEC-based analytical models with
respect to the electromagnetic performances in both the initial and optimal designs can be
noticed under the various operational modes.
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The efficiency of the optimized machine with different operating conditions is shown
in Figure 13. The optimal machine offers high efficiency at various operating points.
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8. Conclusions

In this paper, an asymmetrical six-phase 12-slot/10-pole SPM machine is designed
based on the MEC analytical model and optimized based on a multi-objective optimization
approach under both the propulsion and charging modes of operation. A trade-off opti-
mization design method among five design objectives (average output torque, torque ripple
under propulsion, core losses under propulsion, torque ripple under charging, and core
losses under charging) is efficiently achieved by using the response surface methodology
and MOGA-based optimization. Both the theoretical findings and FE simulation results
demonstrate the effectiveness of the proposed machine and the design optimization ap-
proach. Eventually, zero average torque production, lower peak-to-peak torque ripple, and
lower core losses highlight the superiority of the optimized machine under the charging
mode of operation when compared to the initial one.

From the perspective of optimization of PM machines, the proposed optimization
approach can also be applicable to SPMs with different slot-pole combinations and other
types of PM machines for torque improvement. Demagnetization capability and overall
cost of PMs are also highly dependent on the geometrical dimensions of the employed
machine. In the future, the authors will attempt to extend the proposed optimization
approach for optimization of other performances, such as demagnetization capability and
overall cost, so as to further verify its applicability and limitations.
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